Oceans and ocean models seen from 10,000 years of current meters observation

Greg Holloway

Department of Fisheries and Oceans, Institute of Ocean Sciences, Sidney, British Columbia

An Nguyen

NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

and

ZeliangWang

Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia

Recall a previous AOMIP result: basin averaged topostrophy, ($\mathbf{f} \times \mathbf{V} \cdot \nabla D$) here for 9 models. 3 models were "weird".

JGR 2007 (AOMIP) What is observed? From 7593 current meter sites worldwide, plot topostrophy vs latitude (over all depth)

What's new in 2010?

- I. Lots more current meter sites: 7593 => 12597
- 2. BIO/NEMO:
 - a. Why were "weird" models "weird"?
 - b. Compare CORE, OMIP, timeseries forcing
- 3. JPL/ECCO: 18km global and 9km Arctic regional
- 4. How to measure model skill?

Measuring skill. model = M + m + m', observ = O + o + o'*M*,*O* are dataset & temporal means, *m*',*o*' are temporal flucts

$$sk1 = \frac{m \bullet o}{\sqrt{(m \bullet m)(o \bullet o)}}, \quad sk2 = 1 - \frac{|m \bullet m - o \bullet o|}{m \bullet m + o \bullet o}, \quad sk3 = 1 - \frac{|M - O|}{\sqrt{d_1 d_2}}$$

where $d_1 = \sqrt{m \bullet m + o \bullet o}, \quad d_2 = |M| + |O|, \text{ and}$
"•" is weighted by observed (duration / temporal variance)
Then $sk = (sk1)(sk2)(sk3)$

"skill" = 1 iff model=observed identically sk1, sk = 0 if model is random guessing sk1, sk < 0 if model is worse than guessing

and look at topostrophy $\mathbf{f} \times \mathbf{V} \cdot \nabla D / \sqrt{|\mathbf{f} \times \mathbf{V}|^2 |\nabla D|^2}$

Were "weird" models "weird" because of neptune? (replace $A\nabla^2 \mathbf{u}$ with $A\nabla^2 (\mathbf{u} - \mathbf{u}^*)$ where $\mathbf{u}^* \equiv -L^2 \mathbf{f} \times \nabla \log D$)

JGR 2009: Using NEMO at BIO at 925 current meter sites in Arctic portion, observed topostrophy = 0.48. Friction obtains 0.19, neptune 0.36.

<u>New for 2010</u> -- 2869 Arctic sites (also common JPL) Observed topostr = 0.51, friction 0.24, neptune 0.32 Skills: friction 0.071, neptune 0.113 (weak, 59% gain)

BIO/NEMO to compare CORE, OMIP, NCEPts

- CORE friction 0.071, neptune 0.113
- OMIP friction 0.074, neptune 0.116
- NCEPts friction 0.079, neptune 0.124

JPL/ECCO compare 18 km => 9 km grid topostr: 18 km 0.31, 9 km 0.50 (vs 0.51?) skills: 18 km 0.265, 9 km 0.450

Conclusions?

We're learning (thanks to AOMIP)

- I. Earth's oceans have topostr > 0, more at high lat
- 2. Representing eddies in non-eddy models helps, e.g. neptune helps (strongly) in topostr & skill
- 3. Finer grid (eddying) helps =>> eddy resolving?