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    Chapter 120 
   A Brief Review of Cephalopod Behavioral 
Responses to Sound       
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and     Roger     T.     Hanlon    

    Abstract     Sound is a widely available cue in aquatic environments and is used by 
many marine animals for vital behaviors. Most research has focused on marine ver-
tebrates. Relatively little is known about sound detection in marine invertebrates 
despite their abundance and importance in marine environments. Cephalopods are a 
key taxon in many ecosystems, but their behavioral interactions relative to acoustic 
stimuli have seldom been studied. Here we review current knowledge regarding (1) 
the frequency ranges and sound levels that generate behavioral responses and (2) the 
types of behavioral responses and their biological relevance.  
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1         Introduction 

 Sounds are abundant in the ocean. They are produced by a range of organisms (e.g., 
fi sh, crustaceans, mammals) and by abiotic conditions (e.g., wind, waves, rain, 
earthquakes). Underwater sounds travel relatively fast (~1,500 m/s), can be detected 
over long distances (Urick  1983 ), and are often available when sensory cues such as 
light or chemical stimuli may be limited (Popper and Hastings  2009 ). It is well 
established that many marine vertebrates detect and use sound for vital activities 
such as navigation, foraging, predator detection, and reproduction (Fay and Popper 
 1999 ; Au et al.  2000 ). The ability of marine invertebrates to detect and potentially 
use sound is far less understood, which is somewhat surprising given their relative 
abundance and central role in many aquatic ecosystems (Budelmann  1992a ,  b ; 
Boyle and Rodhouse  2005 ). 

 Sound detection in cephalopods was fi rst reported by Baglioni ( 1910 ), who noted 
that octopuses reacted to low-frequency acoustic vibrations and water movements. 
Later publications included the description of behavioral (Dijkgraaf  1963 ; Komak 
et al.  2005 ), physiological (Kaifu et al.  2007 ), conditioned (Packard et al.  1990 ), and 
neurological (Hu et al.  2009 ; Mooney et al.  2010 ) responses to sound stimuli of dif-
ferent frequencies and intensities. 

 The organs generally thought to enable sound detection in cephalopods are the 
statocysts (Hanlon and Messenger  1996 ; Kaifu et al.  2008 ). These are paired organs 
located in the cartilage below the brain. They consist of a fl uid-fi lled cavity contain-
ing a macula-statolith system for the detection of linear acceleration (e.g., gravity) 
and a crista-cupula system for the detection of angular acceleration (e.g., move-
ment; Budelmann  1975 ). Polarized hair cells are found in both the macula and the 
crista systems (Budelmann  1979 ). The component of a sound fi eld likely perceived 
by cephalopods is particle acceleration, not sound pressure (Packard et al.  1990 ; 
Mooney et al.  2010 ). In addition to the statocysts,  Sepia offi cinalis  (European com-
mon cuttlefi sh) also has lines of epidermal hair cells running over the head and arms 
that detect local water displacement (Budelmann et al.  1991 ; Hanlon and Messenger 
 1996 ). Their contribution to sound detection is poorly understood. 

 In the past decades, the development and greater use of the ocean have led to a 
concurrent increase in anthropogenic noise (National Research Council  2005 ). This 
noise may stem from many sources including shipping and vessel traffi c, sonar 
systems, seismic air guns, and oil drilling. Our increased awareness of the infl u-
ences of anthropogenic noise on the marine environment has led to several scientifi c 
studies addressing its potential impacts on diverse marine life (e.g., Mooney et al. 
 2009 ; André et al.  2011 ; Fewtrell and McCauley  2012 ). 

 Cephalopods play an important role in ecosystems and are a key component of 
food webs, providing a vital link from smaller invertebrates and fi sh to marine 
megafauna, birds, and humans (Boyle and Rodhouse  2005 ). It is therefore important 
to investigate the potential impact of increased anthropogenic noise on cephalo-
pods. Changes in the behavior and distribution of cephalopod populations could 
have substantial impacts on the survival and distribution of top predators such as 
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marine mammals, sharks, and sea birds; such changes would also impact commer-
cial fi sheries (Boyle and Rodhouse  2005 ). In this paper, we review research regard-
ing cephalopod behavioral responses to sound, placing these studies in the context 
of potential noise impacts. In particular, we address the frequency and sound level 
ranges that generate behavioral responses in cephalopods, the types of behavioral 
responses elicited, and their biological relevance.  

2     Behavioral Responses to Various Acoustic Stimuli 

 Cephalopods have a broad behavioral repertoire, including body movements 
(arms, mantle), body pattern changes, locomotor responses (jetting, fi n move-
ments), and inking (Hanlon and Messenger  1996 ). Multiple ethograms have been 
published (e.g., Hanlon and Messenger  1988 ; Hanlon et al.  1999  and references 
therein) and these provide the framework for future experiments in which behav-
ioral responses to acoustic stimuli can be observed, recognized, and categorized in 
a quantitative manner. 

 Figure  120.1  summarizes the cephalopod responses to sound. Dijkgraaf ( 1963 ) 
reported jetting, darkening of the skin, and narrowing of the pupils in  S. offi cinalis  in 
response to taps on the tank walls. Body patterning changes were observed when 
using 180-Hz tones. Juvenile cuttlefi sh exhibited changes in body patterning, dis-
placements, and burrowing when exposed to local sinusoidal water motion from 20 
to 600 Hz (Komak et al.  2005 ). Certain frequencies generated substantially higher 
levels of activity in juvenile animals. Unfortunately, the stimulus intensities (mea-
sured as sound pressure level or particle motion) were not reported. Recently, using 
acoustic stimuli ranging from 80 to 1,000 Hz and a range of sound levels (measured 
in both sound pressure and particle acceleration), Samson et al. ( 2014 ) categorized 
the behavioral responses of  S. offi cinalis  to different tones. The responses included fi n 
movements, body pattern changes, startle, jetting, and inking. Reactions  considered 

  Fig. 120.1    Sound detection ranges for several cephalopod species determined using behavioral 
( B ), conditioned ( C ), or neurological ( N ) responses. References: Samson et al. ( 2014 ); Komak 
et al. ( 2005 ); Packard et al. ( 1990 ); Mooney et al. ( 2010 ); Hu et al. ( 2009 ); Kaifu et al. ( 2008 )       
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to be escape and/or startle behavior (blanching, jetting, inking) mostly occurred at 
low frequencies and high sound levels. The average sound level needed to elicit a 
certain response varied for each sound frequency.

   Similar escape responses have been observed in squid,  Sepioteuthis australis , 
exposed to seismic air gun noises. The animals showed inking and jetting behaviors 
and increased swimming speed and swam upward, possibly to benefi t from the 
sound shadow near the water surface (McCauley et al.  2000 ; Fewtrell and McCauley 
 2012 ). In  Octopus ocellatus , Kaifu et al. ( 2008 ) reported changes in respiratory 
rates during exposure to sounds of 50–283 Hz. Although octopuses are also capable 
of body pattern changes, jetting, and inking, those behaviors were not mentioned in 
the literature as responses to sound stimuli.  

3     Potential for Habituation to Acoustic Stimuli 

 Studies on the potential for habituation of cephalopods to any kind of stimulus are 
scarce; most research on the learning capabilities of these animals has focused on 
memory and spatial learning (e.g., Karson et al.  2003 ; Agin et al.  2006 ). Visual 
habituation to a predator model has been observed in the squid  Lolliguncula brevis  
(Long et al.  1989 ); the squid showed a decrease in body pattern changes and jetting 
with repeated presentation of the fi sh models. Visual and tactile habituation were 
also demonstrated in  Octopus vulgaris ; the animals showed long-term habituation 
to visual stimulation using a prey model and a decrease in object handling over time 
(Kuba et al.  2006 ). 

 Cephalopod habituation to acoustic stimuli has yet to be addressed in detail. 
Only a few notes on the subject, collected en passant during previous studies on 
sound detection in cephalopods, have been found in the scientifi c literature. 
Dijkgraaf ( 1963 ) mentioned a very quick habituation to a 180-Hz tone in  S. offi ci-
nalis ; after only one exposure, the animals would not react to the stimulus anymore. 
Using juvenile  S. offi cinalis , Komak et al. ( 2005 ) obtained opposite results: no 
habituation was observed to repeated stimuli of different frequencies ranging from 
40 to 600 Hz. 

 After behavioral tests to different sound frequencies and levels, Samson et al. 
( 2014 ) exposed  S. offi cinalis  to repeated sound exposures at 200 Hz and different 
sound levels. A potential for habituation was observed; response intensity decreased, 
but response extinction was not reached during the time of the experiments.  

4     Future Research Directions 

 Studying behavioral responses along with physiological, conditioned, or neural 
responses is a productive way forward to determine the function of sound in cepha-
lopod life history. Physiological responses, for example, can provide information on 
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the detection ranges and thresholds (Hu et al.  2009 ; Mooney et al.  2010 ) but not on 
the use of sound by organisms and the role it plays in vital behaviors such as feed-
ing, defense, or reproduction. Behavioral responses may also reveal cephalopod 
functional use of sound stimuli. Moreover, knowing how animals respond to sound 
is important from an ecological point of view (Hanlon and Shashar  2003 ) and 
should enable us to predict the disruptive effects of anthropogenic sounds on popu-
lation behaviors (e.g., migration, spawning) and ecosystems because there is sub-
stantial overlap among the hearing ranges of many key organisms and the range of 
anthropogenic noise in the ocean (Fig.  120.2 ). It is unclear which type of acoustic 
information infl uences cephalopod ecology given the low frequencies to which they 
react and the absence of behavioral responses to ultrasonic clicks typical of odonto-
cetes, a prominent group of cephalopod predators (Wilson et al.  2007 ).

   Microscopic studies have shown that the hair cells in the statocysts and epider-
mal lines of  S. offi cinalis  and other cephalopods are polarized (Budelmann  1979 ; 
Budelmann et al.  1991 ). This characteristic of the hair cells could be the anatomical 
basis for directional hearing and sound location in cephalopods. The ability to sense 
the direction of acoustic stimuli and the location of acoustic sources has likely func-
tions in defense but could also play roles in other behaviors including navigation. 
Investigating these potentials in cephalopods might shed light on important aspects 
of their sensory ecology.     
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