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SEmIgmplicit Ocean Model (SIOM) was de5|gned,sp€tlf|c_(#¥,fpr
thenmplementation of:4D-Var methodmnfﬂ“?ﬂéonal mode
controlled by currents at'the'open boundaries and by surface
fiixesiandisa dlflcat on of the Madec et al’, [1999] model
'ffjJJJC\ AD=\Varde
JmJ)JJ ented successfully for the reconstruction of the summer
Circuiation in the Barents, Bering and Kara seas (Panteleev et
JL, 20063,b,c), and for the variational hindcast of the

f‘JJ’“l lationiin the Tsushima Strait (Nechaev et al., 2005).
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_#.-4;- Pan-Arctic Ice-Ocean Modeling and Assimilation System (PIOMAS) was
&= developed at the Polar Science Center, University of Washington. This is a

e

:.'-'_'-_":—— coupled'parallel ocean and sea ice model capable of assimilating sea ice

—

~— = _concentration and velocity data. PIOMAS is configured to cover the region

=~ north of 43°N. The model grid is based on a generalized orthogonal
curvilinear coordinate system with the northern grid pole displaced into
Greenland. This allows the model to have good resolution in the connections
between the Arctic Ocean and the Atlantic Ocean. The model is one-way
nested to a Global Ice-Ocean Modeling and Assimilation System which
consists of similar sea ice and ocean models. Output from this model is
specified along the southern boundaries of POIMAS (43°N) as open
boundary conditions.
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AllfeceanilyStdataior a period 1997-2006

+ Positions of Salinity Stations.

Years: 1997-2006. Month: 09.

1635 Stations.



Results:

www.whoi.edu/science/P( 0 1 JltsA
SVatercircilation, temperature and'salinity of the Chukchi'Sea were

—

feconstricted for:1990-1991. This testiallowed us toinvestigate our:
dIpolhimsiand employed technologies. See:'Panteleev, G., D-'A. Nechaev, A.
ROSHNREKY REWoeoedgate, and J. Zhang (2010), Reconstruction and analysis of
tr)e Cru,ggm_) alcirculation in 1990-1991, J. Geophys. Res.,

clof o), IJU,é 909C005453

2 iuruJ/" *of the Arctic Ocean climatic conditions: 1947-2006

2 iz alysis of the Arctic Ocean climatic conditions for three periods: 1972-
~ 1978, 989 1996 and 1997-2006 was completed.

z--—"“-_
""State 1947 2006 was used as a first guess.

J Reanaly5|s of the Arctic Ocean climatic conditions for every year: 1972-1978,
1989-1996 and 1997-2006 was completed.

States 1972-1978, 1989-1996 and 1997-2006 were used as a first guesses.
® Decadal changes of the reconstructed fields were analyzed.

® Adjoint sensitivity analysis of the mooring observations in the Chukchi Sea
and in Arctic Ocean. 6
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Var data assmﬁﬁoeedure transforms a priori probability
for the data by injecting dynamical information, and establishes the
e ocea

Ci U U >ialiu JCTLVVCC Ci \/ g o

es y descrlbed by the model operator M.

1; _é_work of Gaussian statistics, a posteriori probability density is
yed by the inverse covariance H=02J/dc?. Therefore, covariance between
m rtles d,, 9., expressed in terms of the control variables cas q,.= L, y=L

E L oX=L,Mc, is cov(q, q,)=L,MH-MTL,".

= =
— - ==

— = - e ...__i'—
—

r__ lve magnltude S of cov(q, q,) can be used to estimate sensitivity of a target
-_-"’_"‘ -quantlty (say, q,) to an observation of q, in the presence of other data and
dynamlcal constraints, which define the structure of H. We investigate sensitivity
of the optimized value of q, to observations of g, (i.e. the derivative [0q./ g, ])
under the assumption that the prior error variances o of the control variables
are much smaller than the combined observational and model error variances:

S=16q9.,/6q,| =|WL,"TMVMTL,T|.
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Velocity across

A3 section

From 1990-1991 observations:
Correlation (V,;,BST ) =0.88
R e B T Correlation ( V,,,BST ) = 0.94

9 Reconstructed velocity for 1990-1991 was
§ used for the analysis



é_sponse of the tangent linear model in the upper layer 0-300m
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" to perturbation of the transport observations in 0-100m after
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Arctic Ocean Reanalysys

Adjoint SE€

Response of the tangent linear model in the
upper layer 0-300m to perturbation of the
transport observations in 0-1000m after
data assimilation.

The numbers shows the integral
relative sensitivity of the circulation in
0-300m.
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Adjoint se

Response of the tangent linear model in the
upper layer 0-300m to perturbation of the
transport observations in 0-bottom after
data assimilation.

The numbers shows the integral
relative sensitivity of the circulation in
0-300m.




Response of the tangent linear model in the
upper layer 0-300m to perturbation of the

transport obser\le

~ 0-bottom after data assimilation.
- The numbers shows the integral

. | relative sensitivity of the circulation in -

0-1000m

the transects?
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I gent linear model in the upper layer 0-300m to perturbation of
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Conclusions

1. The optimized circulation can be used for optimization of the moorings

i

2. Adjoint sensitivity analysis of the optimized AO circulation allows

the following conclusions:

- Current observational systems (BG, NABOS P) do no

- It is important to measure the total dJ vort. C s
upper layer are less valu e e :_'[?'j'-'_'-'r-;-?.:- ._ : _';:'?-*:- o
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Transport observati tion -;:-. alc
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