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Preface

This book is to a large extent the second edition of The Ocean Circulation Inverse Problem.

It differs from the original version in a number of ways.

In teaching the basic material at MIT and elsewhere over the past 10 years, it became clear

that it was of interest to many students outside of physical oceanography–the audience for

whom the book had been written. The oceanographic material, instead of being a motivating

factor, was in practice an obstacle to understanding for students with no oceanic background.

In the revision therefore, I have tried to make the examples more generic and understandable,

I hope, to anyone with a rudimentary experience with simple fluid flows.

Second, much of the oceanographic application of the methods, which still seemed novel

and controversial at the time of writing, have become widespread and more sophisticated. The

oceanographic applications are thus focussed less on explaining how the calculations were done,

and more on summarizing what has been accomplished. Furthermore, the time-dependent prob-

lem (here called “state estimation” to distinguish it from meteorological practice) has evolved

rapidly in the oceanographic community from a hypothethical methodology to one that is clearly

practical and in ever-growing use.

A number of exercises, to make clear the basic concepts, is scattered throughout the book.

Perhaps they will be of some pedagogical use. In the interests of keeping the book as short

as possible, I have however, omitted some of the more interesting theoretical material of the

original version, but which readers can find in the wider literature on control theory.



CHAPTER 1

Introduction

The most powerful insights into the behavior of the physical world are obtained when direct

observations are well described by a theoretical framework that is then available for predicting

new phenomena or new observations. An example is the observed behavior of radio signals

and their extremely accurate description by the Maxwell equations of electromagnetic radiation.

Other such examples include planetary motions as described by Newtonian mechanics, or the

movement of the atmosphere and ocean as described by the equations of fluid mechanics, or

the propagation of seismic waves in the earth as described by the elastic wave equations. To

the degree that the theoretical framework supports, and is supported by, the observations one

develops sufficient confidence to calculate similar phenomena either in previously unexplored

places or to make predictions of future behavior (the position of the moon 1000 years, or the

climate state of the earth, 100 years in the future).

Developing a coherent view of the physical world requires some mastery therefore, of both the

structure of the necessary theoretical frameworks, and of the meaning and interpretation of real

data. Conventional scientific education, at least in the physical sciences, puts a heavy empha-

sis on learning how to solve appropriate differential and partial differential equations (Maxwell,

Schrodinger, Navier-Stokes, etc.). One learns which problems are “well-posed”, how to construct

solutions either exactly or approximately, and how to intepret the results. Much less empha-

sis is placed on the problems of understanding the implications of data, which are inevitably

imperfect–containing noise of various types, often incomplete, and possibly inconsistent.

Many interesting problems arise in using observations in conjunction with theory. In par-

ticular, one is driven to conclude that there are no “well-posed” problems outside of textbooks,

that stochastic elements are inevitably present and must be confronted, and that more generally,

one must make inferences about the world from data that are necessarily always incomplete.

The main purpose of this introductory chapter is to provide some comparatively simple ex-

amples of the type of problems one confronts in practice, and for which many interesting and

useful tools exist for their solution. In an older context, this subject was called the “calculus of

observations.”1

1Whittaker and Robinson (1944)

1
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1. Differential Equations

Differential equations are often used to describe natural processes. Many phenomena in the

physical sciences are believed adequately explainable through some of the famous systems of

equations of mathematical physics, including Schrodinger’s, Maxwell’s, the fluid equations of

Navier-Stokes, or the equations of elastic solids. Consider the elementary problem of finding the

temperature in a bar where one end, at r = rA. is held at constant temperature TA, and at the

other end, r = rB, it is held at temperature TB. The only mechanism for heat transfer within

the bar is by molecular diffusion, so that the governing equation is,

κ
d2T

dr2
= 0 (1.1)

subject to the boundary conditions

T (rA) = TA, T (rB) = TB. (1.2)

Eq. (1.1) is so simple we can write the solution to (1.1) in a number of different ways. One form

is,

T (r) = a+ br (1.3)

where a, b unknown parameters, until some additional information is provided. Here the addi-

tional information is contained in the boundary conditions (1.2), and with two parameters to

be found, there is just sufficient information, and

T (r) =
rBTA + rATB

rB − rA
+

TB − TA

rB − rA
r, (1.4)

a straight line. Such problems, or analogues for much more complicated systems, are sometimes

called “forward” or “direct” and they are “well-posed”: exactly enough information is available

to produce a unique solution (easily proved here, not so easily in other cases). If there are small

perturbations in Ti, or ri, then the solution changes only slightly–it is stable and differentiable.

This sort of problem and its solution is what is generally taught beginning in elementary science

courses.

On the other hand, the problems one encounters in actually doing science differ significantly–

both in the questions being asked, and in the information available. A very large number of

possibilities presents itself:

(1) One or both of the boundary values TA, TB is known from measurements; they are thus

given as TA = T
(c)
A ±∆TA , TB = T

(c)
B ±∆TB , where the ∆TA,B are an estimate of the

possible inaccuracies in the theoretical values T
(c)
i . (Exactly what that might mean is

taken up later.)

(2) One or both of the positions, rA,B is also the result of measurement and are of the form

r
(c)
A,B ±∆rA,B.
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(3) TB is missing altogether, but is known to be positive, e.g., TB > 0

(4) One of the boundary values, e.g., TB is unknown, but an interior value Tint = T
(c)
int ±

∆Tint is provided instead. Perhaps many interior values are known instead, but none

of them perfectly.

Other possibilities exist. But even this short list raises a number of interesting, practical

problems. One of the themes of this book is that almost nothing in reality is known perfectly.

It is possible that ∆TA is very small; but as long as it is not actually zero, there is no longer

any possibility of finding a single unique solution.

Many variations on this model and theme arise in practice. Suppose the problem is made

slightly more interesting by introducing a “source” q (r) , so that the temperature field is thought

to satisfy the equation,

d2T (r)

dr2
= q (r) , (1.5)

along with its boundary conditions, producing another conventional forward problem. One can

convert (1.5) into a different problem by supposing that one knows T (r) , and seeks q (r) . Such

a problem is even easier to solve than the conventional one: differentiate T twice. Because

convention dictates that the “forward problem” involves the determination of T (r) from a

known q (r) and boundary data, this latter problem might be labelled as an “inverse” one–

simply because it contrasts with the conventional formulation.

In practice, a whole series of new problems can be raised: suppose q (r) is imperfectly known.

How should one proceed? If one knows q (r) and T (r) at a series of positions ri �= rA, rB, could

one nonetheless deduce the boundary conditions? Could one deduce q (r) if it were not known

at these interior values?

T (r) has been supposed to satisfy the differential equation (1.1). For many purposes, it is

helpful to reduce the problem to one that is intrinsically discrete. One way to do this would be

to expand the solution in a system of polynomials,

T (r) = α0r
0 + α1r

1 + ...+ αnr
n, (1.6)

and

q (r) = β0r
0 + β1r

1 + ...+ βnr
n (1.7)

where the βi would conventionally be known, and the problem has been reduced from the need

to find a function T (r) defined for all values of r, to one in which only the finite number of

parameters αi, 0 ≤ i ≤ n must be found.

An alternative discretization is obtained by using the coordinate r. Divide the interval rA =

0 ≤ r ≤ rB into N − 1 intervals of length ∆r, so that rB = (N − 1)∆r. Then, taking a simple
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two-sided difference:

T (2∆r)− 2T (∆r) + T (0) = (∆r)2 q (0)

T (3∆r)− 2T (2∆r) + T (1) = (∆r)2 q(1∆r)

. (1.8)

.

T ((N − 1)∆r − 2T ((N − 2)∆r) + T ((N − 3)∆r) = (∆r)2 q ((N − 2)∆r)

If one counts the number of equations in (1.8) it is readily found that there are N − 2 of them,

but with a total of N unknown T (p∆r) . The two missing pieces of information are provided

by the two boundary conditions T (0∆r) = T0, T ((N − 1)∆r) = TN−1. Thus the problem of

solving the differential equation has been reduced to finding the solution of a set of ordinary

linear simultaneous equations, which we will write, in the notation of Chapter 2, as

Ax = b, (1.9)

where A is a square matrix, x is the vector of unknowns T (p∆t) , and b is the vector of values

q (p∆t) , and of boundary values. The list above, of variations, e.g., where a boundary condition

is missing, or where interior values are provided instead of boundary conditions, become state-

ments then about having too few, or possibly too many, equations for the number of unknowns.

Uncertainties in the Ti or in the q (p∆r) , become statements about having to solve simultane-

ous equations with uncertainties in some elements. That models, even nonlinear ones, can be

reduced to sets of simultaneous equations is the unifying theme of this book. One might need

truly vast numbers of grid points, p∆r, or polynomial terms, and ingenuity in the formulation to

obtain adequate accuracy, but as long as the number of parameters, N <∞, one has achieved

a great, unifying simplification.

Consider a slightly more interesting ordinary differential equation, that for the simple mass-

spring oscillator,

m
d2ξ (t)

dt2
+ γ

dξ (t)

dt
+ k0ξ (t) = q (t) , (1.10)

where m is mass, k0 is a spring constant, and γ a dissipation parameter. Although the equation

is slightly more complicated than is (1.5), and we have relabelled the independent variable as t

(to suggest time), rather than as r, there really is no fundamental difference. This differential

equation can also be solved in any number of ways. As a second order equation, it is well-

known that one must provide two extra conditions to have enough information to have a unique

solution. Typically, there are initial conditions, ξ (0) , dξ (0) /dt–a position and velocity, but

there is nothing to prevent us from assigning two end conditions, ξ (0) , ξ (t = tf ) , or even two

velocity conditions dξ (0) /dt, dξ (tf ) /dt, etc.

If we naively discretize (1.10) as we did the straightline equation, we have,
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ξ(p∆t+∆t) = (1.11)(
2−

r∆t

m
−

k(∆t)2

m

)
ξ(p∆t) +

(
r∆t

m
− 1

)
ξ(p∆t−∆t) + (∆t)2

q (p∆t)

m
,

2 ≤ p ≤ N − 1

which is another set of simultaneous equations as in (1.9) in the unknown ξ (p∆t) ; an equation

count again would show that there are two fewer equations than unknowns–corresponding to

the two boundary or two initial conditions. In Chapter 2, several methods will be developed

for solving sets of simultaneous linear equations, even when there are apparently too few or too

many of them. In the present case, if one were given ξ (0) , ξ (1∆t) , Eq. (1.11) could be stepped

forward in time, generating ξ (3∆t) , ξ (4∆t) , ...,ξ ((N − 1)∆t). The result would be identical to

the solution of the simultaneous equations–but with far less computation.

But if one were given ξ ((N − 1)∆t) instead of ξ (1∆t) , such a simple time-stepping rule

could no longer be used. One would have a similar difficulty if q (j∆t) were missing for some

j, but instead one had knowledge of ξ (p∆t) , for some p. Looked at as a set of simultaneous

equations, there is no conceptual problem. There is a problem only if one did seek to time-step

the equation forward, but without the required second condition at the starting point–there

would be inadequate information to go forward. Many of the methods explored in this book are

ways to solve simultaneous equations while avoiding the need for all-at-once brute force solution.

Nonetheless, one is urged to always recall that most of the interesting algorithms are nonetheless

nothing but clever ways of solving large sets of such equations.

2. Partial Differential Equations

Finding the solutions of linear differential equations is equivalent, when discretized, to solving

sets of simultaneous linear algebraic equations. Unsurprisingly, the same is true of partial

differential equations. As an example, consider a very familiar problem:

Solve

∇
2φ = ρ, (2.1)

for φ, given ρ, in the domain r ∈ D, subject to the boundary conditions φ = φ0 on the boundary

∂D, where r is a spatial coordinate of dimension greater than 1.

This statement is the Dirichlet problem for the Laplace-Poisson equation, whose solution is

well-behaved, unique, and stable to perturbations in the boundary data, φ0, and the source or

forcing, ρ. Because it is the familiar boundary value problem, it is by convention again labeled

a forward or direct problem. Now consider a different version of the above:

Solve (2.1) for ρ given φ in the domain D.
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F����� 1. Simple square, homogeneous grid used for discretizing the Laplacian,

thus reducing the partial differential equation to a set of linear simultaneous

equations.

This latter problem is even easier to solve than the forward problem: merely differentiate

φ twice to obtain the Laplacian, and ρ is obtained directly from (2.1). Because the problem as

stated is inverse to the conventional forward one, it is labeled, as with the ordinary differential

equation, an inverse problem. It is inverse to a more familiar boundary value problem in the sense

that the usual unknowns φ have been inverted or interchanged with (some of) the usual knowns

ρ. Notice that both problems, as posed, are well-behaved and produce uniquely determined

answers (ruling out mathematical pathologies in any of ρ, φ0, ∂D, or φ). Again, there are many

variations possible: one could, for example, demand computation of the boundary conditions,

φ0, from given information about some or all of φ, ρ.

Write the Laplace-Poisson equation in finite difference form for two Cartesian dimensions:

φi+1,j − 2φi,j + φi−1,j + φi,j+1 − 2φi,j + φi,j−1 = ρij, i, j ∈ D . (2.2)

To make the bookkeeping as simple as possible, suppose the domain D is the square N ×N grid

displayed in Figure 1, so that ∂D is the four line segments shown. There are (N − 2)× (N − 2)

interior grid points, and Equations (2.2) are then (N − 2)× (N − 2) equations in N2 of the φij .

If this is the forward problem with ρij specified, there are fewer equations than unknowns. But

if we append to (2.2) the set of boundary conditions:

φij = φ0ij , i, j ∈ ∂D , (2.3)
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there are precisely 4N −4 of these conditions, and thus the combined set (2.2) plus (2.3), which

we write again as (1.9),

x = vec{φij} =




φ11

φ12

·

·

φNN



, b = vec

{
ρij, φ

0

ij

}
=




ρ11

ρ12

·

·

ρN−2,N−2

φ011

·

φ0ij




,

a set of M = N2 equations in M = N2 unknowns. (The operator vec, defined formally later, is

used to form a column vector out of the two-dimensional array φij , etc.) The nice properties of

the Dirichlet problem can be deduced from the well-behaved character of the matrix A. Thus

the forward problem corresponds directly with the solution of an ordinary set of simultaneous

algebraic equations.2 One complementary inverse problem says: “Using (1.9)compute ρij and

the boundary conditions, given φij,” an even simpler computation–it involves just multiplying

the known x by the known matrix A.

But now let us make one small change in the forward problem, changing it to the Neumann

problem:

Solve

∇
2φ = ρ (2.4)

for φ, given ρ, in the domain r ∈ D subject to the boundary conditions ∂φ/∂m̂ = φ′

0 on the

boundary ∂D, where r is again the spatial coordinate and m̂ is the unit normal to the boundary.

This new problem is another classical, much analyzed forward problem. It is, however, well-

known that the solution to (2.4) with these new boundary conditions is indeterminate up to an

additive constant. This indeterminacy is clear in the discrete form: Equations (2.3) are now

replaced by

φi+1,j − φi,j = φ0
′
′

ij , i, j ∈ ∂D′ (2.5)

etc., where ∂D′ represents the set of boundary indices necessary to compute the local normal

derivative. There is a new combined set:

Ax = b1, x =vec

{
φij

}
, b1 = vec

{
ρij , φ

0′

ij

}
(2.6)

Because only differences of the φij are specified, there is no information concerning the mean

value of x. When we obtain some proper machinery in Chapter 2, we will be able to demonstrate

that even though (2.6) appears to be M equations in M unknowns, in fact only M − 1 of the

2Lanczos (1961) has a much fuller discussion of this correspondence.
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F����� 2. A simple reservoir problem in which there are multiple sources of

flow, at rates Ji0, each carrying an identifiable property Ci, perhaps a chemical

concentration. In the forward problem, given Ji0, Ci one could calculate C0. One

form of inverse problem provides C0 and the Ci and seeks the values of Ji0.

equations are independent, and thus the Neumann problem is an underdetermined one. This

property of the Neumann problem is well-known, and there are many ways of handling it, either

in the continuous or discrete forms. In the discrete form, a simple way is to add one equation

setting the value at any point to zero (or anything else). Notice however, that in all cases, the

inverse problem of determining b1 from x remains simple and well-posed.

3. More Examples

A Tracer Box Model

In scientific practice, one often has observations of elements being described by the differ-

ential system or other model. Such situations vary enormously in their complexity and sophis-

tication of both the data and the model. A useful and interesting example of a simple system,

with applications in many fields is one in which there is a large reservoir (Figure 2) connected

to a number of source regions which provide fluid to the reservoir. One would like to determine

the rate of mass transfer from each source region to the reservoir.

We suppose that some chemical tracer or dye, C0 is measured in the reservoir, and that the

concentrations of the dye, Ci, in each source region are known. Let the unknown transfer rates

be Ji0 (transfer from source i to reservoir 0). Then we must have

C1J10 +C2J20 + ....+CNJN0 = C0J0∞ (3.1)
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which states that for a steady-state, the rate of transfer in, must equal the rate of transfer out

(written J0∞). To conserve mass, one must have

J10 + J20 + ....+ JN0 = J0∞. (3.2)

This model has produced for us two equations in N + 1 unknowns, [Ji0,J0∞] which evidently is

insufficient information if N > 1. The equations have also been written as though everything

were perfect. If for example, the tracer concentrations Ci were measured with finite precision

and accuracy (they always are), one might try to accomodate the resulting inaccuracy as

C1J10 +C2J20 + ....+CNJN0 + n = C0J0∞ (3.3)

where n represents the resulting error in the equation. Its introduction of course, produces one

more unknown. If the reservoir were capable of some degree of storage or fluctuation in level,

one might want to introduce an error term into (3.2) as well. One should also notice, that

as formulated, one of the apparently infinite number of solutions to Eqs. (3.1, 3.2) includes

Ji0 = J0∞ = 0–no flow at all. Clearly something more is required if this null solution is to be

excluded.

To make the problem slightly more interesting, let us suppose that the tracer C is radioactive,

and decays with a decay constant λ. We must then modify (3.1) to

C1J10 +C2J20 + ....+CNJN0 −C0J0∞ = −λC0 (3.4)

Now the zero solution for Jij is no longer possible if C0 > 0, but we still have potentially many

more unknowns than equations. These equations are once again in the canonical form Ax = b.

A Tomographic Problem

So-called tomographic problems occur in many fields, most notably in medicine, but also in

materials testing, oceanography, meteorology and geophysics. Generically, they arise when one

is faced with the problem of inferring the distribution of properties inside an area or volume

based upon a series of integrals through the region. Consider Fig. 3. To be specific, we suppose

we are looking at the top of the head of a patient lying supine in a so-called CAT-scanner. The

two external shell sectors represent in (a) a source of x-rays and in (b) set of x-ray detectors. X-

rays are emitted from the source and travel through the patient along the indicated lines where

the intensity of the received beam is measured. Let the absorbtivity/unit length within the

patient be a function, c (r) , where r is the vector position within the patient’s head. Consider

one source at rs and a receptor at rr connected by the path as indicated. Then the intensity
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F����� 3. Generic tomographic problem in two dimensions. Integrals through

an otherwise impenetrable solid are obtained by measuring the change in prop-

erties between the transmitted sources and receivers. Properties can be anything

measurable, including travel times, intensities, group velocities etc. The tomo-

graphic problem is to reconstruct the interior from these integrals. In the par-

ticular configuration shown, the source and receiver and supposed to revolve so

that a very large number of paths can be built up. It is also supposed that the

division into small rectangles is an adequate representation. In principle, one can

have many more integrals than the number of squares defining the unknowns.

measured at the receptor is,

I (rs, rr) =

∫
rs

rs

c (r (s)) ds, (3.5)

where s is the arc-length along the path. The basic tomographic problem is to determine c (r)

for all r in the patient, from measurements of I. In the medical problem, the shell sectors

rotate around the patient, and an enormous number of integrals along (almost) all possible

paths are obtained. An analytical solution to this problem, as the number of paths becomes

infinite, is produced by the Radon transform3. Given that tumors and the like have a different

absorbtivity than does normal tissue, the recreated image of c (r) permits physicians to “see”

inside the patient. In most other situations however, the number of paths tends to be much

smaller than the formal number of unknowns and other solution methods must be found.

3Herman (1980). “Radon” is pronounced not as in radon gas, but with the ‘a’ sounding as in “mad.”
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F����� 4. Simplified geometry for defining a tomographic problem. Some

squares may have no integrals passing through them; others may be multiply-

covered. Boxes outside the physical body can be handled in a number of ways,

including the addition of constraints setting the corresponding cj = 0.

Note first however, that we should modify Eq. (3.5) to reflect the inability of any system to

produce a perfect measurement of the integral, and so more realistically we write

I (rs, rr) =

∫
rs

rs

c (r (s))ds+ n (rs, rr) (3.6)

where n is the measurement noise.

To proceed, let us surround the patient with a bounding square (Fig. 4)—simply to produce

a simple geometry, and subdivide the area into subsquares as indicated, each numbered in

sequence, 1 ≤ j ≤ N. These squares are supposed sufficiently small that c (r) is effectively

constant within them. Also number the paths, 1 ≤ i ≤M. Then Eq. (3.6) can be approximated

with arbitrary accuracy (by letting the number of subsquares become arbitrarily large), as

Ii =
N∑

j=1

cj∆rij + ni (3.7)

Here ∆rij is the arc length of path i within square j (most of them will vanish for any particular

path). Once again, these last equations are of the form

Ex+ n = y, (3.8)

where here, E = {∆rij} , x = [cj], n =[ni] . Quite commonly there are many more unknown

cj than there are integrals Ii. (In the present context, there is no distinction between writing



12 1. INTRODUCTION

F����� 5. Volume of fluid bounded on four open sides across which fluid is

supposed to flow. Mass is conserved, giving one relationship among the fluid

transports vi; conservation of one or more other tracers Ci leads to additional

useful relationships.

matrices A,E. I will however, generally use E where noise elements are present, and A where

none are intended.)

Outside of medicine measurements are not always of x-ray intensities. In seismology or

oceanography, for example, cj is commonly 1/vj where vj is the speed of sound or seismic waves

within the area; I is then a travel time rather than an intensity. The methodology also works

in three-dimensions, the paths need not be straight lines and there are many generalizations.4

A probem of great practical importance is determining what one can say about the solutions to

Eqs. (3.3) even where many more unknowns exist than formal pieces of information yi.

As with all these problems, many other forms of discretization are possible. For example,

we could have expanded the continuous function

c (r) =
∑

q

∑

p

anmTn (rx)Tm (ry) (3.9)

where r =(rx, ry) and the Tn are any suitable expansion functions (sines and cosines, Chebyschev

polynomials, etc.). The linear equations (3.3) then represent constraints leading to the determi-

nation of the set of anm.

A Second Tracer Problem

Consider the closed volume in Fig. 5 enclosed by four boundaries as shown. There are

steady flows, vi (z) , 1 ≤ i ≤ 4 either into or out of the volume, each carrying a corresponding

fluid of constant density ρ0. z is the vertical coordinate. If the width of each boundary is li, the

4Herman (1980); Munk et al. (1995).
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statement that mass is conserved within the volume is simply

r∑

i=1

liρ0

∫
0

−h

vi (z) dz = 0, (3.10)

where the convention is made that flows into the box are positive, and flows out are negative.

z = −h is the lower boundary of the volume and z = 0 is the top one. If the vi are unknown,

Eq. (3.10) represents one equation (constraint) in four unknowns,

∫
0

−h

vi (z)dz. (3.11)

One possible, if boring, solution is vi (z) = 0. To make the problem somewhat more interesting,

we now suppose that for some (mysterious) reason, the vertical derivatives, v′i (z) = dvi/dz, are

known, so that

vi(z) =

∫ z

−zo

v′i (z) dz + bi, (3.12)

where z0 is a convenient place to start the integration (but can be any value). bi are integration

constants (bi = vi (z0)) which remain unknown. Constraint (3.10) becomes,

4∑
i=1

liρ0

∫
0

−h

[∫ z

−zo

v′i
(
z′
)
dz′ + bi

]
dz = 0, (3.13)

or,

4∑
i=1

hlibi = −
4∑

i=1

li

∫
0

−h

dz

∫ z

−zo

v′i
(
z′
)
dz′ (3.14)

where the right-hand side is supposed known. Eq. (3.14) is still one equation in four unknown

bi, but the zero-solution is no longer possible, assuming the right-hand side does not vanish. Eq.

(3.14) is a statement that the weighted average of the bi on the left-hand-side is known. If one

seeks to obtain estimates of the bi separately, more information is required.

Suppose that information pertains to a tracer, perhaps a red-dye, known to be conservative,

and that the box concentration of red-dye, C, is known to be in a steady-state. Then conservation

of C becomes,

4∑
i=1

[
hli

∫
0

−h

Ci (z) dz

]
bi = −

4∑
i=1

li

∫
0

−h

dz

∫ z

−zo

Ci

(
z′
)
v′i
(
z′
)
dz′, (3.15)

where Ci (z) is the concentration of red-dye on each boundary. Eq. (3.15) provides a second

relationship for the four unknown bi. One might try to measure another dye concentration,

perhaps green dye, and write an equation for this second tracer, exactly analogous to (3.15).

With enough such dyes, one might obtain more constraint equations than unknown bi. In any
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case, no matter how many dyes are measured, the resulting equation set is of the form (3.3).

The number of boundaries is not limited to four, but can be either fewer, or many more.5

Vibrating String

Consider a uniform vibrating string anchored at its ends rx = 0, rx = L. The free motion of

the string is governed by the wave equation

∂2η

∂r2
x

−

1

c2
∂2η

∂t2
= 0, c2 = T/ρ, (3.16)

where T is the tension, and ρ the density. Free modes of vibration (eigen-frequencies) are found

to exist at discrete frequencies, sq,

2πsq =
qπc

L
, q = 1, 2, 3, ..., (3.17)

and which is the solution to a classical forward problem. A number of interesting and useful

inverse problems can be formulated. For example, given sq ±∆sq, q = 1, ...,M, to determine L,

or c. These are particularly simple problems, because there is only one parameter, either c or L

to determine. More generally, it is obvious from Eq. (3.17) that one has information only about

c/L–they could not be determined separately.

Suppose however, that the density varies along the string, ρ = ρ (rx) , so that c = c (rx).

Then (it may be confirmed) that the observed frequencies are no longer given by Eq. (3.17), but

by expressions involving the integral of c over the length of the string. An important problem is

then to infer c (rx), and hence ρ (rx) . One might wonder whether, under these new circumstances

L can be determined independently of c?

A host of such problems, in which the observed frequencies of free modes are used to infer

properties of media in one to three dimensions exists. The most elaborate applications are in

the geophysics, where the normal mode frequencies of the vibrating whole earth are used to

infer the interior properties (density and elastic parameters).6 A good exercise is to render the

variable string problem in discrete form.

4. Importance of the Forward Model

Inference about the physical world from data requires assertions about the structure of the

data and its own relationships. One sometimes hears claims from people who are expert in

5Oceanographers will recognize this apparently highly artificicial problem as being a slightly simplified version

of the so-called geostrophic inverse problem, and which is of great practical importance. It is a central subject in

Chapter 5.
6Aki and Richards (1980). A famous two-dimensional version of the problem is described by Kac (1966); see

also Gordon and Webb (1996).
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measurements that “I don’t use models.” Such a claim is almost always completely vacuous.

What the speaker usually means is that he doesn’t use equations, but is manipulating his data

in some simple way (e.g., forming an average) that seems to be so unsophisticated that no

model is present. Consider a simple problem faced by someone trying to determine the average

temperature in a room. A thermometer is successively placed at different three-dimensional

locations, ri, at times ti. Let the measurements be yi and the value of interest is

m̃ =
1

M

M∑

i=1

yi. (4.1)

In deciding to compute, and use m̃, the observer has probably made a long list of very so-

phisticated, but implicit, model assumptions. Among them we might suggest: (1) that the

temperature in the room is sufficiently slowly changing that all of the ti can be regarded as

identical. A different observer might suggest that the temperature in the room is governed by

shock waves bouncing between the walls at intervals of seconds or less. Should that be true, m̃

might prove completely meaningless. It might be objected that such an hypothesis is far-fetched.

But the assumption that the room temperature is governed, e.g., by a slowly evolving diffusion

process, is a rigid, and perhaps incorrect model. (2) That the errors in the thermometer are

such that the best estimate of the room mean temperature is obtained by the simple sum in

Eq. (4.1). There are many measurement devices for which this assumption is a very poor one

(perhaps the instrument is drifting, or has a calibration that varies with temperature), and we

will discuss how to determine averages in Chapter 2. But the assumption that property m̃ is

useful, is a strong model assumption concerning the instrument being used and the physical

process it is measuring.

This list can be extended (the interpretation of the mean is itself model-dependent), but more

generally, all of the inverse problems listed in this chapter only make sense to the degree that the

underlying forward model is likely to be an adequate physical description of the observations.

For example, if one is attempting to determine ρ in Eq. (2.4) by taking the Laplacian ∇2φ,

(analytically or numerically), this solution to the inverse problem is only sensible if this equation

really represents the correct governing physics.. If the correct equation to use were,

∂2φ

∂r2x
+
1

2

∂φ

∂ry
= ρ, (4.2)

the calculated value of ρ would be incorrect. One might however, have good reason to use Eq.

(2.4) as the most likely hypothesis, but nonetheless remain open to the possibility that it is

not an adequate descriptor of the required field, ρ. A good methodology, of the type we will

develop in susbsequent chapters, permits one to ask the question: is my model consistent with

the data? If the answer to the question is “yes,” a careful investigator would never claim that the

resulting answer is the correct one and that the model has been “validated” or “verified.” One
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claims only that the answer and the model are consistent with the observations, and remains

open to the possibility that some new piece of information will be obtained that completely

invalidates the model (e.g., some direct measurements of ρ showing that the inferred value is

simply wrong). One can never validate or verify a model, one can only show consistency with

existing observations.7

7Oreskes et al. (1994).



CHAPTER 2

Basic Machinery

1. Background

The purpose of this chapter is to record a number of results which are useful in finding and

understanding the solutions to sets of usually noisy simultaneous linear equations and in which

formally there may be too much or too little information. A lot of this material is elementary;

good textbooks exist, to which the reader will be referred. Some of what follows is discussed

here primarily so as to produce a consistent notation for later use. But some topics are given

what may be an unfamiliar interpretation, and I urge everyone to at least skim the chapter.

Our basic tools are those of matrix and vector algebra as they relate to the solution of

linear simultaneous equations, and some elementary statistical ideas mainly concerning covari-

ance, correlation, and dispersion. Least-squares is reviewed, with an emphasis placed upon the

arbitrariness of the distinction between knowns, unknowns and noise. The singular-value decom-

position is a central building block, producing the clearest understanding of least-squares and

related formulations. We introduce minimum variance estimation through the Gauss-Markov

theorem as an alternative method for obtaining solutions to simultaneous equations, and show

its relation to and distinction from least-squares. The Chapter ends with a brief discussion of

recursive least-squares and estimation; this part is essential background for the study of time-

dependent problems in Chapter 4.

2. Matrix and Vector Algebra

This subject is very large and well-developed and it is not my intention to repeat material

better found elsewhere1. Only a brief survey of essential results is provided.

A matrix is an M ×N array of elements of the form

A = {Aij}, 1 ≤ i ≤M, 1 ≤ j ≤ N .

Normally a matrix is denoted by a bold-faced capital letter. A vector is a special case of an

M ×1 matrix, written as a bold-face lower case letter, for example, q. Corresponding capital or

lower case letters for Greek symbols are also indicated in bold-face. Unless otherwise stipulated,

vectors are understood to be columnar. The transpose of a matrix interchanges its rows and

1Noble & Daniel (1977); Strang (1988).

17
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columns. Transposition applied to vectors is sometimes used to save space in printing, for

example, q = [q1, q2,..., qN ]T is the same as

q =




q1

q2
...

qN




.

Matrices and Vectors

The inner, or dot, product between two L×1 vectors a, b is written aTb ≡ a ·b =
∑

L

i=1
aibi

and is a scalar. Such an inner product is the “projection” of a onto b (or vice-versa). A

conventional measure of length of a vector is
√
aTa =

√∑
N

i
a2
i
= ‖a‖ .It is readily shown that

|aTb| ≤‖a‖ ‖b‖; the magnitude of this projection can be measured as,

a
T
b = ‖a‖ ‖b‖ cosφ ,

where cosφ ranges between zero, when the vectors are orthogonal, and one, when they are

parallel.

Suppose we have a collection of N vectors, ei, each of dimension N . If it is possible to

represent perfectly an arbitrary N—dimensional vector f as the linear sum,

f =

N∑

i=1

αiei , (2.1)

then ei are said to be a “spanning set” or a “basis.” A necessary and sufficient condition for

them to have that property is that they should be “independent,” that is, no one of them should

be perfectly representable by the others:

ej0 −

N∑

i=1, i�=j0

βiei �= 0, 1 ≤ j0 ≤ N . (2.2)

A subset of the ej are said to span a subspace (all vectors perfectly representable by the subset).

For example, [1,−1, 0]T , [1, 1, 0]T span the subspace of all vectors [v1, v2, 0] .

The expansion coefficients αi in (2.1) are obtained by taking the dot product of (2.1) with

each of the vectors in turn:

N∑

i=1

αie
T
k ei = e

T
k f , 1 ≤ k ≤ N , (2.3)

a system of N equations in N unknowns. The αi are most readily found if the ei are a mutually

orthonormal set, that is, if

e
T
i ej = δij ,
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F����� 1

but this requirement is not a necessary one. With a spanning set, the information contained

in the set of projections, e
T
i f = f

T
ei, is adequate then to determine the αi and thus all the

information required to reconstruct f .

The concept of “nearly-dependent” vectors is helpful and can be understood heuristically.

Consider figure 1, in which the space is two-dimensional. Then the two vectors e1, e2, as depicted

there, are independent and can be used to expand an arbitrary two-dimensional vector f in the

plane. The simultaneous equations become

α1e
T
1 e1+α2e

T
1 e2 = e

T
1 f (2.4)

α1e
T
2
e1+α2e

T
2
e2 = e

T
2
f

If the vectors become nearly parallel, as the angle φ in Fig. 1 goes to zero, as long as they are not

identically parallel, they can still be used mathematically to represent f perfectly. An important

feature is that even if the lengths of e1,e2, f are all order-one, the expansion coefficients a1,2 can

have extremely large magnitudes when the angle φ becomes small and f is nearly orthogonal to

both (measured by angle η). That is to say, we find readily from (2.4),

α1 =

(
e
T
1
f
) (

e
T
2
e2

)
−

(
e
T
2
f
) (

e
T
1
e2

)

(
eT
1
e1

) (
eT
2
e2

)
−

(
eT
1
e2

)
2

, (2.5)

α2 =

(
e
T
2
f
) (

e
T
1
e1

)
−

(
e
T
1
f
) (

e
T
2
e1

)

(
eT
1
e1

) (
eT
2
e2

)
−

(
eT
1
e2

)2 . (2.6)

Suppose for simplicity, that f has unit length, and that the ei have also been normalized to unit

length as shown in Figure 1. We have then,

α1 =
cos (η − φ)− cosφ cos η

1− cos2 φ
=

sin η

sinφ
(2.7)

α2 = cos η − sin η cotφ (2.8)
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and whose magnitudes can become arbitrarily large as φ → 0. One can imagine a situation in

which α1e1 and α2e2 were separately measured and found to be very large. One could then

erroneously infer that the sum vector, f , was equally large. This property of the expansion in

non-orthogonal vectors potentially producing large coefficients becomes important later (Chap-

ter 4) as a way of gaining insight into the behavior of so-called non-normal operators. The

generalization to higher dimensions is left to the reader’s intuition. One anticipates that as φ

becomes very small, numerical problems can arise in using these “almost parallel” vectors.

Gram-Schmidt Process

One often has a set of p-independent, but non-orthonormal vectors hi and it is convenient to

find a new set gi, which are orthonormal. The “Gram-Schmidt process” operates by induction.

Suppose we have orthonormalized the first k of the hi to a new set, gi, and wish to generate the

k + 1−st. Let

gk+1 = hk+1 −

k∑

j

γjgj . (2.9)

Because gk+1 must be orthogonal to the preceding gi, i = 1, k, we take the dot products of (2.9)

with each of these vectors, producing a set of simultaneous equations for the unknown γj. The

resulting ek+1 is easily given unit norm by division by its length.

If one has the first k of N necessary vectors, one needs an additional N − k independent

vectors hi. There are several possibilities. One might simply generate the necessary extra

vectors by filling their elements with random numbers. Or one might take a very simple trial

set like hk+1 = [1, 0, 0, ..., 0]T , hk+2 = [0, 1, 0, ...0], . . . . If one is unlucky, the set might prove

not to be independent of the existing gi. But a simple numerical perturbation usually suffices

to render them so. In practice, the algorithm is changed to what is usually called the “modified

Gram-Schmidt process” for purposes of numerical stability.2

2.1. Matrix Multiplication and Identities. It has been found convenient and fruitful

to usually define multiplication of two matrices A,B by the operation C =AB, such that

Cij =

P∑

p=1

AipBpj . (2.10)

For the definition (2.10) to make sense, A must be a M × P matrix and B must be P ×

N (including the special case of P × 1, a column vector). That is, the two matrices must

be “conformable.” If two matrices are multiplied, or a matrix and a vector are multiplied,

conformability is implied–otherwise one can be assured that an error has been made. Note

2See Lawson & Hanson (1974)
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that AB �= BA even where both products exist, except under special circumstances, and that

A
2
=AA, etc. Other definitions of matrix multiplication exist, but they are not needed here.

The mathematical operation in (2.10) may appear arbitrary, but a physical interpretation is

available: Matrix multiplication is the dot product of all of the rows of A with all of the columns

of B. Thus multiplication of a vector by a matrix represents the projections of the rows of the

matrix onto the vector.

If we define a matrix, E, each of whose columns is the corresponding vector ei, and a vector,

α = {αi}, in the same order, the expansion (2.1) can be written in the compact form

f = Eα . (2.11)

The transpose of a matrix A is written AT and is defined as {Aij}
T
= Aji, an interchange

of the rows and columns of A. Thus
(
AT

)T
= A. A “symmetric matrix” is one for which

AT
= A. The product ATA represents the array of all the dot products of the columns of

A with themselves, and similarly, AAT represents the set of all dot products of all the rows

of A with themselves. It follows that (AB)T = BTAT . Because we have (AAT )T = AAT ,

(ATA)T =ATA, both these matrices are symmetric.

The “trace” of a square M ×M matrix A is defined as trace(A) =
∑M

i Aii. A “diagonal

matrix” is square and zero except for the terms along the main diagonal, although we will later

generalize this definition. The operator diag(q) forms a square diagonal matrix with q along

the main diagonal.

The special L × L diagonal matrix IL, with Iii = 1, is the “identity.” Usually, when the

dimension of IL is clear from the context, the subscript is omitted. IA =A, AI = I, for any

A for which the products make sense. If there is a matrix B, such that BE = I, then B is the

“left-inverse” of E. If B is the left inverse of E and E is square, a standard result is that it must

also be a right inverse: EB = I, B is then called “the inverse of E” and is usually written E−1.

Analytical expressions exist for inverses, and numerical linear algebra books explain how to find

them, when they exist. If E is not square, one must distinguish left and right inverses, sometimes

written E+ and referred to as “generalized inverses.” Some of them will be encountered later.

A useful result is that (AB)−1 = B
−1
A
−1

, if the inverses exist. Square matrices with inverses

are “non-singular.”

A definition of the “length,” or norm of a vector has already been introduced. But several

choices are possible; for present purposes, the conventional l2 norm already defined,

‖f‖2 ≡ (fT f)1/2 =

(
N∑
i=1

f2i

)1/2
, (2.12)
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is most useful; often the subscript will be omitted. Eq. (2.12) leads in turn to the measure of

distance between two vectors, a, b as

‖a− b‖2 =
√
(a− b)T (a− b) , (2.13)

the familiar Cartesian distance. Distances can also be measured in such a way that deviations

of certain elements of c = a−b count for more than others–that is, a metric, or set of weights

can be introduced with a definition

‖c‖W =

√∑
i
ciWiici , (2.14)

depending upon the importance to be attached to magnitudes of different elements, stretching

and shrinking various coordinates. Finally, in the most general form, distance can be measured

in a coordinate system both stretched and rotated relative to the original one

‖c‖W =
√
cTWc (2.15)

where W is an arbitrary matrix (but usually, for physical reasons, symmetric and positive

definite3).

2.2. Linear Simultaneous Equations. Consider a set ofM-linear equations inN-unknowns,

Ex = y. (2.16)

Because of the appearance of simultaneous equations in situations in which the yi are observed,

and where x are parameters we wish to determine, it is often convenient to refer to (2.16) as a

set of measurements of x which produced the observations or data, y. If M > N , the system

is said to be “formally overdetermined.” If M < N , it is “underdetermined,” and if M = N , it

is “formally just-determined.” The use of the word “formally” has a purpose we will come to.

Knowledge of the matrix inverse to E would make it easy to solve a set of L equations in L

unknowns, by left-multiplying (2.16) by E−1:

E−1Ex = Ix = x = E−1y

The reader is cautioned that although matrix inverses are a very powerful tool, one is usually

ill-advised to solve large sets of simultaneous equations by employing E−1; other numerical

methods are available for the purpose4.

3“Positive definite” will be defined below. Here it suffices to mean that cTWc should never be negative, for

any c.
4Golub & Van Loan (1989)
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There are several ways to view the meaning of any set of linear simultaneous equations. If

the columns of E continue to be denoted ei, then (2.16) is,

x1e1 + x2e2 + · · ·+ xneN = y . (2.17)

The ability to so describe an arbitrary y, or to solve the equations, would thus depend upon

whether the M × 1, vector y can be specified by a sum of N-column vectors, ei. That is,

it would depend upon their being a spanning set. In this view, the elements of x are simply

the corresponding expansion coefficients. Depending upon the ratio of M to N , that is, the

number of equations compared to the number of unknown elements, one faces the possibility

that there are fewer expansion vectors ei than elements of y (M > N), or that there are

more expansion vectors available than elements of y (M < N). Thus the overdetermined case

corresponds to having fewer expansion vectors, and the underdetermined case corresponds to

havingmore expansion vectors, than the dimension of y. It is possible that in the overdetermined

case, the too-few expansion vectors are not actually independent, so that there are even fewer

vectors available than is first apparent. Similarly, in the underdetermined case, there is the

possibility that although it appears we have more expansion vectors than required, fewer may

be independent than the number of elements of y, and the consequences of that case need to be

understood as well.

An alternative interpretation denotes the rows of E as rT
i
, 1 ≤ i ≤ M. Then Eq.(2.16) is a

set of M-inner products,

r
T

i
x = yi, 1 ≤ i ≤M . (2.18)

That is, the set of simultaneous equations is also equivalent to being provided with the value of

M—dot products of the N—dimensional unknown vector, x, with M known vectors, ri. Whether

that is sufficient information to determine x depends upon whether the ri are a spanning set.

In this view, in the overdetermined case one has more dot products available than unknown

elements xi, and in the underdetermined case, there are fewer such values than unknowns.

A special set of simultaneous equations for square matrices A is labelled the “eigenvalue/-

eigenvector problem,”

Ae =λe. (2.19)

In this set of linear simultaneous equations one seeks a special vector, e, such that for some

as yet unknown scalar eigenvalue, λ, there is a solution. An N ×N matrix will have up to N

solutions (λi,ei) , but the nature of these elements and their relations require considerable effort

to deduce. We will look at this problem more later; for the moment, it again suffices to say that

numerical methods for solving Eq. (2.19) are well-known.
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2.3. Matrix Norms. A number of useful definitions of a matrix size, or norm, exist. For

present purposes the so-called “spectral norm” or “2—norm” defined as

‖A‖2 =
√
maximum eigenvalue of (ATA) (2.20)

is usually adequate. Without difficulty, it may be seen that this definition is equivalent to

‖A‖2 = max
x
T
A
T
Ax

xTx
= max

‖Ax‖2
‖x‖2

(2.21)

where the maximum is defined over all vectors x5. Another useful measure is the “Frobenius

norm,”

‖A‖F =

√∑M

i=1

∑N

j=1
A2

ij =

√
trace(ATA) . (2.22)

Neither norm requires A to be square.

These norms permit one to derive various useful results. Consider one illustration. Suppose

Q is square, and ‖Q‖ < 1, then

(I+Q)−1 = I−Q+Q2 − · · · , (2.23)

which may be verified by multiplying both sides by I +Q, doing term-by-term multiplication

and measuring the remainders with either norm.

2.4. Identities. Differentiation. There are some identities and matrix/vector definitions

which prove useful.

A square “positive definite” matrix A, is one for which the scalar “quadratic form,”

J = xTAx (2.24)

is positive for all possible vectors x. (It suffices to consider only symmetric A because for

a general matrix, xTAx = x
T [(A + A

T )/2]x, which follows from the scalar property of the

quadratic form.) If J ≥ 0 for all x, A is “positive semi-definite,” or “non-negative definite.”

Linear algebra books show that a necessary and sufficient requirement for positive definiteness

is that A have only positive eigenvalues (Eq. 2.19) and a semi-definite one must have all non-

negative eigenvalues.

Nothing has been said about actually finding the numerical values of either the matrix

inverse or the eigenvectors and eigenvalues. Computational algorithms for obtaining them have

been developed by experts, and are discussed in many good textbooks.6 Software systems like

MATLAB, Maple, IDL and Mathematica implement them in easy-to-use form. For purposes of

this book, we assume the reader has at least a rudimentary knowledge of these techniques and

access to a good software implementation.

5Haykin (1986, p. 61).
6Press et al., 1992; Lawson & Hanson, 1974; Golub & van Loan, 1989; etc.
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We end up doing a certain amount of differentiation and other operations with respect to

matrices and vectors. A number of formulas are very helpful, and save a lot of writing. They

are all demonstrated by doing the derivatives term-by-term. Let q, r be N × 1 column vectors,

and A, B, C be matrices. Then if s is any scalar,

∂s

∂q
=




∂s
∂q1

·

·

·

∂s
∂qN




(2.25)

is a vector (the gradient). The second derivative of a scalar,

∂2s

∂q2
=

{
∂

∂qi

∂s

∂qj

}
=




∂2s
∂q2

1

∂2s
∂q1q2

· ·

∂2s
∂q1qN

· · · · ·

∂2s
∂qNq1

· · ·

∂2s
∂q2
N




(2.26)

is the “Hessian” of s.

The derivative of one vector by another is a matrix:

∂r

∂q
=

{
∂ri

∂qj

}
=




∂r1
∂q1

∂r2
∂q1

·

∂rM
∂q1

∂r1
∂q2

· ·

∂rM
∂q2

· · · ·

∂r1
∂qN

· ·

∂rM
∂qN




≡ B. (2.27)

If r, q are of the same dimension, the determinant of B = det (B) is the “Jacobian” of r.7

Assuming conformability, the inner product, J = rTq = qT r, is a scalar. The differential of

J is,

dJ = drTq+ rTdq =dqT r+ qTdr, (2.28)

and hence the partial derivatives are,

∂(qT r)

∂q
=

∂
(
rTq

)
∂q

= r , (2.29)

∂
(
qTq

)
∂q

= 2q . (2.30)

7Determinants are used only rarely in this book. Their definition and properties are left to the references, as

they are usually encountered in high school mathematics.
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It follows immediately that for matrix/vector products,

∂

∂q
(Bq) = BT ,

∂

∂q

(
qTB

)
= B. (2.31)

The first of these is used repeatedly, and attention is called to the apparently trivial fact that

differentiation of Bq with respect to q produces the transpose of B–the origin, as seen later,

of so-called adjoint models. For a quadratic form,

J = qTAq

∂J

∂q
= 2Aq ,

(2.32)

and its Hessian is 2A.8

There are a few, unfortunately unintuitive, matrix inversion identities which are essential

later. They are derived by considering the square, partitioned matrix,

{
A B

BT C

}
(2.33)

where AT = A, CT = C, but B can be rectangular of conformable dimensions in (2.33)9. The

most important of the identities, sometimes called the “matrix inversion lemma” is, in one form,

{C−BT
A
−1
B}−1 = {I−C−1BT

A
−1
B}−1C−1

= C
−1 −C−1BT (BC−1BT −A)−1BC−1

(2.34)

where it is assumed that the inverses exist.10 A variant is,

AB
T (C+BABT )−1 = (A−1 +BT

C
−1
B)−1BT

C
−1

. (2.35)

Eq. (2.35) is readily confirmed by left-multiplying both sides by (A−1 +BT
C
−1
B), and right-

multiplying by (C+BABT ) and showing that the two sides of the resulting equation are equal.

Another identity, found by “completing the square,” is demonstrated by directly multiplying it

out, and requires C = CT (A is unrestricted, but the matrices must be conformable as shown):

ACA
T −BAT −ABT = (A−BC−1)C(A−BC−1)T −BC−1BT

. (2.36)

8Rogers (1980) is an entire volume of matrix derivative identities, and many other useful properties are

discussed by Magnus and Neudecker (1988).
9Liebelt (1967, Section 1—19)
10The history of this not-very-obvious identity is discussed by Haykin (1986, p. 385).
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3. Simple Statistics. Regression

3.1. Probability Densities, Moments. Some statistical ideas are required, but the dis-

cussion is confined to stating some basic notions and to developing a notation.11 We require

the idea of a probability density for a random variable x. This subject is a very deep one12,

but our approach will be heuristic. Suppose that an arbitrarily large number of experiments

can be conducted for the determination of the values of x, denoted Xi, 1 ≤ i ≤ M , and a

histogram of the experimental values found. The frequency function, or probability density, will

be defined as the limit, supposing it exists, of the histogram of an arbitrarily large number of

experiments, M → ∞, divided into bins of arbitrarily small value ranges, and normalized by

M, to produce the fraction of the total appearing in the ranges. Let the corresponding limiting

frequency function be denoted px(X)dX, interpreted as the fraction (probability) of values of x

lying in the range, X ≤ x ≤ X + dX. As a consequence of the definition, px (X) ≥ 0 and,

∫
all X

px (X) dX =

∫
∞

−∞

px (X)dX = 1. (3.1)

(The infinite integral is a convenient way of representing an integral over “all X”, as px simply

vanishes for impossible values of X.)

The “average,” or “mean,” or “expected value” is denoted 〈x〉 and defined as,

〈x〉 ≡

∫
all X

Xpx(X)dX =m1. (3.2)

The mean is the center of mass of the probability density. Knowledge of the true mean value of

a random variable is commonly all that we are willing to assume known. If forced to “forecast”

the numerical value of x under such circumstances, often the best we can do is to employ 〈x〉.

If the deviation from the true mean is denoted x′ so that x = 〈x〉+ x′, such a forecast has the

virtue that we are assured the average forecast error, 〈x′〉, would be zero if many such forecasts

are made. The bracket operation is very important throughout this book; it has the property

that if a is a non-random quantity, 〈ax〉 = a〈x〉 and 〈ax+ y〉 = a 〈x〉+ 〈y〉 .

Quantity 〈x〉 is the “first-moment” of the probability density. Higher order moments are

defined as,

mn = 〈xn〉 =

∫
∞

-∞

Xnpx(X)dX,

where n are the non-negative integers. A useful theoretical result is that a knowledge of all

the moments is usually enough to completely define the probability density itself. (There are

troublesome situations with, e.g. non-existent moments, as with the so-called Cauchy distrib-

ution, px (X) = (1/π)
(
1/

(
1+X2

))
, whose mean is infinite.) For many important probability

11A good statistics text such as Cramér (1946), or one on regression such as Seber (1977), should be consulted.
12For example, Feller (1957) or Jeffreys (1961).
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densities, including the Gaussian, a knowledge of the first two moments n = 1, 2 is sufficient to

define all the others, and hence the full probability density. It is common to define the moments

for n > 1 about the mean, so that one has

µ
n
= 〈(x− 〈x〉)n〉 =

∫
∞

−∞

(X − 〈X〉)n px(X)dX.

For n = 2, it is called the variance, often written µ2 = σ2, where σ is the “standard deviation.”

3.2. Sample Estimates. Bias. In observational sciences, one normally must estimate the

values defining the probability density from the data itself. Thus the first moment, the mean,

is often computed as the “sample average,”

m̃1 = 〈x〉M ≡
1

M

M∑
i=1

Xi. (3.3)

The notation m̃1 is used to distinguish the sample estimate from the true value, m1. On the

other hand, if the experiment of computing m̃1 from M samples could be repeated many times,

the mean of the sample estimates would be the true mean. This conclusion is readily seen by

considering the expected value of the difference from the true mean:

〈〈x〉M − 〈x〉〉 =

〈
1

M

M∑
i=1

Xi − 〈x〉

〉

=
1

M

M∑
i=1

〈Xi〉 − 〈x〉 =
M

M
〈x〉 − 〈x〉 = 0.

Such an estimate, is said to be “unbiassed”: its expected value is the quantity one seeks.

The interpretation is that for finiteM , we do not expect that the sample mean will equal the

true mean, but that if we could produce sample averages from distinct groups of observations,

the sample averages would themselves have an average which will fluctuate about the true mean,

with equal probability of being higher or lower. There are many sample estimates however, some

of which we encounter, where the expected value of the sample estimate is not equal to the true

estimate. Such an estimator is said to be “biassed.” The simplest example of a biassed estimator

is the “sample variance,” defined as

s2 ≡
1

M

M∑
i

(Xi − 〈x〉M )2 (3.4)

For reasons explained a bit later, one finds that〈
s2
〉
=
M − 1

M
σ2

and thus the expected value is not the true variance. (This particular estimate is “asymptotically

unbiassed” as the bias vanishes as M →∞.)
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If one forms, e.g., the sample mean, we are assured that it is unbiassed. But the probability

that 〈x〉
M

= 〈x〉 , that is that we obtain exactly the true value, is very small. It helps to have

a measure of the extent to which 〈x〉
M

is likely to be very far from 〈x〉 . We need the idea

of dispersion–the expected or average squared value of some quantity about some interesting

value, like its mean. The most familiar measure of dispersion is the variance, already used above,

the expected fluctuation of a random variable about its mean:

σ2 = 〈(x− 〈x〉)2〉 .

More generally, define the dispersion of any random variable z as,

D2(z) = 〈z2〉.

Thus, the variance of x is D2(x− 〈x〉).

We can thus ask for the variance of 〈x〉M about the correct value. A little algebra using the

bracket notation produces,

D2

(
(〈x〉M − x)2

)
=

σ2

M
. (3.5)

This result shows the well-known result that as M becomes large, any tendency of the sample

mean to lie far from the true value will diminish. It does not prove that some particular value

will not, by accident, be far away, merely that it becomes increasingly unlikely as M grows. (In

statistics textbooks, the Chebyschev inequality is used to formalize this statement.)

An estimate which is unbiassed and whose expected dispersion about the true value goes to

zero with M is evidently desirable. In more interesting estimators, a bias is often present. Then

for a fixed number of samples, M, there would be two distinct sources of deviation (error) from

the true value: (1) the bias–how far, on average, it is expected to be from the true value, and

(2) the tendency–from purely random events–for the value to differ from the true value (the

random error). In numerous cases, one discovers that tolerating a small bias error can greatly

reduce the random error–and thus the bias may well be worth accepting for that reason. In

some cases therefore, a bias is deliberately introduced.

3.3. Multivariable Probability Densities. Correlation. The idea of a frequency func-

tion generalizes easily to two or more random variables, x, y. We can, in concept, do an

arbitrarily large number of experiments in which we count the occurrences of differing values,

(Xi, Yi), of x, y and make a histogram normalized by the total number of samples, taking the

limit to produce a joint probability density pxy(X, Y ), so that pxy (X,Y ) dXdY is the fraction

of occurrences such that X ≤ x ≤ X + dX, Y ≤ y ≤ Y + dY . A simple example would be

the probability density for the simultaneous measurement of the two components of horizontal
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velocity in a current meter or anemometer. Again, from the definition, pxy (X,Y ) ≥ 0, and

∫
∞

−∞

∫ ∞

−∞
pxy (X,Y )dXdY = 1. (3.6)

An important use of joint probability densities is in what is known as “conditional probabil-

ity.” Suppose that the joint probability density for x, y is known and furthermore, y = Y , that is,

information is available concerning the actual value of y. What then, is the probability density

for x given that a particular value for y is known to have occurred? This new frequency function

is usually written as px|y(X|Y ) and read as “the probability of x, given that y has occurred,”

or, “the probability of x conditioned on y.” It follows immediately from the definition of the

probability density that

px|y(X|Y ) =
pxy(X, Y )

py(Y )
(3.7)

(this equation is readily understood by going back to the original experimental concept, and

understanding the restriction on x, given that y is known to lie within a strip paralleling the X

axis).

Using the joint frequency function, define the average product as,

〈xy〉 =

∫ ∫
all X,Y

XY pxy(X, Y )dX dY . (3.8)

Suppose that upon examining the joint frequency function, one finds that pxy(X, Y ) = px(X)py(Y ),

that is it factors into two distinct functions. In that case, x, y are said to be “independent.”

Many important results follow including,

〈xy〉 = 〈x〉 〈y〉 .

Non-zero mean values are often primarily a nuisance. One can always define modified vari-

ables, e.g. x′ = x− < x > such that the new variables have zero mean. Alternatively, one

computes statistics centered on the mean. Should the centered product 〈(x− 〈x〉)(y − 〈y〉)〉 be

non-zero, x, y are said to “co-vary” or to be “correlated.” Alternatively, if 〈(x−〈x〉)(y−〈y〉)〉 = 0,

then the two variables are uncorrelated. If x, y are independent, then 〈(x− 〈x〉)(y − 〈y〉)〉 = 0.

Independence thus implies lack of correlation, but the reverse is not necessarily true. (These are

theoretical relationships, and if 〈x〉 , 〈y〉 are determined from observation, as described below,

one must carefully distinguish actual behavior from that expected theoretically.)

If the two variables are independent, then (3.7) is

px|y(X|Y ) = px(X) , (3.9)

that is, knowledge of the value of y does not change the probability density for x–a sensible

result–and there is then no predictive power for one variable given knowledge of the other.
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Suppose there are two random variables x, y between which there is anticipated to be some

linear relationship,

x = ay + n, (3.10)

where n represents any contributions to x that remain unknown despite knowledge of y, and a

is a constant. Then,

〈x〉 = a〈y〉+ 〈n〉 , (3.11)

and (3.10) can be re-written as,

x− 〈x〉 = a(y − 〈y〉) + (n− 〈n〉),

or

x
′ = ay

′ + n
′
, x

′ = x− 〈x〉, etc. (3.12)

From this last equation,

a =
〈x′

y
′〉

〈y′2〉
=

〈x′
y

′〉

(〈y′2〉〈x′2〉)1/2
〈x′2〉1/2

〈y′2〉1/2
= ρ

〈x′2〉1/2

〈y′2〉1/2
, (3.13)

where it was supposed that 〈y′
n

′〉 = 0, thus defining n
′. The quantity

ρ ≡
〈x′

y
′〉

〈y′2〉1/2〈x′2〉1/2
(3.14)

is the “correlation coefficient” and is easily shown to have the property |ρ| ≤ 1. If ρ should

vanish, then so does a. If a vanishes, then knowledge of y
′ carries no information about the

value of x′. If ρ = ±1, then it follows from the definitions that n = 0 and knowledge of a permits

perfect prediction of x′ from knowledge of y′ (because probabilities are being used, rigorous usage

would state “perfect prediction almost always,” but this distinction will be ignored).

A measure of how well the prediction of x′ from y
′ will work can be obtained in terms of the

variance of x′. We have

〈x′2〉 = a
2〈y′2〉+

〈
n

′2
〉
= ρ

2〈x′2〉+ 〈n′2〉

or

(1− ρ
2)〈x

′
2〉 = 〈n′2〉. (3.15)

That is, (1−ρ
2)〈x

′
2〉 is the fraction of the variance in x

′ that is unpredictable from knowledge of

y
′ and is the “unpredictable power.” Conversely, ρ2〈x′2〉 is the “predictable” power in x

′ given

knowledge of y′
. The limits as ρ→ 0, 1 are readily apparent.

Thus we interpret the statement that two variables x
′, y′ “are correlated” or “co-vary” to

mean that knowledge of one permits at least a partial prediction of the other, the expected

success of the prediction depending upon the size of ρ. If ρ is not zero, the variables cannot

be independent, and the conditional probability px|y (X|Y ) �= px (X) . This result represents an

implementation of the statement that if two variables are not independent, then knowledge of
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one permits some skill in the prediction of the other. If two variables do not co-vary, but are

known not to be independent, a linear model like (3.10) would not be useful–a non-linear model

would be required. Such non-linear methods are possible, and are touched on briefly later. The

idea that correlation or covariance between various physical quantities carries useful predictive

skill between them is an essential ingredient of many of the methods taken up in this book.

In most cases, quantities like ρ,
〈
x

′
2

〉
, are determined from the available measurements, e.g.

of the form,

ayi + ni = xi , (3.16)

and are not known exactly. They are thus sample values, are not equal to the true values, and

must be interpreted with caution in terms of their inevitable biases and variances. This large

subject of regression analysis is left to the references.13

The Gaussian, or normal, probability density is one that is mathematically handy (but is

potentially dangerous as a general model of the behavior of natural processes–many geophysical

processes are demonstrably non-Gaussian). For a single random variable x, it is defined as,

px(X) =
exp− (X−mx)2

σ2
x√

2πσx
,

(sometimes abbreviated as G(mx, σx)). It is readily confirmed that 〈x〉 =mx, 〈(x−〈x〉)2〉 = σ2
x
.

Suppose that x, y are independent Gaussian variables G(mx, σx), G(my, σy). Then their joint

probability density is just the product of the two individual densities,

px,y(X,Y ) =
1

2πσxσy
exp

(
−

(X −mx)2

σ2x
−

(Y −my)
2

σ2y

)
. (3.17)

Let two new random variables, ξ1, ξ2, be defined as a linear combination of x, y,

ξ1 = a11(x−mx) + a12(y −my) +mξ1

ξ2 = a21(x−mx) + a22(y −my) +mξ2
, (3.18)

or in vector form,

ξ =A(x−mx) +mξ,

where x = {x, y}T , mx = [mx,my]
T , my = [mξ1

,mξ2
]T . What is the probability density for

these new variables? The general rule for changes of variable in probability densities follows

from area conservation in mapping from the x, y space to the ξ1, ξ2 space, that is,

pξ
1
ξ
2
(Ξ1,Ξ2) = pxy(X(Ξ1,Ξ2), Y (Ξ1,Ξ2))

∂(X,Y )

∂(Ξ1,Ξ2)
(3.19)

13See, for example, Draper & Smith (1998); Seber (1979).
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where ∂(X,Y )/∂(Ξ1,Ξ2) is the Jacobian of the transformation between the two variable sets,

(see Eq. 2.27) and the numerical values satisfy the functional relations,

Ξ1 = a11(X −mx) + a12(Y −my) =mξ
1
,

etc. Suppose that the relationship (3.18) is invertible, that is, we can solve for,

x = b11(ξ1 −mξ1
) + b12(ξ2 −mξ2

) +mx

y = b21(ξ1 −mξ1
) + b22(ξ2 −mξ2

) +my,

or,

x = B(ξ −mξ) +mx. (3.20)

Then the Jacobian of the transformation is,

∂(X,Y )

∂(Ξ1,Ξ2)
= b11b22 − b12b21 = det(B) (3.21)

(det(B) is the determinant). Eq. (3.18) produces

〈ξ1〉 = mξ1

〈ξ2〉 = mξ2

〈(ξ1 − 〈ξ1〉)
2〉 = a2

11
σ2x + a12σ

2

y (3.22)

〈(ξ1 − 〈ξ1〉)(ξ2 − 〈ξ2〉)〉 = a11a21σ
2

x + a12a22σ
2

y �= 0.

In the special case,

A =

{
cosφ sinφ

− sinφ cosφ

}
, B =

{
cosφ − sinφ

sinφ cosφ

}
, (3.23)

the transformation (3.23) is a simple coordinate rotation through angle φ, and the Jacobian is

1. The new second-order moments are,

〈(ξ1 − 〈ξ1〉)
2〉 = σ2ξ

1
= cos2 φ σ2x + sin2 φ σ2y , (3.24)

〈(ξ2 − 〈ξ2〉)
2〉 = σ2ξ2 = sin2 φ σ2x + cos2 φ σ2y , (3.25)

〈(ξ1 − 〈ξ1〉)(ξ2 − 〈ξ2〉)〉 ≡ µξ
1
ξ
2
= (σ2y − σ2x) cosφ sinφ . (3.26)
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The new probability density is

pξ
1
ξ
2
(Ξ1,Ξ2) =

1

2πσξ1σξ2

√
1− ρ2ξ

exp


− 1

2
√
1− ρ2ξ

[
(Ξ1 −mξ1

)2

σ2ξ1

−

2ρξ(Ξ1 −mξ1
)(Ξ2 −mξ2

)

σξ
1
σξ

2

+
(Ξ2 −mξ2

)2

σ2ξ2

] 
 ,

(3.27)

where ρξ = (σ2y − σ2x) sinφ cosφ/
(
σ2ξ1 + σ2ξ2

)
1/2

= µξ1ξ2
/σξ

1
σξ

2
is the correlation coefficient

of the new variables. A probability density derived through a linear transformation from two

independent variables which are Gaussian will be said to be “jointly Gaussian” and (3.27) is a

canonical form. Because a coordinate rotation is invertible, it is important to note that if we had

two random variables ξ1, ξ2 which were jointly Gaussian with ρ �= 1, then we could find a pure

rotation (3.23), which produces two other variables x, y which are uncorrelated, and therefore

independent. Notice that (3.26) shows that two such uncorrelated variables x, y will necessarily

have different variances, otherwise ξ1, ξ2 would have zero correlation, too, by Eq. (3.26) .

As an important by-product, it is concluded that two jointly Gaussian random variables

that are uncorrelated, are also independent. This property is one of the reasons Gaussians are

so nice to work with; but it is not generally true of uncorrelated variables.

Vector Random Processes

Simultaneous discussion of two random processes, x, y can regarded as discussion of a vector

random process [x, y]T , and suggests a generalization to N dimensions. Let us label N random

processes as xi and define them as the elements of a vector x = [x1, x2, . . . , xN ]T . Then the

mean is a vector: 〈x〉 =mx, and the covariance is a matrix:

Cxx = D2(x− 〈x〉) = 〈(x− 〈x〉)(x− 〈x〉)T 〉 , (3.28)

which is necessarily symmetric and positive semi-definite. The cross-covariance of two vector

processes x, y is,

Cxy = 〈(x− 〈x〉)(y− 〈y〉)T 〉, (3.29)

and Cxy = CT
yx.

It proves convenient to introduce two further moment matrices in addition to the covariance

matrices. The “second moment” matrices will be defined as,

Rxx ≡ D2(x) = 〈xxT 〉, Rxy = 〈xyT 〉,
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that is, not taken about the means. Note Rxy = R
T
yx, etc. Let x̃ be an “estimate” of the

true value, x. Then the dispersion of x̃ about the true value will be called the “uncertainty”

(sometimes it is called the “error covariance”) and is

P ≡ D2(x̃− x) = 〈(x̃− x)(x̃− x)T 〉 .

P is similar to C, but differs in being taken about the true value, rather than about the mean

value; the distinction can be very important.

If there are N variables, ξi, 1 ≤ i ≤ N , they will be said to have an “N-dimensional jointly

normal probability density” if it is of the form

pξ
1
,...,ξN

(Ξ1, . . . ,ΞN ) =
exp−1

2
(Ξ−m)TC−1ξξ (Ξ−m)

(2π)N/2
√
det(Cξξ)

. (3.30)

One finds 〈ξ〉 =m, 〈(ξ−m)(ξ−m)T 〉 = Cξξ. Eq. (3.27) is a special case for N = 2, and so the

earlier forms are consistent with this general definition.

Positive definite symmetric matrices can be factored as

Cξξ = C
T/2
ξξ C

1/2
ξξ , (3.31)

called the “Cholesky decomposition,” where C
1/2
ξξ is upper triangular (all zeros below the main

diagonal) and non-singular.14. It follows that the transformation (a rotation and stretching),

x = C
−T/2
ξξ (ξ −m) , (3.32)

produces new variables x of zero mean, and diagonal covariance, that is, a probability density

px1,...,xN =
exp−1

2
(X2

1
+ · · ·X2

N )

(2π)N/2
=

exp
(
−1

2
X2

1

)

(2π)1/2
· · ·

exp
(
−1

2
X2

N

)

(2π)1/2
, (3.33)

which factors into N-independent, normal variates of zero mean and unit variance (Cxx = Rxx =

I). Such a process is often called Gaussian“white noise,” and has the property 〈xixj〉 = 0, i �= j.15

3.4. Functions and Sums of Random Variables. If the probability density of x is

px(x), then the mean of a function of x, g(x) is just,

〈g(x)〉 =

∫
∞

−∞

g(X)px(X)dX , (3.34)

which follows from the definition of the probability density as the limit of the outcome of a

number of trials. The probability density for g regarded as a new random variable is given

by (3.19) as,

pg(G) = px(X(G))
dx

dg
dG, (3.35)

14Numerical schemes for finding C
1/2
ξξ are described by Lawson and Hanson (1976) and Golub and Van

Loan (1989)
15Cramér (1946) discusses what happens when the determinant of Cξξ vanishes, that is, if Cξξ is singular.
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where the Jacobian is just dx/dg in one-dimension.

An important special case is g = x2 where x is Gaussian of zero mean and unit variance

(any Gaussian variable z, of mean m and variance σ2 can be transformed to one of zero mean

and unit variance by the transformation,

x =
z −m

σ
.

Then the probability density of g is,

pg(G) =
1

G1/2
√
2π

exp(−G/2) , (3.36)

a special probability density usually denoted as χ2
1
(“chi-square-sub-1”).

Sums of Random Variables

It is often helpful to be able to compute the probability density of sums of independent

random variables. The procedure for doing so is based upon (3.34). Let x be a random variable

and consider the expected value of the function eixt:

〈eixt〉 =
∫
∞

−∞

px (X) eiXtdX ≡ φx(t) , (3.37)

which is the Fourier transform of px(X); φx(t) is usually termed the “characteristic function” of

x. Now consider the sum of two independent random variables x, y with probability densities

px, py, respectively, and define a new random variable z = x+y. What is the probability density

of z? One starts by first determining the characteristic function, φz(t) for z and then using the

Fourier inversion theorem to obtain px(Z). To obtain φz,

φz(t) = 〈eizt〉 = 〈ei(x+y)t〉 = 〈eixt〉〈eiyt〉

where the last step depends upon the independence assumption. This last equation shows

φz(t) = φx(t)φy(t) . (3.38)

That is, the characteristic function for a sum of two independent variables is the product of

the characteristic functions. The “convolution theorem”16 asserts that the Fourier transform

(forward or inverse) of a product of two functions is the convolution of the Fourier transforms

of the two functions. That is,

pz (Z) =

∫
∞

−∞

px (r) py (Z − r) dr. (3.39)

We will not explore this relation in any detail, leaving the reader to pursue the subject in the

references.17. But it follows immediately that the multiplication of the characteristic functions of

16Bracewell (1978).
17Cramér (1946).
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a sum of independent Gaussian variables produces a new variable, which is also Gaussian, with

a mean equal to the sum of the means and a variance which is the sum of the variances (“sums

of Gaussians are Gaussian”). It also follows immediately from Eq. (3.39) that if a variable ξ is

defined as,

ξ = x21 + x22 + · · ·+ x2v, (3.40)

where each xi is Gaussian of zero mean and unit variance, that the probability density for ξ is,

pξ(Ξ) =
Ξν/2−1

2ν/2Γ
(
ν
2

) exp(−Ξ/2) , (3.41)

known as χ2v or “chi-square with ν degrees of freedom.” The chi-square probability density is

central to the discussion of the expected sizes of vectors, such as ñ, measured as ñT ñ = ‖ñ‖2 =
∑

i ñ
2

i if the elements of ñ can be assumed to be independent and Gaussian. Eq. (3.36) is the

special case ν = 1.

Degrees-of-Freedom

The number of independent variables described by a probability density is usually called

the “number of degrees-of-freedom.” Thus the densities in (3.30) and (3.33) have N-degrees

of freedom and (3.41) has ν of them. If a sample average (3.3) is formed, it is said to have

N-degrees of freedom if each of the xj is independent. But what if the xj have a covariance Cxx

which is non-diagonal? This question of how to interpret averages of correlated variables will be

explicitly discussed on P. ??.

Consider the special case of the sample variance Eq. (3.4)–which we claimed was biassed.

The reason is that even if the sample values, xi, are independent, the presence of the sample

average in the sample variance means that there are only N − 1 independent terms in the sum.

That this is so is most readily seen by examining the two-term case. Two samples produce a

sample mean, 〈x〉2 = (x1 + x2)/2. The two-term sample variance is,

s2 = 1

2

[
(x1 − 〈x〉2)

2 + (x2 − 〈x〉2)
2

]
,

but knowledge of x1 and of the sample average, permits perfect prediction of x2. Thus the

second term in the sample variance as written is not independent of the first term, and thus

there is just one independent piece of information in the two-term sample variance. To show

it in general, assume without loss of generality that 〈x〉 = 0, so that σ2 =
〈
x2
〉
. The sample

variance about the sample mean (which will not vanish) of independent samples is given by Eq.
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(3.4) and so,

〈
s2
〉

=
1

M

M∑
i=1

〈xi −

1

M

M∑
j=1

xj




xi − 1

M

M∑
p=1

xp


〉

=
1

M

M∑
i=1


〈x2i 〉− 1

M

M∑
j=1

〈xixj〉 −
1

M

M∑
p=1

〈xixp〉+
1

M2

M∑
j=1

M∑
p=1

〈xjxp〉




=
1

M

M∑
i=1


σ2 − σ2

M

∑
j

δij −
σ2

M

∑
p

δip +
σ2

M2

∑
j

∑
p

δjp




=
σ2 (M − 1)

M
�= σ

2

Stationarity

Consider a vector random variable, with element xi where the subscript i denotes a position

in time or space. Then xi, xj are two different random variables–for example, the temperature

at two different positions in the ocean, or the temperature at two different times at the same

position. If the physics governing these two different random variables are independent of the

parameter i (i.e., independent of time or space), then xi is said to be “stationary”–meaning

that all the underlying statistics are independent of i. Specifically, 〈xi〉 = 〈xj〉 ≡ 〈x〉, D2(xi) =

D2(xj) = D2 (x), etc. Furthermore, xi, xj have a covariance

Cxx(i, j) = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 = Cxx(|i− j|) , (3.42)

that is, independent of i, j, and depending only upon the difference |i− j|. The distance, |i− j|,

is often called the “lag.” Cxx(|i− j|) is called the “autocovariance” of x or just the covariance,

because we now regard xi, xj as intrinsically the same process.18 If Cxx does not vanish, then

by the discussion above, knowledge of the numerical value of xi implies some predictive skill for

xj and vice-versa–a result of great importance when we examine map-making and objective

analysis. For stationary processes, all moments having the same |i− j| are identical; it is seen

that all diagonals of such a matrix {Cxx (i, j)}, are constant, for example, Cξξ in Eq. (3.30).

Matrices with constant diagonals are thus defined by the vector Cxx(|i − j|), and are said to

have a “Toeplitz form.”

18If the means and variances are independent of i, j and the first cross-moment is dependent only upon |i−j|,

the process x is said to be stationary in the “wide-sense.” If all higher moments also depend only on |i− j|, the

process is said to be stationary in the “strict-sense,” or more simply, just stationary. A Gaussian process has the

unusual property that wide-sense stationarity implies strict-sense stationarity.
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4. Least-Squares

Much of what follows in this book can be described using very elegant and powerful mathe-

matical tools. On the other hand, by restricting ourselves to discrete models and finite numbers

of measurements (what goes into a computer), almost everything can also be viewed as a form of

ordinary least-squares, providing a much more intuitive approach than one through functional

analysis. It is thus useful to go back and review what “everyone knows” about this most-familiar

of all approximation methods.

4.1. Basic Formulation. Consider the elementary problemmotivated by the “data” shown

in figure 2. t is supposed to be an independent variable, which could be time, or a spatial coor-

dinate or just an index. Some physical variable, call it θ(t), perhaps temperature at a point in

the ocean, has been measured at coordinates t = ti, 1 ≤ i ≤M , as depicted in the figure.

We have reason to believe that there is a linear relationship between θ(t) and t in the form

θ(t) = a+ bt, so that the measurements are,

y(ti) = θ(ti) + n(ti) = a+ bti + n(ti), (4.1)

where n(t) is the inevitable measurement noise. The straight line relationship might as well be

referred to as a “model” as it represents our present conception of the data structure. We want

to determine a, b.

The set of observations can be written in the general standard form,

Ex+ n = y (4.2)

where in the present special case,

E =




1 t1

1 t2

· ·

· ·

1 tM




, x =

[
a

b

]
, y =




y(t1)

y(t2)

·

·

y(tM )



, n =




n(t1)

n(t2)

·

·

n(tM )



. (4.3)

Equation sets like (4.2) are seen in many practical situations, including the ones described

in Chapter 2. The matrix E in general represents arbitrarily complicated (linear) relations

between the parameters x, and the observations y. In some real cases, it has many thousands

of rows and columns. Its construction involves specifying what those relations are, and in a

very general sense, it requires a “model” of the data set. Unfortunately, the term “model” is

used in a variety of other ways in this context, including statistical assumptions, and often for

auxiliary relationships among the elements of x which are independent of those contained in

E. To separate these difference usages, we will sometimes append various adjectives to the use

(“statistical model”, “exact relationships” etc.).
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One sometimes sees (4.2) written as

Ex ∼ y

or even

Ex = y .

But Eq. (4.2) is preferable, because it explicitly recognizes that n = 0 is exceptional. Sometimes,

by happenstance or arrangement, one finds M = N and that E has an inverse. But the obvious

solution, x = E−1y, leads to the conclusion, n = 0, which should be unacceptable if the y are

the result of measurements. We will need to return to this case, but for now, let us consider the

conventional problem where M > N .

Commonly, then, one sees a “best possible” solution–defined as producing the smallest

possible value of nTn, that is the minimum of

J =

M∑

i=1

n2i = nTn = (y−Ex)T (y−Ex) . (4.4)

(Whether the smallest noise solution really is the best one is something that must be seriously

considered later.) In the special case of the straight line model,

J =
M∑

i=1

(yi − a− bti)
2 . (4.5)

J is an example of what is called an “objective” or “cost” function.19

Differentiating 4.5 with respect to a, b or x (using (2.32)) and by setting,

dJ =
∂J

∂xi
dxi =

(
∂J

∂x

)
T

dx (4.6)

= 2
(
ETy−ETEx

)T
dx = 0.

This equation is of the form

dJ =
∑

aidxi = 0. (4.7)

It is an elementary result of multivariable calculus that an extreme value (here a minimum) of

J is found where dJ = 0. Because the xi are free to vary independently, dJ will vanish only if

the coefficients of the dxi are separately zero or,

ETy−ETEx = 0.

That is,

ETEx = ETy, (4.8)

19The terminology “least-squares” is reserved in this book, conventionally, for the minimization of discrete

sums such as Eq. (4.4). This usage contrasts with that of Bennett (2002) who applies it to continuous integrals,

such as,
∫
b

a
(u (q)− r (q))2 dq leading to the calculus of variations and Euler-Lagrange equations.
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F����� 2. “Data” generated through the rule y = 1 + 2t+ nt, where 〈nt〉 = 0,

〈ninj〉 = 9δij shown as + connected by the solid line. Dashed line is the simple

least-squares fit, ỹ = 1.69± 0.83 + (1.98± 0.03) t. Residuals are plotted as open

circles, and at least visually, show no obvious structure. Note that the fit is correct

within its estimated standard errors. The sample variance of the estimated noise

was used for calculating the uncertainty, not the theoretical value.

called the “normal equations.” Making the sometimes-valid-assumption that (ETE)−1 exists,

x̃ = (ETE)−1ETy . (4.9)

By looking at the second derivatives of J with respect to x, we could show what is intuitively

clear–that we have a minimum and not a maximum.

The solution is written as x̃ rather than as x because the relationship between (4.9) and the

“correct” value is not clear. The fit is displayed in Fig. 2, as are the residuals,

ñ = y−Ex̃ = (I−E(ETE)−1ET )y . (4.10)

That is, the M equations have been used to estimate N values, x̃i, and M values ñi, or M +N

altogether. The combination

H = E(ETE)−1ET (4.11)

occurs sufficiently often that it is worth a special symbol. Note the “idempotent” property

H2 =H. If the solution x̃ is substituted into the original equations, the result is,

Ex̃ =Hy = ỹ, (4.12)

and ñT ỹ =[(I−H)y]T Hy = 0, and the residuals are orthogonal (normal) to the inferred noise-

free “data” ỹ. This result explains the label “normal equations” used to describe the solution of

a least-squares problem.

All this is easy and familiar and applies to any set of simultaneous linear equations, not

just the straight-line example. Before proceeding, let us apply some of the statistical machinery
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F����� 3. Here the “data” were generated from a quadratic rule, y = 1 + t2 +

n (t) ,
〈
n2

〉
= 900. Note that only the first 1 ≤ t ≤ 20 data points are used. An

incorrect straight line fit was used resulting in ỹ = (−76.3± 17.3)+(20.98± 1.4) t,

which is incorrect, but the residuals at least visually, do not appear unacceptable.

At this point some might be inclined to claim the model has been “verified,” or

“validated.”

to understanding (4.9). Notice that no statistics were used in obtaining (4.9), but we can

nonetheless ask the extent to which this value for x̃ is affected by the random elements: the

noise in y. Let y0 be the value of y that would be obtained in the hypothetical situation for

which n = 0. Assume further that 〈n〉 = 0 and that Rnn = Cnn = 〈nnT 〉 is known. Then the

expected value of x̃ is

〈x̃〉 = (ETE)−1ETy0 . (4.13)

If the matrix inverse exists, then in many situations, including the problem of fitting a straight

line to data, perfect observations would produce the correct answer, and Eq. (4.9) provides an

unbiassed estimate of the true solution, 〈x̃〉 = 〈x〉.

On the other hand, if the data were actually produced from physics governed for example, by

a quadratic rule, θ(t) = a+ ct
2, then fitting the linear rule to such observations, even if they are

perfect, could never produce the right answer and the solution would be biassed. An example of

such a fit is shown in figures 3, 4. Such errors are conceptually distinguishable from the noise of

observation, and are properly labeled “model errors.” Assume however, that the correct model

is being used, and therefore that 〈x̃〉 = x. Then the uncertainty of the solution is,

P = Cx̃x̃ = 〈(x̃− x)(x̃− x)T 〉

= (ETE)−1ET 〈nnT 〉E(ETE)−1

= (ETE)−1ET RnnE(E
TE)−1 .

(4.14)
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F����� 4. The situation as in Fig. 3, except the series was run out to 50

points. Now the residuals (‘o’) are visually structured, and one would have a

very powerful suggestion that some hypothesis (something about the model) is

not correct. This straightline fit should be rejected as being inconsistent with

the assumption that the residuals are unstructured. Now the model has been

“invalidated.” (See caption to Fig. 3.)

In the special case, R = σ
2
n
I, that is, no correlation between the noise in different equations

(white noise), then (4.14) simplifies to,

P = σ
2

n
(ET

E)−1 . (4.15)

If we are not confident that 〈x̃〉 = x, perhaps because of doubts about the straight line

model, Eqs. (4.14)—(4.15) are still interpretable, but as Cx̃x̃ = D2(x̃− 〈x̃〉)− the covariance of

x̃. The “standard error” of x̃i is usually defined to be ±
√
Cx̃x̃ii

and is used to understand the

adequacy of data for distinguishing different possible estimates of x̃. If applied to the straight

line fit of fig. 2, we obtain an estimate, x̃T = [ã, b̃] = [1.69± 0.83, 1.98± 0.03], which are within

one standard deviation of the true values, [a, b] = [1, 2]. If the noise in y is Gaussian, it follows

that the probability density of x̃ is also Gaussian, with mean 〈x̃〉 and covariance Cx̃x̃. Of course,

if n is not Gaussian, then the estimate won’t be either, and one must be wary of the utility of

the standard errors. A Gaussian or other assumption should be regarded as part of the model

definition. One can estimate the uncertainty of the residuals as,

Cnn = 〈(ñ−〈ñ〉) (ñ−〈ñ〉)〉 = (I−H)Rnn (I−H)T (4.16)

= σ2

n (I−H)2 = σ2

n (I−H)

where zero-mean white noise was assumed, and H was defined in Eq. (4.11). Notice that the

true noise, n, was assumed to be white, but that the estimated noise, ñ, has a non-diagonal

covariance and so in a formal sense does not have the expected covariance. We return to this

point below.
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F����� 5. The same situation as in Fig. 2, y = 1 + 2t, except
〈
n2

〉
= 900 to

give very noisy data. Now the best fitting straight line is y = (6.62± 6.50) +

(1.85± 0.22) t which includes the correct answer within one standard error. Note

however, that the intercept is indistinguishable from zero.

The fit of a straight line to observations demonstrates many of the issues involved in making

inferences from real, noisy data that appear in more complex situations. In figure 5, the correct

model used to generate the data was the same as in fig. 2, but the noise level is very high.

The parameters [ã, b̃] are numerically inexact, but consistent within one standard error with the

correct values, which is all one can hope for.

In figure 3, a quadratic model y = 1 + t2 + n (t) was used to generate the numbers, with
〈
n2

〉
= 900. Using only the first 20 points, and fitting an incorrect model produces a reasonable

straight line fit to the data as shown. Modeling a quadratic field with a linear model produces a

systematic or “model” error, which is not easy to detect here. One sometimes hears it said that

“least-squares failed” in situations such as this one. But this conclusion shows a fundamental

misunderstanding: least-squares did exactly what it was asked to do–to produce the best-fitting

straight-line to the data, under the assumption that the noise in the data had no structure. Here,

one might conclude that “the straight-line fit is consistent with the data.” Such a conclusion is

completely different from asserting that one has proven a straight-line fit correctly “explains” the

data or, in modeler’s jargon, that the model has been “verified” or “validated.” If the outcome

of the fit were sufficiently important, one might try more powerful tests on the ñi than a mere

visual test. Such tests might lead to rejection of the straight-line hypothesis; but even if the

tests are passed, the model has never been verified: it has only been shown to be consistent

with the available data.

If the situation remains unsatisfactory (perhaps one suspects the model is inadequate, but

there are not enough data to produce sufficiently powerful tests), it can be very frustrating. But

sometimes the only remedy is to obtain more data. So in Fig. 4, the data length was extended
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F����� 6. Same as Fig. 4, except a more complete model, y = a+ bt+ ct2 was

used, and which gives acceptable residuals.

to 50 points. Now, even visually, the ñi are obviously structured, and one would almost surely

reject any hypothesis that a straight-line was an adequate representation of the data. The model

has been invalidated. If one fits a quadratic rule, y = a+ bt+ ct2, a perfectly acceptable solution

is found; see Fig. 6.

One must always confirm, after the fact, that J , which is a direct function of the residuals,

behaves as expected when the solution is substituted. In particular, its expected value,

〈J〉 =
M∑

i

〈
n2i
〉
=M −N, (4.17)

assuming that the ni have been scaled so that each has an expected value
〈
n2i
〉
= 1. That

there are only M −N independent terms in (4.17) follows from the N supposed-independent

constraints linking the variables. For any particular solution, x̃, ñ, J will be a random variable,

whose expectation is (4.17). Assuming the ni are at least approximately Gaussian, J itself is

the sum of M−N independent χ21 variables, and is therefore distributed in χ2
M−N . One can and

should make histograms of the individual n2i to check them against the expected χ2
1 probability

density. This type of argument leads to the large literature on hypothesis testing.

As an illustration of the random behavior of residuals, 30 equationsin 15 unknowns, Ex+ n = y

were constructed, such that ETE was non-singular. Fifty different values of y were then con-

structed by generating 50 separate n using a pseudo-random number generator. An ensemble

of 50 different solutions were then calculated using (4.9), producing 1500 separate values of ñ2i .

These are plotted in Fig. 7 and compared to χ2
1. The corresponding value, J̃(p) =

∑
ñ2
i , was

found for each set of equations, and also plotted. A corresponding frequency function for J̃(p) is

compared in Fig. 7 to χ2
15, with reasonably good results. The empirical mean value of all J̃i is

14.3. (The main inference here is that any particular solution may, completely correctly, produce
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F����� 7. χ2

1
probability density (left panel), and the empirical frequency func-

tion of all residuals, ñ2
i
from 50 separate experiments for simple least-squares

solution of Ex+ n = y. There is at least rough agreement between the theoret-

ical and calculated frequency functions. Middle panel displays the 50 values of

Ji computed from the same experiments in the left panel. Right panel displays

the empirical frequency function for the Ji as compared to the theoretical value

of χ2
15
, (dashed line). Tests exist, not discussed here, of the hypothesis that the

calculated Ji are consistent with the theoretical distribution.

individual residuals ñ2
i
differing considerably from the mean of

〈
χ2

1

〉
= 1, and similarly, their

sums, the J(p) may differ greatly from
〈
χ215

〉
= 15. But one can readily calculate the probability

of finding a much larger or smaller value, and employ it to help evaluate the possibility that one

has used an incorrect model.

Visual tests for randomness of residuals have obvious limitations, and elaborate statistical

tests in addition to the comparison with χ21 exist to help determine objectively whether one

should accept or reject the hypothesis that no significant structure remains in a sequence of

numbers. Books on regression analysis20 should be consulted for general methodologies. As an

indication of what can be done, figure 8 shows the “sample autocorrelation,”

φ̃nn(τ) =
1
M

∑M−|τ |
i=1 ñiñi+τ

1
M

∑M
i=1 ñ

2
i

, (4.18)

for the residuals of the fits shown in figs. 4, 6 is displayed. For white noise, it is reasonably

obvious that, 〈
φ̃ (τ)

〉
= δ0τ , (4.19)

20Seber (1977) or Box et al. (1994) or Draper and Smith (1981) are all good starting points.
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F����� 8. Autocorrelations of the estimated residuals in Figs. 4 (dashed line),

and 6 (solid). The latter is indistinguishable, by statistical test, from a delta

function at the origin, and so the residuals are not distinguishable from white

noise.

and deviations of the estimated φ̃ (t) from Eq. (4.19) can be used in simple tests. The adequate

fit (Fig. 6) produces an autocorrelation of the residuals indistinguishable from a delta function

at the origin, while the inadequate fit, shows a great deal of structure which would lead to the

conclusion that the residuals are too different from white noise to be acceptable. (Not all cases

are this obvious.).

As already pointed out, the residuals of the least-squares fit cannot be expected to be

precisely white noise. Because there are M relationships among the parameters of the problem

(M-equations), and the number of x̃ elements determined is N, there are M − N-degrees of

freedom in the determination of ñ and structures are imposed upon them. The failure, for this

reason, of ñ strictly to be white noise, is generally only an issue in practice when M−N becomes

small compared to M.21

4.2. Weighted and Tapered Least-Squares. The least-squares solution (4.9)—(4.10) was

derived by minimizing the objective function (4.4), in which each residual element is given equal

weight. An important feature of least-squares is that we can give whatever emphasis we please

to minimizing individual equation residuals, for example, by introducing an objective function,

J =
∑

i

W−1

ii
n2i , (4.20)

where Wii are any numbers desired. The choice Wii = 1, as used above, might be reasonable,

but it is clearly an arbitrary one which without further justification does not produce a solution

with any special claim to significance. In the least-squares context, we are free to make any

21Draper and Smith (1981, Chapter 3) and the references given there.
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other reasonable choice, including demanding that some residuals should be much smaller than

others–perhaps just to see if it is possible.

A general formalism is obtained by defining a diagonal weight matrix, W = diag(Wii).

Divide each equation by
√
Wii,

W
−T/2
ii

∑

i

Eijxj +W
−T/2
ii ni =W

−T/2
ii yi (4.21)

or
E′x+ n′ = y′

E′ =W−T/2E, n′ =W−T/2n, y′ =W−T/2y
(4.22)

where we used the fact that the square root of a diagonal matrix is the diagonal matrix of

element-by-element square roots. Such a matrix is its own transpose. The operation in (4.21)

or (4.22) is usually called “row-scaling” because it operates on the rows of E (as well as on n,

y).

For the new equations (4.22), the objective function,

J = n′Tn′ = (y′ −E′x)T (y′ −E′x) (4.23)

= nTW−1n = (y−Ex)TW−1(y−Ex)

weights the residuals as desired. If, for some reason, W is non-diagonal, but symmetric and

positive-definite, then it has a Cholesky decomposition, (see P. 35) and,

W =WT/2W1/2 ,

and (4.22) remains valid more generally.

The values x̃, ñ, minimizing (4.23) are,

x̃ = (E′TE′)−1E′Ty′ = (ETW−1E)−1ETW−1y

ñ =WT/2n′ =
{
I−E(ETW−1E)−1ETW−1

}
y

(4.24)

Cxx = (ETW−1E)−1ETW−1RnnW
−1E(ETW−1E)−1 . (4.25)

Uniform diagonal weights are clearly a special case. The rationale for choosing differing diagonal

weights, or a non-diagonal W, is probably not very obvious to the reader. Often one chooses

W = Rnn = {〈ninj〉}, that is, the weight matrix is chosen to be the expected second moment

matrix of the residuals. Then
〈
n

′
n

′T
〉
= I,

and Eq. (4.25) simplifies to

Cxx = (ET
R
−1

nnE)−1 . (4.26)
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In this special case, the weighting (4.22) has a ready interpretation: The equations (and hence the

residuals) are rotated and stretched so that in the new coordinate system of ni, the covariances

are all diagonal and the variances are all unity. Under these circumstances, an objective function

J =

∑

i

n
′2

i

as used in the original form of least-squares (Eq. (4.4)) is eminently reasonable.

But we emphasize that this choice of W is a very special one and has confused many users

of inverse methods. To emphasize again: Least-squares is an approximation procedure in which

W is a set of weights wholly at the disposal of the investigator; setting W = Rnn is a special

case whose significance is best understood after we examine a different, statistical, estimation

procedure.

Whether the equations are scaled or not, the previous limitations of the simple least-squares

solutions remain. In particular, we still have the problem that the solution may produce elements

in x̃, ñ, whose relative values are not in accord with expected or reasonable behavior and

the solution uncertainty or variances could be unusably large, as the solution is determined,

mechanically, and automatically, from combinations such as (ETW−1E)−1. Operators like these

are neither controllable nor very easy to understand; if any of the the matrices is singular, they

won’t even exist.

It was long ago recognized that some control over the magnitudes of x̃, ñ, Cxx could be

obtained in the simple least-squares context by modifying the objective function (4.4) to have

an additional term:

J
′ = nTW−1n+ α

2xTx (4.27)

= (y−Ex)TW−1(y−Ex) + α
2xTx,

in which α
2 is a positive constant.

If the minimum of (4.27) is sought by setting the derivatives with respect to x to zero, we

obtain,

x̃=
(
ETW−1E+α

2I
)
−1

ETW−1y (4.28)

ñ=y−Ex̃ (4.29)

Cxx = (4.30)
(
ETW−1E+α

2I
)
−1

ETW−1RnnW
−1E

(
ETW−1E+α

2I
)
−1

.
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(Eq. (4.30) simplifies a bit ifW = Rnn.) By letting α2 → 0, the solution 4.24, 4.25 is recovered,

and if α2 → ∞, ‖x̃‖2 → 0, ñ → y; α2 is called a “trade-off parameter,” because it trades the

magnitude of x̃ against that of ñ. By varying the size of α2 we gain some influence over the

norm of the residuals relative to that of x̃. The expected value of x̃ is now,

〈x̃〉 =
[
ETW−1E+ α

2I
]
−1
ETW−1y0 . (4.31)

If the true solution is believed to be Eq. (4.13), then this new solution is biassed . But the

variance of x̃ has been reduced, (4.30), by introduction of α2 > 0–that is, the acceptance of a

bias reduces the variance, possibly very greatly. Eqs. (4.28-4.29) are sometimes known as the

“tapered least-squares” solution, a label whose implication becomes clear later. Cnn, which is

not displayed, is readily found by direct computation as in Eq. (4.16).

The most basic and commonly seen form of this solution assumes W = Rnn = σ2
n
I, and

then,

x̃ =
(
ETE+α2I

)
−1
ETy, (4.32)

Cxx = σ
2

n

(
ETE+α2I

)
−1
ETE

(
ETE+α2I

)
−1

, (4.33)

obviously a special case.

A physical motivation for the modified objective function (4.27) is obtained by noticing that

a preference for a bounded ‖x‖ is easily produced by adding an equation set, x + n1 = 0, so

that the combined set is,

Ex+ n = y (4.34)

α
2 (x+ n1) = 0 (4.35)

or

E1x+ n2 = y2

E1 =

{
E

α2I

}
, nT2 = [nT α2nT

1
] , yT2 = [yT 0T ] , (4.36)

and in which α2 expresses a preference for fitting the first or second sets more closely. Then J

in Eq. (4.27) becomes the natural objective function to use. A preference that x ≈ x0 is readily

imposed instead, with an obvious change in (4.27) or (4.35).

Note the important points, to be shown later, that the matrix inverses in Eqs. (4.28-4.29)

will always exist, as long as α2 > 0, and that the expressions remain valid even if M < N .

Tapered least-squares produces some control over the sum of squares of the relative norms of x̃,

ñ, but still does not produce control over the individual elements x̃i.
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To gain control of the elements of x̃i, we can further generalize the objective function by

introducing another non-singular N ×N weight matrix, S (which is usually symmetric) and,

J = nTW−1n+ xTS−1x (4.37)

= (y−Ex)TW−1(y−Ex) + xTS−1x , (4.38)

for which Eq. (4.27) is a special case. Setting the derivatives with respect to x to zero results

in,

x̃=
(
ETW−1E+ S−1

)
ETW−1y (4.39)

ñ=y−Ex̃ (4.40)

Cxx = (4.41)
(
ETW−1E+ S−1

)
ETW−1RnnW

−1E
(
ETW−1E+ S−1

)
,

and Eqs. (4.28-4.30) are a special case, with S−1 = α2I.

To interpret this result, suppose S, W are positive definite and symmetric and thus have

Cholesky decompositions. Then we can employ both matrices directly on the equations, Ex+ n = y,

W−T/2EST/2S−T/2x+W−T/2n=W−T/2y (4.42)

E′x′+n′=y′ (4.43)

E′
=W−T/2EST/2, x′ = S−T/2x, n′ =W−T/2n, y′=W−T/2y (4.44)

The use of S in this way is “column scaling” because it weights the columns of E. With Eqs.

(4.43) the obvious objective function is,

J = n′Tn′ + x′Tx′, (4.45)

which is identical to Eq. (4.37) but in the new variables. In these rotated and stretched variables,

all squared elements are on an equal footing and this simplest objective function is a sensible

one. A clearer interpretation is obtained later by specific choice of S,W.

Like W, one is completely free to choose S as one pleases. A common choice is to write,

where F is N ×N ,

S = FTF

F = α2




1 −1 0 · · · 0

0 1 −1 · · · 0
...

...
...

...
...

0 · · · · · · 0 1




,

(4.46)
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whose effect is to minimize a term α
2
∑

i
(xi − xi+1)

2, which can be regarded as a “smoothest”

solution, and using α
2 to trade smoothness against the size of ‖ñ‖2, αF is obtained from the

Cholesky decomposition of S.

By invoking the matrix inversion lemma, an alternative form for Eqs. (4.42− 4.44) is found,

x̃ = SE
T
(
ESE

T+W
)
−1

y (4.47)

ñ = y−Ex̃ (4.48)

Cxx = SET
(
ESET+W

)
−1

Rnn

(
ESET+W

)
−1

ES (4.49)

So far, all of this is conventional. But we have made a special point of displaying explicitly

not only the elements x̃, but also those of the residuals, ñ. Notice that although we have

considered only the formally over-determined system, M > N , we always determine not only

the N−elements of x̃, but also the M-elements of ñ, for a total of M + N values–extracted

from the M-equations. It is apparent that any change in any element ñi forces changes in x̃. In

this view, to which we adhere, systems of equations involving observations always contain more

unknowns than equations. Another way to make the point is to re-write Eqs. (4.2) without

distinction between x,n as,

E1ξ= y (4.50)

E1 = {E, IM} , ξT=[x,n]T (4.51)

A combined weight matrix,

S1 =

{
S 0

0 W

}
, (4.52)

would be used, and any distinction between the x,n solution elements is suppressed. Eqs. (4.50)

are a formally underdetermined system, derived from the formally over-determined observed one.

This identity leads us to the problem of formal underdetermination in the next Section.

In general with least-squares problems, the solution we seek can be regarded as any of the

following equivalents:

(1) The x̃, ñ satisfying

Ex+ n = y. (4.53)

(2) x̃, ñ satisfying the normal equations arising from J (Eq. 4.37).

(3) x̃, ñ producing the minimum of J in (Eq. 4.37)
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The point of this list lies with item 3: algorithms exist to find minima of functions by

deterministic methods (“go downhill” from an initial guess)22, or stochastic search methods

(Monte Carlo) or even, conceivably, through a shrewd guess by the investigator. If an acceptable

minimum of J is found, by whatever means, it is an acceptable solution (subject to further

testing, and the possibility that there is more than one such solution). Search methods become

essential for the nonlinear problems taken up later.

22Gill, Murray and Wright (1981).
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4.3. Underdetermined Systems and Lagrange Multipliers. What does one do when

the number, M, of equations is less than the number, N, of unknowns and no more observations

are possible? We have seen that the claim that a problem involving observations is ever overde-

termined is misleading–because each equation or observation always has a noise unknown, but

to motivate some of what follows, it is helpful to first pursue a conventional approach.

One often attempts when M < N to reduce the number of unknowns so that the formal

overdeterminism is restored. Such a parameter reduction procedure may be sensible; but there

are pitfalls. Let pi (t), 0 ≤ i be a set of polynomials, e.g. Chebyschev or Laguerre, etc. Consider

data produced from the formula,

y (t) = 1 + aMpM (t) + n(t) , (4.54)

which might be deduced by fitting a parameter set [a0, . . . , aM ]T . The above fit of a quadratic

term to data is of this form. If there are fewer than M observations, an attempt to fit with

fewer parameters,

y =

Q∑

j=0

ajpj (t) , Q < M (4.55)

may give a good, even perfect fit; but it would be incorrect. The reduction in model parameters

in such a case biasses the result, perhaps hopelessly so. One is better off retaining the underde-

termined system and making inferences concerning the possible values of ai rather than using

the form (4.54), in which any possibility of learning something about aM has been eliminated.

E������ 1. Consider a tracer problem, not unlike those encountered in medicine, hydrology,

oceanography, etc., described in Chapter 1. A box (see Fig. 2 of Chapter 1) is observed to

contain a steady tracer concentration C0, and is believed fed from two reservoirs each with tracer

concentration of C1, C2 respectively. One seeks to determine the rates J1, J2 that fluid is fed

from these two reservoirs into the box. Tracer balance is

J1C1 + J2C2 − J0C0 = 0,

where J0 is rate at which fluid is removed from the box. Mass balance then requires

J1 + J2 = J0.

Evidently, there are but two equations in three unknowns (and a perfectly good solution would

be J1 = J2 = J3 = 0); but as many have noticed, we can nonetheless, determine the relative

fraction of the fluid coming from each reservoir. Divide both equations through by J0,

J1
J0

C1 +
J2
J0

C2 = C0

J1
J0

+
J2
J0

= 1
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producing two equations in two unknowns„ J1/J0, J2/J0, which has a unique stable solution (we

are obviously ignoring the noise reality). Many examples can be given of such calculations in

the literature, calculating the flux ratios–apparently definitively. But suppose the investigator is

suspicious that there might be a third reservoir with tracer concentration C3. Then the equations

become

J1
J0

C1 +
J2
J0

C2 +
J3
J0

C3 = C0

J1
J0

+
J2
J0

+
J3
J0

= 1

now underdetermined with two equations in three unknowns. If it is obvious that no such third

reservoir exists, then the reduction to two equations in two unknowns is the right thing to do.

But if there is even a suspicion of a third (or more) reservoir, one should solve these equations

with one of the methods we will develop permitting construction and understanding of all possible

solutions.

In general terms, parameter reduction can lead to model errors, that is, bias errors, which

can produce wholly illusory results.23 A common situation particularly in problems involving

tracer movements in groundwater, ocean, or atmosphere, fitting a one or two-dimensional model

to data which represent a fully three-dimensional field. The result may be pleasing, but possibly

completely erroneous.

A general approach to solving underdetermined problems is to render the answer apparently

unique by minimizing an objective function, subject to satisfaction of the linear constraints.

To see how this can work, suppose that (4.2) are indeed formally underdetermined, that is,

M < N , and seek the solution which exactly satisfies the equations and simultaneously renders

an objective function, J = x
T
x, as small as possible. Direct minimization of J leads to,

dJ =
∂J

∂x

T

dx = 2xTdx = 0, (4.56)

but unlike the case in Eq. (4.6), the coefficients of the individual dxi can no longer be separately

set to zero (i.e., x = 0 is an incorrect solution) because the dxi no longer vary independently,

but are restricted to values satisfying Ex = y. One approach is to use the known dependencies

to reduce the problem to a new one in which the differentials are independent. For example,

suppose that there are general functional relationships


x1
...

xL


 =



ξ1(xL+1, . . . , xN )

...

ξL(xL+1, . . . , xN )


 .

23
Wunsch & Minster (1982).
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Then the first L =M−N elements of xi may be eliminated, and the objective function becomes,

J =
[
ξ1(xL+1, . . . , xN )

2 + · · ·+ ξL(xL+1, . . . , xN )
2
]
+

[
x2
L+1 + · · ·+ x2

N

]
,

in which the remaining xi, L+ 1 ≤ i ≤ N are independently varying. In the present case, one

can choose (arbitrarily) the first N −M unknowns, q = [xi], and define the last M unknowns

r = [xi], N −M + 1 ≤ i ≤ N, and rewrite the equations as

{
E1 E2

}[ q

r

]
=

[
y1

y2

]
(4.57)

or,

q = E−1
1

(y1 −E2r) . (4.58)

If E−1
1

does not exist, one can try any other subset of the xi to eliminate until a suitable group

is found. This approach is completely correct, but finding an explicit solution for L elements of

x in terms of the remaining ones may be difficult or inconvenient.

Lagrange Multipliers and Adjoints

When it is inconvenient to find such an explicit representation eliminating some variables in

favor of others, a standard procedure for finding the constrained minimum is to introduce a new

vector “Lagrange multiplier,” µ, of M-unknown elements, to make a new objective function,

J
′
= J − 2µT (Ex− y) (4.59)

= xTx− 2µT (Ex− y)

and ask for its stationary point–treating both µ and x as independently varying unknowns.

The numerical 2 is introduced solely for notational tidiness.

The rationale for this procedure is straightforward.24 Consider first, a very simple example,

of one equation in one two unknowns,

x1 − x2 = 1 (4.60)

and we seek the minimum norm solution,

minimize: J = x2
1
+ x2

2
, (4.61)

subject to Eq. (4.60). The differential,

dJ = 2x1dx1 + 2x2dx2 = 0, (4.62)

24Morse & Feshbach (1953, p. 238); Strang (1986).
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leads to the unacceptable solution x1 = x2 = 0, if we should incorrectly set the coefficients

of dx1, dx2 to zero. (The step is incorrect because x1, x2 cannot vary independently, being

connected through Eq. (4.60). ) Consider instead a modified objective function

J ′ = J − 2µ (x1 − x2 − 1) , (4.63)

where µ is unknown. The differential of J ′ is

dJ ′ = 2x1dx1 + 2x2dx2 − 2µ (dx1 − dx2)− 2 (x1 − x2 − 1) dµ = 0, (4.64)

or

dJ ′/2 = dx1 (x1 − µ) + dx2 (x2 + µ) + dµ (x1 − x2 − 1) = 0. (4.65)

We are free to choose, x1 = µ which kills off the differential involving dx1. But now only

the differentials dx2, dµ remain; as they can vary independently, their coefficients must vanish

separately and we have,

x2 = −µ (4.66)

x1 − x2 = 1. (4.67)

Note that the second of these recovers the original equation. Substituting x1 = µ, we have

2µ = 1, or µ = 1/2, and x1 = 1/2, x2 = −1/2, J = 0.5, and one can confirm that this is indeed

the “constrained” minimum. (A “stationary” value of J ′ was found, not an absolute minimum

value, because J ′ is no longer necessarily positive: it has a “saddle point”, which we have found.)

Before writing out the general case, note the following question: Suppose the constraint

equation was changed to,

x1 − x2 = ∆. (4.68)

How much would J change as ∆ is varied? With variable ∆, (4.64) becomes,

dJ ′ = 2dx1 (x1 − µ) + 2dx2 (x2 + µ) + 2dµ (x1 − x2 −∆) + 2µd∆. (4.69)

But the first three terms on the right vanish, and hence

∂J ′

∂∆
= 2µ =

∂J

∂∆
, (4.70)

because J = J ′ at the stationary point (from (4.68). Thus µ is the sensitivity of the objective

function J to perturbations in the right-hand side of the constraint equation. If ∆ is changed

from 1, to 1.2, it can be confirmed that the approximate change in the value of J is 0.2 as one

deduces immediately from Eq. (4.70).

Now we develop this method generally. Reverting to Eq. (4.59),
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dJ ′
= dJ − 2µTEdx− (Ex− y)T dµ

=

(
∂J

∂x1
− 2µTe1

)
dx1 +

(
∂J

∂x2
− 2µTe2

)
dx2 + · · ·+

(
∂J

∂xN
− 2µTeN

)
dxN − (Ex− y)T dµ

=
(
2x1 − 2µTe1

)
dx1 +

(
2x2 − 2µTe2

)
dx2 + ...+

(
2xN − 2µTeN

)
dxN − (Ex− y)T dµ = 0

Here the ei are the corresponding columns of E. The coefficients of the first M−differentials

dxican be set to zero by assigning, xi = µ
Tei, leaving N −M differentials dxi whose coefficients

must separately vanish (hence they all vanish, but for two separate reasons), plus the coefficient

of the M − dµiwhich must also vanish separately. This recipe produces, from Eq. (4.59),

1

2

∂J ′

∂x
= x−ET

µ = 0 (4.71)

1

2

∂J ′

∂µ
= Ex− y = 0 , (4.72)

where the first equation set is the result of the vanishing of the coefficients of dxi and the second,

which is the original set of equations, arises from the vanishing of the coefficients of the dµi. The

convenience of being able to treat all the xi as independently varying is offset by the increase in

problem dimensions by the introduction of the M−unknown µi. The first set is N−equations

for µ in terms of x, and the second set is M−equations in x in terms of y. Taken together, these

are M +N equations in M +N unknowns, and hence just-determined no matter what the ratio

of M to N, assuming E is full-rank.

Eq. (4.72) is,

ET
µ = x (4.73)

and substituting for x into (4.71),

EET
µ = y ,

µ̃ = (EET )−1y , (4.74)

assuming the inverse exists, and

x̃ = ET (EET )−1y (4.75)

ñ = 0 (4.76)

Cxx = 0. (4.77)

(Cxx = 0 because formally we estimate ñ = 0).

Eqs.(4.75-4.77) are the classical solution of minimum norm of x, satisfying the constraints

exactly while minimizing the solution length. That a minimum is achieved can be verified by

evaluating the second derivatives of J ′ at the solution point. The minimum occurs at a saddle
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point in x, µ space25 and where the term proportional to µ necessarily vanishes. The operator

ET (EET )−1 is sometimes called a “Moore-Penrose inverse.” If EET does not have an inverse,

this solution does not exist (but we will find ways to generalize it to deal with the singular case).

Eqs. (4.73) for µ in terms of x involves the coefficient matrix ET . An intimate connection

exists between matrix transposes and adjoints of differential equations (see the Appendix to

this Chapter), and thus µ is sometimes called the “adjoint solution,” with ET defining the

“adjoint model”26 in Eq.(4.73), and with x acting as a forcing term. The original Eqs. (4.2)

were assumed formally underdetermined, and thus the adjoint model equations in (4.73) are

necessarily formally overdetermined.

The physical interpretation of µ can be obtained as above by considering the way in which

J would vary with infinitesimal changes in y. As in the special case done above, J = J ′ at the

stationary point. Hence,

dJ
′ = dJ − 2µTEdx−2 (Ex− y)T dµ+ 2µTdy = 0, (4.78)

or, since the first three terms on the right vanish at the stationary point,

∂J ′

∂y
=

∂J

∂y
= 2µ, (4.79)

and the Lagrange multipliers are the sensitivity of J, at the stationary point, to perturbations in

the parameters y. This conclusion leads, in Chapter 4, to the scrutiny of the Lagrange multipliers

as a means of understanding the sensitivity of models and the flow of information within them.

If the Eqs. (4.2) are first column scaled using S−T/2, Eqs. (4.75)—(4.77) are in the primed

variables, and the solution in the original variables is

x̃ = SET (ESET )−1y (4.80)

ñ = 0 (4.81)

Cxx = 0, (4.82)

and the result depends directly upon S. If a row scaling withW−T/2 is used, it is readily shown

that W disappears from the solution and has no effect on it.

Eqs. (4.80)—(4.82) are a solution, but there is the same fatal defect as in Eq. (4.81)–ñ = 0

is usually unacceptable when y are observations. Furthermore, ‖x̃‖ is again uncontrolled, and

ESET may not have an inverse.

n must be regarded as fully an element of the solution, as much as x. Equations representing

observations can always be written as in (4.50), and can be solved exactly. Therefore, we now

25See Sewell (1987) for an interesting discussion.
26But the matrix transpose is not what the older literature calls the “adjoint matrix,” and which is quite

different. In the more recent literature the latter has been termed the “adjugate” matrix to avoid confusion.
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use a modified objective function, allowing for general S,W,

J = xTS−1x+ nTW−1
n− 2µT (Ex+ n− y) , (4.83)

with both x, n appearing in the objective function. Setting the derivatives of (4.83) with respect

to x, n, µ to zero, and solving the resulting normal equations produces,

x̃ = SET
(
ESET+W

)
−1

y (4.84)

ñ = y−Ex̃ (4.85)

Cxx = SET
(
ESET+I

)
−1

Rnn

(
ESET+I

)
−1

ES (4.86)

µ̃= ñ (4.87)

which is identical to Eqs. (4.47-4.49) or to the alternate from Eq.(4.39− 4.41) derived from an

objective function without Lagrange multipliers.

Eqs. (4.47-4.49) and (4.84-4.86) result from two very different appearing objective functions–

one in which the equations are imposed in the mean-square, and one in which they are imposed

exactly, using Lagrange multipliers. Constraints in the mean-square will be termed “soft”, and

those imposed exactly are “hard.”27 The distinction is however, largely illusory: although (4.2)

are being imposed exactly, it is only the presence of the error term, n, which permits the equa-

tions to be written as equalities and thus as hard constraints. The hard and soft constraints

here produce an identical solution. In some (rare) circumstances, which we will discuss briefly

below, one may wish to impose exact constraints upon the elements of x̃i. The solution (4.75)—

(4.77) was derived from the noise-free hard constraints, Ex = y, but we ended by rejecting it as

generally inapplicable.

Once again, n is only by convention discussed separately from x, and is fully a part of the

solution. The combined form (4.50), which literally treats x, n as the solution, are imposed

through a hard constraint on the objective function,

J = ξTξ − 2µT (E1ξ − y) , (4.88)

where ξ = [S−T/2x,W
−T/2

n]T , which is identical to Eq. (4.83). (There are numerical advantages

however, in working with objects in two spaces of dimensions M and N , rather than a single

space of dimension M +N .)

27In the meteorological terminology of Sasaki (1970) and others, exact relationships are called “strong”

constraints, and those imposed in the mean-square are “weak” ones.
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4.4. Interpretation of Discrete Adjoints. When the operators are matrices, as they are

in discrete formulations, then the adjoint is just the transposed matrix. Sometimes the adjoint

has a simple physical interpretation. Suppose, e.g., that scalar y was calculated from a sum,

y =Ax, A =

[
1 1 1 . 1

]
. (4.89)

Then the adjoint operator applied to y is evidently,

r =A
T
y =




1

1

1

.

1



y = x (4.90)

Thus the adjoint operator “sprays” the average back out onto the originating vector, and might

be thought of as a kind of inverse operator.

A more interesting case is a first-difference forward operator,

A =




−1 1

−1 1

−1 1

. . .

−1 1

−1




, (4.91)

that is,

yi = xi+1 − xi, (4.92)

(with the exception of the last element, yN = −xN ).

Then its adjoint is,

AT =




−1

1 −1

1 −1

. .

1 −1

1 −1




(4.93)

that is a first-difference backward operator with z =ATy, producing zi = yi−1 − yi with again,

the exception of the end point, now z1.

In general, the transpose matrix, or adjoint operator is not simply interpretable as an in-

verse operation as in the summation/spray-out case might have suggested.28 A more general

28Claerbout (2001) displays more examples, and Lanczos (1960) gives a very general discussion of operators

and their adjoints, Green functions, and their adjoints. See also the Appendix to this Chapter.
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understanding of the relationship between adjoints and inverses will be obtained in the next

Section.

5. The Singular Vector Expansion

Least-squares is a very powerful, very useful method for finding solutions of linear simulta-

neous equations of any dimensionality and one might wonder why it is necessary to discuss any

other form of solution. But even in the simplest form of least-squares, the solution is dependent

upon the inverses of ETE, or EET . In practice, their existence cannot be guaranteed, and we

need to understand what that means, the extent to which solutions can be found when the

inverses do not exist and the effect of introducing weight matrices W, S. This problem is inti-

mately related to the issue of controlling solution and residual norms. Second, the relationship

between the equations and the solutions is somewhat impenetrable, in the sense that structures

in the solutions are not easily relatable to particular elements of the data yi. For many purposes,

particularly physical insight, understanding the structure of the solution is essential. We will

return to examine the least-squares solutions using some extra machinery.

5.1. Simple Vector Expansions. Consider again the elementary problem (2.1) of rep-

resenting an L—dimensional vector f as a sum of a complete set of L—orthonormal vectors gi,

1 ≤ i ≤ L, gTi gj = δij. Without error,

f =
L∑

j=1

ajgj , aj = gTj f . (5.1)

But if for some reason, only the first K coefficients aj are known, we can only approximate f by

its first K terms:

f̃ =
K∑

j=1

bjgj

= f + δf1,

(5.2)

and there is an error, δf1. From the orthogonality of the gi, it follows that δf1 will have minimum

l2 norm only if it is orthogonal to the K vectors retained in the approximation, and then only if

bj = aj as given by (5.1). The only way the error could be reduced further is by increasing K.

Define an L ×K matrix, GK whose columns are the first K of the gj. Then a = GT
Kf is

the vector of coefficients aj = gTj f , 1 ≤ j ≤ K, and the finite representation (5.2) is (one should

write it out),

f̃ =GKa =GK(G
T
Kf) = (GKG

T
K)f , a = {ai}, (5.3)

where the third equality follows from the associative properties of matrix multiplication. This

expression shows that representation of a vector in an incomplete orthonormal set produces a

resulting approximation which is a simple linear combination of the elements of the correct values
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F����� 9. Example of a row, p, of a 10×10 resolution matrix, perhaps the

fourth one, showing widely distributed averaging in forming fp (upper panel).

Lower panel shows so-called compact resolution, in which the solution e.g., is a

readily interpreted local average of the true solution. Such situations are not

common.

(i.e., a weighted average, or “filtered” version of them). Row i of GKG
T
K produces the weighted

linear combination of the true elements of f which will appear as f̃i.

Because the columns of GK are orthonormal, GT
KGK = IK , that is, the K × K identity

matrix; but GKG
T
K �= IL unless K = L (that GLG

T
L = IL for K = L follows from the theorem

for square matrices that shows a left inverse is also a right inverse.) If K < L, GK is “semi-

orthogonal.” If K = L, it is “orthogonal”; in this case, G−1

L = G
T
L. If it is only semi-orthogonal,

G
T
K is a left inverse, but not a right inverse. Any orthogonal matrix has the property that its

transpose is identical to its inverse.

GKG
T
K is known as a “resolution matrix,” with a simple interpretation. Suppose the true

value of f were ep = [ 0 0 0 . . . 0 1 0 . 0 .. 0 ]T , that is, a Kronecker delta δjp, with unity in element

p and zero otherwise. Then the incomplete expansion (5.2) or (5.3) would not reproduce the

delta function, but rather

f̃j0 =GKG
T
Kep , (5.4)

which is row p of GKG
T
K . Each row of the resolution matrix tells one what the corresponding

form of the vector would be, if its true form were a Kronecker delta.

To form a Kronecker delta requires a complete set of vectors. An analogous elementary result

of Fourier analysis shows that a Dirac delta function demands contributions from all frequencies

to represent a narrow, very high pulse. Removal of some of the requisite vectors (sinusoids)

produces peak broadening and sidelobes. Here, depending upon the precise structure of the gi,
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the broadening and sidelobes can be complicated. If one is lucky, the effect could be a simple

broadening (schematically shown in figure 9) without distant sidelobes), leading to the tidy

interpretation of the result as a local average of the true values, called “compact resolution.”29

This sometimes happens, but cannot in general be expected.

A resolution matrix has the property

trace(GKG
T
K) = K , (5.5)

which follows from noting that,

trace(GT
KGK) = trace

(
GKG

T
K

)
= trace(IK) = K.

5.2. Square-Symmetric Problem. Eigenvalues/Eigenvectors. Orthogonal vector ex-

pansions are particularly simple to use and interpret, but might seem irrelevant to dealing with

simultaneous equations where neither the row nor column vectors of the coefficient matrix are

so simply related. What we will show however, is that we can always find sets of orthonormal

vectors to greatly simplify the job of solving simultaneous equations. To do so, we digress to

recall the basic elements of the “eigenvector/eigenvalue problem” mentioned only in passing on

P. 23.

Consider a square, M ×M matrix E and the simultaneous equations

Egi = λigi, 1 ≤ i ≤M , (5.6)

that is, the problem of finding a set of vectors gi whose dot products with the rows of E are

proportional to themselves. Such vectors are “eigenvectors,” and the constants of proportion-

ality are the “eigenvalues.” Under special circumstances, the eigenvectors form an orthonormal

spanning set: textbooks show that if E is square and symmetric, such a result is guaranteed. It

is easy to see that if two λj, λk are distinct, then the corresponding eigenvectors are orthogonal:

Egj = λjgj , (5.7)

Egk = λkgk (5.8)

Left multiply the first of these by gTk , and the second by gTj and subtract:

gTkEgj − g
T
j Egk = (λj − λk)g

T
k gj. (5.9)

But because E = ET
, the left-hand side vanishes, and hence gTk gj by the assumption λj �= λk. A

similar construction proves that the λi are all real, and an elaboration shows that for coincident

λi, the corresponding eigenvectors can always be made orthogonal.

29Wiggins (1972).
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Suppose for the moment that we have such a special case, and recall how eigenvectors can

be used to solve (2.16). By convention, the pairs (λi,gi) are ordered in the sense of decreasing

λi. If some λi are repeated, an arbitrary order choice is made.

With an orthonormal, spanning set, both the known y and the unknown x can be written

as,

x =
M∑

i=1

αigi, αi = g
T

i
x , (5.10)

y =

M∑

i=1

βigi, βi = g
T

i y . (5.11)

By convention, y is known, and therefore βi can be regarded as given. If we could find the αi,

x would be known.

Substitute (5.10) into Ex = y,

E

M∑

i=1

αigi =
M∑

i=1

(
gT
i
y
)
gi, (5.12)

or, using the eigenvector property,

M∑

i=1

αiλigi =
M∑

i

(
gTi y

)
gi. (5.13)

But the expansion vectors are orthonormal and so

λiαi = g
T

i y (5.14)

αi =
gT
i
y

λi
(5.15)

x =

M∑

i=1

gT
i
y

λi
gi . (5.16)

Apart from an obvious difficulty if an eigenvalue vanishes, the problem is now completely solved.

If we define a diagonal matrix, Λ, with elements, λi, ordered by convention in descending

numerical value, and the matrix G, whose columns are the corresponding gi in the same order,

the solution to (2.16) can be written, from (5.10), (5.14)—(5.16) as

α = Λ−1GTy (5.17)

x =GΛ−1GTy (5.18)

where Λ−1 = (1/λi).

Vanishing eigenvalues, i = i0, cause trouble and we must consider them. Let the corre-

sponding eigenvectors be gi0 . Then any part of the solution which is proportional to such an

eigenvector is “annihilated” by E, that is, gi0
is orthogonal to all the rows of E. Such a result
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means that there is no possibility that anything in y could provide any information about the

coefficient αi0 . If y corresponds to a set of observations (data), then E represents the connec-

tion (“mapping”) between system unknowns and observations. The existence of zero eigenvalues

shows that the act of observation of x removes certain structures in the solution which are then

indeterminate. Vectors gi0 (and there may be many of them) are said to lie in the “nullspace” of

E. Eigenvectors corresponding to non-zero eigenvalues lie in its “range.” The simplest example

is given by the “observations,”

x1 + x2 = 3 ,

x1 + x2 = 3 .

Any structure in x such that x1 = −x2 is destroyed by these observations, and by inspection,

the nullspace vector must be g2 = [1,−1]T /
√
2. (The purpose of showing the observation twice

is to produce an E which is square.)

Suppose there are K <M non-zero λi. Then for i > K, Eq. (5.14) is

0αi = gT
i
y, K + 1 ≤ i ≤M , (5.19)

and two cases must be distinguished.

Case (1):

gTi y = 0 , K + 1 ≤ i ≤M . (5.20)

We could then put αi = 0, K + 1 ≤ i ≤M , and the solution can be written

x̃ =

K∑

i=1

gT
i
y

λi
gi, (5.21)

and Ex̃ = y, exactly. We have put a tilde over x because a solution of the form,

x̃ =

K∑

i=1

gT
i
y

λi
gi +

M∑

i=K+1

αigi , (5.22)

with the remaining αi taking on arbitrary values also satisfies the equations exactly. That is,

the true value of x could contain structures proportional to the nullspace vectors of E, but the

equations (2.16) neither require their presence, nor provide information necessary to determine

their amplitudes. We thus have a situation with a “solution nullspace.” Define the matrix GK

to be M ×K, carrying only the first K of the gi, that is the range vectors, ΛK to be K ×K

with only the first K, non-zero eigenvalues, and the columns of QG are the M −K nullspace

vectors (it is M × (M −K)), then the solutions (5.21) and (5.22) are,

x̃ = GKΛ
−1

K
GTKy , (5.23)

x̃ = GKΛ
−1

K
GTKy+QGαG (5.24)



5. THE SINGULAR VECTOR EXPANSION 67

where αG is the vector of unknown nullspace coefficients, respectively.

Eq. (5.20) is often known as a “solvability condition.” The solution in (5.23), with no

nullspace contribution will be called the “particular” solution.

If G is written as a partitioned matrix,

G = {GK QG} ,

it follows from the column orthonormality that

GGT
= I =GKG

T
K +QGQ

T
G (5.25)

or

QGQ
T
G = I−GKG

T
K . (5.26)

Vectors QG span the nullspace of G.

Case (2):

gTi y �= 0 , i > K + 1 , (5.27)

for one or more of the nullspace vectors. In this case, eq. (5.14) is the contradiction,

0αi �= 0,

and eq. (5.13) is actually

K∑

i=1

λiαigi =
M∑

i=1

(gTi y)gi, K < M , (5.28)

that is, with differing upper limits on the sums. Owing to the orthonormality of the gi, there

is no choice of αi, 1 ≤ i ≤ K on the left which can match the last M −K terms on the right.

Evidently there is no solution in the conventional sense unless (5.20) is satisfied, hence the name

“solvability condition.” What is the best we might do? Define “best” to mean that the solution

x̃ should be chosen such that,

Ex̃ = ỹ,

where the difference, ñ = y− ỹ, which we call the “residual,” should be as small as possible (in

the l2 norm). If this choice is made, then the orthogonality of the gi shows immediately that

the best choice is still (5.15), 1 ≤ i ≤ K. No choice of nullspace vector coefficients, nor any

other value of the coefficients of the range vectors, can reduce the norm of ñ. The best solution

is then also (5.21) or (5.23).

In this situation, we are no longer solving the equations (2.16), but rather are dealing with

a set that could be written,

Ex ∼ y, (5.29)
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where the demand is for a solution that is the “best possible,” in the sense just defined. Such

statements of approximation are awkward, and it is more useful to always rewrite (5.29) as,

Ex+ n = y, (5.30)

where n is the residual. If x̃ is given by (5.22) then,

ñ =
M∑

i=K+1

(gT
i
y)gi, (5.31)

by (5.28). Notice that ñT ỹ = 0 : ỹ is orthogonal to the residuals.

This situation, where we started with M-equations in M-unknowns, but found in practice

that some structures of the solution could not actually be determined, is labeled “formally

just-determined,” where the expression “formally” alludes to the fact that the appearance of

a just-determined system did not mean that the characterization was true in practice. One or

more vanishing eigenvalues mean that neither the rows nor columns of E are spanning sets.

Some decision has to be made about the coefficients of the nullspace vectors in (5.24). We

could use the form as it stands, regarding it at as the “general solution.” The analogy with the

solution of differential equations should be apparent–typically, there is a particular solution

and a homogeneous solution–here the nullspace vectors. When solving a differential equation,

determination of the magnitude of the homogeneous solution requires additional information,

often provided by boundary or initial conditions; here additional information is also necessary,

but missing.

Despite the presence of indeterminate elements in the solution, we know a great deal about

them: they are proportional to the known nullspace vectors. Depending upon the specific

situation, we might conceivably be in a position to obtain more observations, and would seriously

consider observational strategies directed at observing these missing structures. The reader is

also reminded of the discussion of the Neumann problem in Chapter 1.

Another approach is to define a “simplest” solution, appealing to what is usually known as

“Occam’s Razor,” or the “principal of parsimony,” that in choosing between multiple explana-

tions of a given phenomenon, the simplest one is usually the best. What is “simplest” can be

debated, but here there is a compelling choice: The solution (5.23), that is without any nullspace

contributions, is less structured than any other solution. (It is often, but not always, true that

the nullspace vectors are more “wiggily” than those in the range: recall the Neumann problem.)

In any case, including any vector not required by the data is arguably producing more structure

than is required.) Setting all the unknown αi to zero is thus one plausible choice. It follows

from the orthogonality of the gi that this particular solution is also the one of minimum solution

norm. Later, we will see some other choices for the nullspace vectors.
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If the nullspace vector contributions are set to zero, the true solution has been expanded

in an incomplete set of orthonormal vectors. Thus, GKG
T

K
is the resolution matrix, and the

relationship between the true solution and the minimal one is just,

x̃ =GKG
T

K
x = x−QGαG, ỹ =GKG

T
Ky, ñ = QGQ

T
Gy . (5.32)

The relative contributions of any structure in y, determined by the projection, gT
i
y will

depend upon the ratio gT
i
y/λi. Comparatively weak values of gT

i
y may well be amplified by

small, but non-zero, elements of λi. One must keep track of both gT
i
y, and gT

i
y/λi.

Before leaving this special case, note one more useful property of the eigenvector/eigenvalues.

For the moment, letG have all its columns, containing both the range and nullspace vectors, with

the nullspace vectors being last in arbitrary order. It is thus anM×M matrix. Correspondingly,

let Λ contain all the eigenvalues on its diagonal, including the zero ones; it too, is M×M . Then

the eigenvector definition (5.6) produces

EG =GΛ . (5.33)

Multiply both sides of (5.33) by GT :

GTEG =GTGΛ = Λ. (5.34)

G is said to “diagonalize” E. Now multiply both sides of (5.34) on the left by G and on the

right by GT :

GGTEGGT
=GΛGT (5.35)

or, using the orthogonality of G,

E =GΛGT , (5.36)

a useful decomposition of E, consistent with its symmetry.

Recall that Λ has zeros on the diagonal corresponding to the zero eigenvalues, and the

corresponding rows and columns are entirely zero. Writing out (5.36), these zero rows and

columns multiply all the nullspace vector columns ofG by zero, and it is found that the nullspace

columns of G can be eliminated, Λ reduced to its K ×K form, and the decomposition (5.36) is

still exact–in the form,

E =GKΛKG
T
K . (5.37)

Then the simultaneous equations (5.30) are,

GKΛKG
T
Kx+ n = y . (5.38)

Left multiply both sides by Λ−1
K
GT
K

(existence of the inverse is guaranteed by the removal of

the zero eigenvalues) and,

GT
Kx+Λ

−1

K
GT
Kn = Λ−1

K
GT
Ky . (5.39)
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But GT
K
x are the projection of x onto the range vectors of E, and GT

K
n is the projection of the

noise. We have agreed to set the latter to zero, and obtain,

GT
Kx = Λ

−1

K
GT
Ky ,

the dot products of the range of E with the solution. Hence, it must be true, since the range

vectors are orthonormal that,

x̃ ≡GKG
T
Kx ≡GKΛ

−1

K
GT
Ky , (5.40)

ỹ = Ex̃ =GKG
T
Ky , (5.41)

which is identical to the particular solution (5.21). The residuals are

ñ = y− ỹ = y−Ex̃ = (IL −GKG
T
K)y = QGQGy, (5.42)

with ñT ỹ = 0. Notice that matrix H of Eq. (4.11) is just GKG
T
K

, and hence (I−H) is the

projector of y onto the nullspace vectors.

The expected value of the solution (5.21) or (5.40) is,

〈x̃− x〉 =GKΛ
−1

K
GT
K〈y〉 −

N∑

i=1

αigi = −QGαG (5.43)

and so the solution is biassed unless αG = 0.

The uncertainty is,

P = D2(x̃− x) = 〈GKΛ
−1

K
GT
K(y0 + n− y0)(y0 + n− y0)

TGKΛ
−1

K
GT
K〉

+ 〈QGαGα
T
GQ

T
G〉

=GKΛ
−1

K
GT
K〈nn

T 〉GKΛ
−1

K
GT
K +QG〈αGα

T
G〉Q

T
G

=GKΛ
−1

K
GT
KRnnGKΛ

−1

K
GT
K +QGRααQ

T
G

= Cxx +QGRααQ
T
G ,

(5.44)

defining the second moments, Rαα, of the coefficients of the nullspace vectors. Under the special

circumstances that the residuals, n, are white noise, with Rnn = σ2nI, (5.44) reduces to

P = σ2nGKΛ
−2

K
GT
K +QGRααQ

T
G . (5.45)

Either case shows that the uncertainty of the minimal solution is made up of two distinct parts.

The first part, the solution covariance, Cxx, arises owing to the noise present in the observations,

and generates uncertainty in the coefficients of the range vectors; the second contribution arises

from the “missing” nullspace vector contribution. Either term can dominate. The magnitude of

the noise term depends largely upon the ratio of the noise variance, σ2n, to the smallest non-zero

singular value, λ2K .
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E������ 2. Suppose

Ax= y,{
1 1

1 1

}[
x1

x2

]
= y =

[
1

3

]
, (5.46)

which is clearly inconsistent and has no solution in the conventional sense. A is a square

symmetric matrix. Solving,

Agi = λigi (5.47)

or {
1− λ 1

1 1− λ

}[
gi1

gi2

]
=

[
0

0

]
. (5.48)

These equations require

gi1

[
1− λ

1

]
+ gi2

[
1

1− λ

]
=

[
0

0

]

or, [
1− λ

1

]
+

gi2

gi1

[
1

1− λ

]
=

[
0

0

]
.

Which is

(1− λ) +
gi2

gi1

= 0

1 +
gi2

gi1

(1− λ) = 0

and solving for gi2/gi1 produces, λ = 2, 0. This method, which can be generalized, in effect derives

the usual statement that for Eq. (5.48) to have a solution, the determinant,∣∣∣∣∣ 1− λ 1

1 1− λ

∣∣∣∣∣ ,

must vanish. The first solution is labelled λ1, and substituting back in produces g1 =
1√
2

[
1

1

]
,

when given unit length. Also g2 =
1√
2

[
−1

1

]
, λ2 = 0. Hence,

A =
1
√
2

[
1

1

]
2
1
√
2

[
1

1

]T
=

[
1

1

] [
1 1

]
(5.49)
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The equations have no solution in the conventional sense. There is however, a sensible “best”

solution:

x̃ =

gT
1
y

λ1
g1 + α2g2, (5.50)

=

(
4

2
√
2

)
1
√
2

[
1

1

]
+ α2

1
√
2

[
−1
1

]
(5.51)

=

[
1

1

]
+ α2

1√
2

[
−1
1

]
. (5.52)

Notice that

Ax̃ =

[
2

2

]
+ 0 �=

[
1

3

]
. (5.53)

The solution has compromised the inconsistency. No choice of α2 can reduce the residual in y.

The equations would more sensibly have been written

Ax+ n = y,

and the difference, n = y−Ax̃ is proportional to g2. There are clearly an infinite number of

choices of x̃; one choice is often the one with α2 = 0, the solution of minimum norm. In one

sense, it is the simplest solution. A system like (5.46) would most likely arise from measurements

(if both equations are divided by 2, they represent two measurements of the average of x1, x2),

and n would be best regarded as the noise of observation.

E������ 3. Suppose the same problem as in Example 2 is solved using Lagrange multipliers,

that is, minimizing,

J = nTn+α2xTx− 2µT (y−Ax− n) .

Then, the normal equations are

1

2

∂J

∂x
= α2x+AT

µ = 0

1

2

∂J

∂n
= n+µ = 0

1

2

∂J

∂µ
= y−Ax− n = 0,

which easily produces,

x̃ = AT
(
AAT+α2I

)
−1
y

=

{
2.0 2.0

2.0 2.0

}{{
2.0 2.0

2.0 2.0

}
+ α

2

{
1.0 0

0 1.0

}}
−1 [

1

3

]
.
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The limit α2
→∞ is readily evaluated. Letting α

2
→ 0 involves inverting a singular matrix. To

understand what is going on, let us use,

A =GΛG
T
= g1λ1g

T

1 + 0 =
1
√
2

[
1

1

]
2
1
√
2

[
1

1

]T
(5.54)

Hence,

AAT
=GΛ2GT

Note that the full G,Λ are being used. Note also that I =GGT

(
AAT

+α2I
)
=
(
GΛ2GT

+G
(
α2

)
GT

)
=G

(
Λ2

+ α2I
)
GT .

By inspection, the inverse of this last matrix is necessarily,

(
AAT

+I/α2
)
−1

=G
(
Λ2 + α2I

)
−1
GT .

But, (
Λ2 + α2I

)
−1

= diag
{
1/
(
λ2i + α2

)}
Then

x̃ = AT
(
AAT+α2I

)
−1

y =GΛGT
(
Gdiag

{
1/
(
λ2i + α2

)}
GT

)
y

= Gdiag
{
λi/

(
λ2
i
+ α2

)}
GTy

=

K∑
i=1

gi
λi

λ2
i
+ α2

gT
i
y =

1
√
2

[
1

1

]
2

2 + α2
1
√
2

[
1

1

]T [
1

3

]
+ 0

=
4

2 + α2

[
1

1

]

The solution always exists as long as α2 > 0. It is a tapered-down form of the solution with

α2 = 0 if all λi �= 0.

n =

[
1

3

]
− 4

2 + α2
A

[
1

1

]
=

[
1

3

]
− 4

2 + α2

[
2.0

2.0

]

so that α2 →∞, the solution x̃ is minimized, becoming 0 and the residual is equal to y.

5.3. Arbitrary Systems.



74 2. BASIC MACHINERY

5.3.1. The Singular Vector Expansion and Singular Value Decomposition. It may be objected

that this entire development is of little use, because most problems, including those outlined in

Chapter 1, produced E matrices which could not be guaranteed to have complete orthonormal

sets of eigenvectors. Indeed, the problems considered produce matrices which are usually non-

square, and for which the eigenvector problem is not even defined.

For arbitrary square matrices, the question of when a complete orthonormal set of eigen-

vectors exists is not difficult to answer, but becomes somewhat elaborate.30 When a square

matrix of dimension N is not symmetric, one must consider cases in which there are some dis-

tinct eigenvalues and where some are repeated, and the general approach requires the so-called

Jordan form. But we will next find a way to avoid these intricacies, and yet deal with sets of

simultaneous equations of arbitrary dimensions, not just square ones. Although the mathemat-

ics are necessarily somewhat more complicated than is employed in solving the just-determined

simultaneous linear equations using a complete orthonormal eigenvector set, this latter problem

provides full analogues to all of the issues in the more general case, and the reader will probably

find it helpful to refer back to this situation for insight.

Consider the possibility, suggested by the eigenvector method, of expanding the solution x in

a set of orthonormal vectors. Eq. (4.2) involves one vector, x, of dimension N , and two vectors,

y, n, of dimension M . We would like to use spanning orthonormal vectors, but cannot expect,

with two different vector dimensions involved, to use just one set: x can be expanded exactly

in N , N-dimensional orthonormal vectors; and similarly, y and n can be exactly represented

in M , M -dimensional orthonormal vectors. There are an infinite number of ways to select two

such sets. But using the structure of E, a particularly useful pair can be identified.

The simple development leading to the discussion of the solutions in the square, symmetric

case resulted from the theorem about the complete nature of the eigenvectors of such a matrix.

So let us construct a new matrix,

B =

{
0 ET

E 0

}
, (5.55)

which by definition is square (dimension M +N by M +N) and symmetric. Thus, B satisfies

the theorem just alluded to, and the eigenvalue problem,

Bqi = λiqi (5.56)

30Brogan (1985) has a succinct discussion.
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will give rise to M +N orthonormal eigenvectors qi (an orthonormal spanning set) whether or

not the λi are distinct or non-zero. Writing out ((5.56)),

{
0 ET

E 0

}



q1i

·

qNi

qN+1,i

·

qN+M,i



= λi




q1i

·

qNi

qN+1,i

·

qN+M,i



, (5.57)

where qpi is the pth element of qi. Taking note of the zero matrices, (5.57) may be rewritten,

ET



qN+1,i

·

qN+M,i


 = λi



q1i

·

qNi


 , (5.58)

E



q1i

·

qNi


 = λi



qN+1,i

·

qN+M,i


 . (5.59)

Define,

ui =



qN+1,i

·

qN+M,i


 , vi =



q1i

·

qNi


 or, qi =

[
vi

ui

]
, (5.60)

that is, defining the first N elements of qi to be called vi and the last M to be called ui.

Then (5.58)—(5.59) are

Evi = λiui (5.61)

ETui = λivi . (5.62)

If (5.61) is left multiplied by ET , and using (5.62), one has,

ETEvi = λ2ivi . (5.63)

Similarly, left multiplying (5.62) by E and using (5.61) produces,

EETui = λ2iui . (5.64)

These last two equations show that the ui, vi each separately satisfy two independent eigen-

vector/eigenvalue problems of the square symmetric matrices EET , ETE. If one of M , N is

much smaller than the other, only the smaller one must be solved for either of ui, vi; the other

set is immediately calculated from (5.61) or (5.62). Evidently, in the limiting case, of either a

single equation or a single unknown, the eigenvalue/eigenvector problem is completely trivial,

involving a pure scalar, no matter how large is the other dimension.
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The ui, vi are called “singular vectors,” and the λi are the “singular values.” By conven-

tion, the λi are ordered in decreasing numerical value. Also by convention, they are all non-

negative (taking the negative values of λi produces singular vectors differing only by a sign from

those corresponding to the positive roots, and thus they are not independent vectors). Equa-

tions (5.61)—(5.62) provide a relationship between each ui and each vi. But because in general,

M �= N , there will be more of one set than another. The only way equations (5.61)—(5.62) can

be consistent is if λi = 0, i > min(M,N) (where min(M,N) is read as “the minimum of M and

N”). Suppose M < N . Then (5.64) is solved for ui, 1 ≤ i ≤M , and (5.61) is used to find the

corresponding vi. There are N −M vi not generated this way, but which can be found using

the Gram-Schmidt method described on page 20.

Let there be K non-zero λi; then

Evi �= 0 , 1 ≤ i ≤ K . (5.65)

These vi are known as the “range vectors of E” or the “solution range vectors.” For the remaining

N −K vectors vi,

Evi = 0 , K + 1 ≤ i ≤ N , (5.66)

known as the “nullspace vectors of E” or the “nullspace of the solution.” If K < M , there will

be K of the ui such that,

ETui �= 0 , 1 ≤ i ≤K , (5.67)

which are the “range vectors of ET ” and M −K of the ui such that

ETui = 0 , K + 1 ≤ i ≤M , (5.68)

the “nullspace vectors of ET ” or the “data, or observation, nullspace vectors.” The “nullspace”

of E is spanned by its nullspace vectors, the “range” of E is spanned by the range vectors, etc.,

in the sense, for example, that an arbitrary vector lying in the range is perfectly described by

a sum of the range vectors. We now have two complete orthonormal sets in the two different

spaces. Note that (5.66) implies that

uTi E = 0, K + 1 ≤ i ≤ N, (5.69)

expressing relationships among the columns of E in the same way that vi expresses relations

among its rows.

Because the ui, vi are complete in their corresponding spaces, we can expand x, y, n without

error:

x =
N∑

i=1

αivi , y =

M∑

j=1

βiui , n =

M∑

i=1

γiui , (5.70)
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where y has been measured, so that we know βj = uTj y. To find x, we need αi, and to find n,

we need the γi. Substitute (5.70) into the equations (4.2), and using (5.61)—(5.62),

N∑

i=1

αiEvi +
M∑

i=1

γiui =
K∑

i=1

αiλiui +
M∑

i=1

γiui (5.71)

=
M∑

i=1

(uTi y)ui .

Notice the differing upper limits on the summations. Because of the orthonormality of the

singular vectors, (5.71) can be solved as,

αiλi + γi = uTi y , i = 1 to M , (5.72)

αi = (uTi y− γi)/λi , λi �= 0 , 1 ≤ i ≤ K . (5.73)

In these equations, if λi �= 0, nothing prevents setting γi = 0, that is,

uTi n = 0 , 1 ≤ i ≤ K (5.74)

should we wish, and which will have the effect of making the noise norm as small as possible

(there is obviously a degree of arbitrariness in this choice, and later we will choose γi differently).

Then (5.73) produces,

αi =
uT
i
y

λi
, 1 ≤ i ≤ K . (5.75)

But, because λi = 0, i > K, the only solution to (5.72) for these values of i is γi = uT
i
y, and αi

is indeterminate. These γi are non-zero, except in the event (unlikely with real data) that,

uT
i
y = 0 , K + 1 ≤ i ≤ N . (5.76)

This last equation is a solvability condition– in direct analogy to (5.20).

The solution obtained in this manner now has the following form:

x̃ =
K∑

i=1

uT
i
y

λi
vi +

N∑

i=K+1

αivi (5.77)

ỹ = Ex̃ =
K∑

i=1

(uTi y)ui (5.78)

ñ =
M∑

i=K+1

(uT
i
y)ui . (5.79)
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Attention is called to the differing summation limits.

The coefficients of the last N − K of the vi in Eq. (5.77), the solution nullspace vectors,

are arbitrary, representing structures in the solution about which the equations provide no

information. A nullspace is always present unless K = N . The solution residuals are directly

proportional to the nullspace vectors of ET and will vanish only if K = M , or the solvability

conditions are met.

Just as in the simpler square symmetric case, no choice of the coefficients of the solution

nullspace vectors can have any effect on the size of the size of the residuals. If we choose once

again to exercise Occam’s razor, and regard the simplest solution as best, then setting the

nullspace coefficients to zero,

x̃ =

K∑

i=1

uT
i
y

λi
vi (5.80)

along with (5.79), this is the “particular-SVD solution.” It minimizes the residuals, and simul-

taneously produces the corresponding x̃ with the smallest norm. If 〈n〉 = 0, the bias of (5.80)

is evidently,

〈x̃− x〉 = −
N∑

i=K+1

αivi . (5.81)

The solution uncertainty is

P =

K∑

i=1

K∑

j=1

vi
uTi Rnnuj

λiλj
vTi +

N∑

i=K+1

N∑

j=K+1

vi〈αiαj〉v
T
j (5.82)

= Cxx + .
N∑

i=K+1

N∑

j=K+1

vi〈αiαj〉v
T
j

If the noise is white with variance σ2n or, if a row-scaling matrixW−T/2 has been applied to

make it so, then (5.82) becomes

P =

K∑

i=1

σ2n
λ2i
viv

T
i +

N∑

i=K+1

〈α2i 〉viv
T
i (5.83)

where it was also assumed that 〈αiαj〉 = 〈α2i 〉δij in the nullspace. The influence of very small

singular values on the uncertainty is very clear: In the solution (5.77) or (5.80) there are error

terms uTi n/λi that are greatly magnified by small or nearly vanishing singular values, introducing

large terms proportional to σ2n/λ
2
i into (5.83).

The structures dominating x̃ are clearly a competition between the magnitudes of uTi y and

λi, given by the ratio, uTi y/λi. Large λi can suppress comparatively large projections onto ui,

and similarly, small, but non-zero λi may greatly amplify comparatively modest projections. In
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practice,31 one is well-advised to study the behavior of both uT
i
y, uT

i
y/λi as a function of i to

understand the nature of the solution.

The decision to omit contributions to the residuals by the range vectors of ET , as we did in

Eqs. (5.74), (5.79) needs to be examined. Should we make some other choice, the x̃ norm would

decrease, but the residual norm would increase. Determining the desirability of such a trade-off

requires understanding of the noise structure–in particular, (5.74) imposes rigid structures, and

hence covariances, on the residuals.

5.4. The Singular Value Decomposition. The singular vectors and values have been

used to provide a convenient pair of orthonormal spanning sets to solve an arbitrary set of

simultaneous equations. The vectors and values have another use however, in providing a de-

composition of E.

Define Λ as the M ×N matrix whose diagonal elements are the λi, in order of descending

values in the same order, U as the M ×M matrix whose columns are the ui, V as the N ×N

matrix whose columns are the vi and whose other elements are 0. As an example, suppose

M = 3, N = 4; then

Λ =




λi 0 0 0

0 λ2 0 0

0 0 λ3 0




.

Alternatively, if M = 4, N = 3 


λ1 0 0

0 λ2 0

0 0 λ3

0 0 0




,

therefore extending the definition of a diagonal matrix to non-square ones.

Precisely as with matrix G considered above, column orthonormality of U, V implies that

these matrices are orthogonal,

UU
T
= IM , U

T
U = IM , (5.84)

VV
T
= IN , V

T
V = IN . (5.85)

(It follows that U−1 = U
T , etc.) As with G above, should one or more columns of U, V be

deleted, the matrices will become semi-orthogonal.

The relations (5.61) to (5.64) can be written compactly as:

31Lawson and Hanson (1974).
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EV = UΛ , ETU =VΛT
, (5.86)

ETEV = VΛTΛ , EETU =UΛΛT . (5.87)

Left multiply the first of (5.86) by UT and right multiply it by VT , and invoking Eq. (5.85),

UTEVVT
=UTUΛVVT

= Λ . (5.88)

So U, V diagonalize E (with “diagonal” having the extended meaning for a rectangular matrix

as defined above.)

Right multiplying the first of (5.86) by VT ,

E =UΛVT . (5.89)

This last equation represents a product, called the “singular value decomposition” (SVD), of an

arbitrary matrix, of two orthogonal matrices, U, V, and a usually non-square diagonal matrix,

Λ.

There is one further step to take. Notice that for a rectangular Λ, as in the examples above,

one or more rows or columns must be all zero, depending upon the shape of the matrix. If any

of the λi = 0, i < min(M,N), the corresponding rows or columns will be all zeros. Let K be the

number of non-vanishing singular values (the “rank” of E). By inspection (multiplying it out),

one finds that the last N −K columns of V and the last M −K columns of U are multiplied

by zeros only. If these columns are dropped entirely from U, V so that U becomes M ×K and

V becomes N ×K, and reducing Λ to a K ×K square matrix, then the representation (5.89)

remains exact, in the form,

E =UKΛKV
T

K , (5.90)

with the subscript indicating the number of columns, where UK , VK are then only semi-

orthogonal, and ΛK is now square. Eq. (5.90) should be compared to (5.37)).32

The SVD solution can be obtained by direct matrix manipulation, rather than vector by

vector. Consider once again finding the solution to the simultaneous equations ((4.2)), but first

write E in its reduced SVD,

UKΛKV
T

K
x+ n = y . (5.91)

32The singular value decomposition for arbitrary non-square matrices is apparently due to the oceanographer

Carl Eckart (Eckart & Young, 1939; see the discussion in Haykin, 1986; Klema & Laub, 1980; or Stewart, 1993).

A particularly lucid account is given by Lanczos (1961) who however, fails to give the decomposition a name.

Other references are Noble and Daniel (1977), Strang (1986) and many recent books on applied linear algebra.

The crucial role it plays in inverse methods appears to have been first noticed by Wiggins (1972).
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Left multiplying by UT

K
and invoking the semi-orthogonality of UK produces

ΛKV
T

K
x+UT

K
n =UT

K
y . (5.92)

The inverse of ΛK (square with all non-zero diagonal elements) is easily computed and,

VT

Kx+Λ
−1

K
UT

Kn = Λ
−1

K
UT

Ky . (5.93)

But VT

K
x is the dot product of the first K of the vi with the unknown x. Eq. (5.93) thus

represent statements about the relationship between dot products of the unknown vector, x,

with a set of orthonormal vectors, and therefore must represent the expansion coefficients of the

solution in those vectors. If we set

UT

Kn = 0 , (5.94)

then

VT

K
x = Λ−1

K
UT

K
y , (5.95)

and hence

x̃ =VKΛ
−1

K
UT

Ky , (5.96)

identical to the solution (5.80), which the reader is urged to confirm by writing it out explicitly.

As with the square symmetric case, the contribution of any structure in y proportional to ui

depends upon the ratio of the projection, uT
i
y to λi. Substituting solution (5.96) into (5.91),

UKΛKV
T

K
VKΛ

−1

K
UT

K
y+ n =UKU

T

K
y+ n = y

or

ñ = (I−UKU
T

K
)y . (5.97)

Let the full U and V matrices be rewritten as

U = {UK Qu} , V = {VK Qv} (5.98)

where Qu, Qv are the matrices whose columns are the corresponding nullspace vectors. Then,

Ex̃+ ñ = y, Ex̃ = ỹ (5.99)

ỹ =UKU
T

K
y, ñ = QuQ

T

u
y =

N∑

j=K+1

(
uTj y

)
ui (5.100)

which is identical to (5.78). Note,

QuQ
T
u = (I−UKU

T
K), QvQ

T
v = (I−VKV

T
K) (5.101)

and which are idempotent. (VKV
T
K is matrix H of Eq. (4.11)). The two vector sets Qu,Qv

span the data and solution nullspaces respectively. The general solution is,

x̃ =VKΛ
−1

K UKy+Qvα, (5.102)
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where α is now restricted to being the vector of coefficients of the nullspace vectors.

The solution uncertainty (5.82) is,

P =VΛ−1
K
UT

K
〈nnT 〉UKΛ

−1

K
VT

K

+Qv 〈αα
T 〉QT

G = Cxx +Qv 〈αα
T 〉QT

v

(5.103)

or,

P = σ
2

nVKΛ
−2

K
VT
K +Qv 〈αα

T 〉QT
v (5.104)

for white noise.

Least-squares solution of simultaneous solutions by SVD has several important advantages.

Among other features, we can write down within one algebraic formulation the solution to sys-

tems of equations which can be under-, over-, or just-determined. Unlike the eigenvalue/eigenvector

solution for the square system, the singular values (eigenvalues) are always non-negative and

real, and the singular vectors (eigenvectors) can always be made a complete orthonormal set.

Neither of these statements is true for the conventional eigenvector problem. Furthermore, the

relations (5.61), (5.62) or (5.86, 5.87) provide a specific, quantitative statement of the connection

between a set of orthonormal structures in the data, and the corresponding presence of ortho-

normal structures in the solution. These relations provide a very powerful diagnostic method

for understanding precisely why the solution takes on the form it does.

5.5. Some Simple Examples. Algebraic Equations.

E������ 4. The simplest underdetermined system is 1× 2. Suppose x1 − 2x2 = 3 so that

E = {1 −2}, U = {1), V =

{
.447 −.894

−.894 −.447

}
, λ1 = 2.23

where the second column of V is in the nullspace of E. The general solution is x̃ = [.6,−1.2]T +

α2v2. Because K = 1 is the only possible choice here, it is readily confirmed that this solution

satisfies the equation exactly, and a data nullspace is not possible.

E������ 5. The most elementary overdetermined problem is 2× 1. Suppose

x1 = 1

x1 = 3 .

The appearance of two such equations is possible if there is noise in the observations, and they

should be written as,

x1 + n1 = 1

x1 + n2 = 3 .
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E = {1, 1}T , ETE represents the eigenvalue problem of the smaller dimension, again 1×1 and,

U =

{
.707 −.707

.707 .707

}
, V = {1} , λ1 =

√
2

where the second column of U lies in the data nullspace, there being no solution nullspace. The

general solution is x = x1 = 2, which if substituted back into the original equations produces,

Ex̃ =

[
2

2

]
= ỹ ,

and hence there are residuals ñ = ỹ − y = [1,−1]T , and which are necessarily proportional to

u2 and thus orthogonal to ỹ. No other solution can produce a smaller l2 norm residual than

this one. The SVD produced a solution which compromised the contradiction between the two

original equations.

E������ 6. The possibility of K <M , K < N simultaneously is also easily seen. Consider

the system: 


1 −2 1

3 2 1

4 0 2



x =



1

−1

2


 ,

which appears superficially just-determined. But the singular values are λ1 = 5.67, λ2 = 2.80,

λ3 = 0. The vanishing of the third singular value means that the row and column vectors are not

linearly independent sets (not spanning sets)–indeed the third row vector one is just the sum of

the first two (but the third element of y is not the sum of the first two–making the equations

inconsistent). Thus there are both solution and data nullspaces, which the reader might wish to

find. With a vanishing singular value, E can be written exactly using only two columns of U, V

and the linear dependence of the equations is given explicitly as uT
3
E = 0.

E������ 7. Consider now the underdetermined system,

x1 + x2 − 2x3 = 1

x1 + x2 − 2x3 = 2 ,

which has no conventional solution at all, being a contradiction, and is thus simultaneously

underdetermined and incompatible. If one of the coefficients is modified by a very small quantity,

ε, to produce,

x1 + x2 − (2 + ε)x3 = 1 ,

x1 + x2 − 2x3 = 2 ,

(5.105)

not only is there a solution, there are an infinite number of them, which the reader should confirm

by computing the particular SVD solution and the nullspace. Thus the slightest perturbation in
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the coefficients has made the system jump from having no solution to having an infinite number,

an obviously disconcerting situation. The label for such a system is “ill-conditioned.” How would

we know the system is ill-conditioned? There are several indicators. First, the ratio of the two

singular values is determined by ε. In (5.105), if we take ε = 10
−10, the two singular values are

λ1 = 3.46, λ2 = 4.1 × 10
−11, an immediate warning that the two equations are nearly linearly

dependent. (In a mathematical problem the non-vanishing of the second singular value is enough

to assure a solution. As will be discussed below, it is the inevitable slight errors in y, which

suggest sufficiently small singular values should be treated as though they were actually zero.)

E������ 8. A similar problem exists with the system,

x1 + x2 − 2x3 = 1

x1 + x2 − 2x3 = 1 ,

which has an infinite number of solutions. But the change to

x1 + x2 − 2x3 = 1 ,

x1 + x2 − 2x3 = 1 + ε

for arbitrarily small ε produces a system with no solutions in the conventional mathematical

sense, although the SVD will handle the system in a sensible way, which the reader should

confirm.

Problems like these are simple examples of the practical issues that arise once one recognizes

that unlike textbook problems, observational ones always contain inaccuracies; any discussion

of how to handle data in the presence of mathematical relations must account for these inaccu-

racies as intrinsic–not as something to be regarded as an afterthought. But the SVD itself is

sufficiently powerful that it always contains the information to warn of ill-conditioning, and by

determination of K to cope with it–producing useful solutions.

E������ 9. Tomographic Problem from Chapter 1. A square box, made up of 3×3 unit
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F����� 10. Tomographic problem with 9-unknowns and only 6-integral constraints.

dimension boxes. All rays in are in the rx or ry directions (Fig. 10) . So the equations are




1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1







x1

x2

.

.

.

.

.

.

x9




=




0

1

0

0

1

0




that is, Ex = y. The SVD produces (note, the columns here are the reverse of the usual

convention–an anomaly of software output),

U
(r)
=:




−0.408 0.0 0.0 0.816 0.0 0.408

−0.408 0.653 −1. 93× 10
−2

−0.408 −0.271 0.408

−0.408 −0.653 1. 93× 10
−2

−0.408 0.271 0.408

0.408 0.204 0.653 1. 25× 10
−19

0.446 0.408

0.408 0.104 −0.751 −2. 37× 10
−20

0.304 0.408

0.408 −0.308 9. 83× 10
−2

−6. 44× 10
−20

−0.750 0.408



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,

Λ
(r)

=




1. 96× 10
−19

0 0 0 0 0 0 0 0

0 1.73 0 0 0 0 0 0 0

0 0 1.73 0 0 0 0 0 0

0 0 0 1.73 0 0 0 0 0

0 0 0 0 1.73 0 0 0 0

0 0 0 0 0 2.45 0 0 0




,

V
(r)

=


0.53 0.118 0.377 0.471 0.258 0.333 −0.198 −0.311

−0.613 0.495 0.366 −0.236 0.101 0.333 −0.156 −0.207 4. 2

8. 26× 10
−2

−0.259 0.388 −0.236 0.414 0.333 0.354 0.519 −

−0.263 5.99× 10
−2

−0.433 0.471 0.175 0.333 −0.341 0.507 4. 6

0.269 0.437 −0.445 −0.236 1. 89× 10
−2

0.333 0.483 −8. 29× 10
−3

−5. 84× 10
−3

−0.317 −0.422 −0.236 0.332 0.333 −0.142 −0.499 −

−0.267 −0.178 5. 67× 10
−2

0.471 −0.433 0.333 0.539 −0.195 −

0.344 0.199 4. 56× 10
−2

−0.236 −0.589 0.333 −0.327 0.216 −

−7. 68× 10
−2

−0.555 6. 79× 10
−2

−0.236 −0.277 0.333 −0.212 −2. 03× 10
−2

so rank K = 5. Notice that there are four repeated λi, and the lack of simple symmetries in the

corresponding vi is a consequence of a random assignment in the eigenvectors.

u1 just averages the right hand-side values, and the corresponding solution is completely

uniform. The average of y is usually the most robust piece of information.

The “right” answer is x = [0, 0, 0, 0, 1, 0, 0, 0, 0]T . The rank 5 answer by SVD is x̃ =[-0.1111,

0.2222, -0.1111, 0.2222, 0.5556, 0.2222, -0.1111, 0.2222, -0.1111]T which exactly satisfies the

same equations. x̃T x̃ = 0.556 < xTx. Written out in two dimensions, this solution is,

ry ↑

rx→

−.11 .22 −.11

.22 .56 .22

−.11 .22 −.11


 . (5.106)

This is the minimum norm solution. The sixth vi, which actually belongs in the null space is,




.53 −.61 .01

−.26 .27 0

−.27 .34 −.01



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and one of the remaining null-space vectors is,



−.20 −.16 .35

−.34 .48 −.14

.54 −.33 −.21


 (5.107)

both of which, along with all the other null space vectors, are readily confirmed to produce a zero

sum along any of the ray paths. u6 is in the data nullspace. uT
6
E = 0 shows that,

a (y1 + y2 + y3)− a (y4 + y5 + y6) = 0,

if there is to be a solution without a residual, or alternatively, that no solution would permit

this sum to be non-zero. This requirement is physically sensible, as it says that the vertical and

horizontal rays cover the same territory and must therefore produce the same sum travel times.

It explains why the rank is 5, and not 6.

There is no noise. The correct solution and the SVD solution differ by the null space vectors.

One can easily confirm that x̃ is row (or column) 5 of V5V T

5
. Least-squares allows one to

minimize (or maximize) anything one pleases. Suppose for some reason, we want the solution

that minimizes the differences between the value in box 5 and its neighbors, perhaps as a way of

finding a "smooth" solution. Let

W =




−1 0 0 0 1 0 0 0 0

0 −1 0 0 1 0 0 0 0

0 0 −1 0 1 0 0 0 0

0 0 0 −1 1 0 0 0 0

0 0 0 0 1 −1 0 0 0

0 0 0 0 1 0 −1 0 0

0 0 0 0 1 0 0 −1 0

0 0 0 0 1 0 0 0 −1

0 0 0 0 1 0 0 0 0




(5.108)

The last row is included to render W a full-rank matrix. Then

Wx =




x5 − x1

x5 − x2

.

x5 − x9

x5




(5.109)

and we can minimize

J = x
TWTWx (5.110)
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subject to Ex = y by finding the stationary value of

J
′
= J − 2µ

T (y−Ex) (5.111)

The normal equations are then

WTWx = ETµ (5.112)

Ex = y (5.113)

and

x̃ =
(
WTW

)
−1

ET
µ

and then,

E
(
WTW

)
−1

ETµ = y

The rank of E
(
WTW

)
−1
ET is K = 5 <M = 6, and so we need a generalized inverse,

µ̃ =

(
E
(
WTW

)
−1

ET
)+
y =

5∑
j=1

gi
gTi y

λi

The null space of E
(
WTW

)
−1
ET is readily confirmed to be the vector,

[
−0.408 −0.408 −0.408 0.408 0.408 0.408

]T
, (5.114)

which produces the solvability condition. Here, because E
(
W

T
W

)
−1
E
T is symmetric, the SVD

reduces to the symmetric decomposition.

Finally, the mapped x̃ is 

−.20 .41 −.20

.41 .18 .41

−.20 .41 −.21




and one cannot further decrease the sum-squared difference. One can confirm that this solution

satisfies the equations. Evidently, this is a minimum, not a maximum (it suffices to show that

the eigenvalues of WT
W are all positive). The addition of any of the nullspace vectors of

E to x̃ will necessarily increase the value of J and hence there is no bounded maximum. In

real tomographic problems, the arc lengths making up matrix E are three dimensional curves

and depend upon the background index of refraction in the medium, and which is usually itself

determined from observations.33 There are thus errors in E itself, rendering the problem one of

non-linear estimation. Approaches to solving such problems are described in Chapter 3.

33Munk et al. (1996).
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E������ 10. Consider, the flow into a four-sided box (Chapter 1, Fig. 5) with missing

integration constant as described there. Total mass conservation and conservation of dye, Ci.

Let the relative areas of each interface be 1, 2, 3, 1 units respectively. Let velocities on each side

be 1, 1/2,−2/3,0 respectively, with the minus sign indicating a flow out. That mass is conserved

is confirmed by

1 (1) + 2

(
1

2

)
+ 3

(
−2

3

)
+ 1 (0) = 0

Now we suppose that the total velocity is not in fact known, but an integration constant is missing

on each interface, so that

1

(
1

2
+ b1

)
+ 2 (1 + b2) + 3

(
1

3
+ b3

)
+ 1 (2 + b4) = 0

where the bi = [1/2,−1/2,−1,−2] respectively, but are unknown. Then the above equation

becomes

b1 + 2b2 + 3b3 + b4 = −5.5

or one equation in 4 unknowns. Evidently, one linear combination of the unknown bi can be

determined. We would like more information. Suppose that a tracer of concentration, Ci =

[2, 1, 3/2, 0] is measured at each side, and is believed conserved. The governing equation is

1

(
1

2
+ b1

)
2 + 2 (1 + b2) 1 + 3

(
1

3
+ b3

)
3

2
+ 1 (2 + b4) 0 = 0

or

2b1 + 2b2 + 4.5b3 + 0b4 = −4.5

giving a system of 2 equations in four unknowns

{
1 2 3 1

2 2 4.5 0

}
b1

b2

b3

b4


 =

[
−5.5

−4.5

]
.

The SVD of the coefficient matrix, E, is :

E =

{
−0.582 −0.813

0.813 0.582

}{
6.50 0 0 0

0 1.02 0 0

}



−.801 0.179 −0.454 0.347

0.009 0.832 0.429 0.340

−0.116 0.479 −0.243 −0.835

0.581 0.215 −0.742 0.259



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F����� 11. Upper left is numerical solution to Eq. (5.116) by direct solution

of the simultaneous equations. Upper right panel displays the corresponding

singular values. All are finite (there is no nullspace). Lower left panel idsplays u1

(solid curve) and u51 (dashed curve). Lower right panel shows the corresponding

v1,v51. The most robust information is the absence of small scales in the solution.

5.6. Simple Examples. Differential and Partial Differential Equations.

E����	� 11. As an example of the use of this machinery with differential equations, con-

sider the simple equation,
d2x (r)

dr2
− k2x (r) = 0, (5.115a)

subject initial and/or boundary condition. Using a simple uniform discretization, we have

x ((m+ 1)∆r)−
(
2 + k (∆r)2

)
x (m∆r) + x ((m− 1)∆r) = 0, (5.116)

at all interior points. Taking the specific case, x (∆r) = 10, x (51∆r) = 1,∆r = Dr = 0.1, the

numerical solution is depicted in Fig. 11 from the direct (conventional) solution to Ax = y.

The first two rows of A were used to impose the boundary conditions on x (∆r) , x (51∆r) . The

singular values of A are also plotted in Fig. ??. The range is about two orders of magnitude

and there is no reason to suspect numerical difficulties. The first and last singular vectors

u1,51, v1,51, are plotted too. One infers (by plotting additional such vectors), that the large
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singular values correspond to singular vectors showing a great deal of small-scale structure, and

the smallest singular values correspond to the least structured (largest spatial scales) in both the

solution and in the specific corresponding weighted averages of the equations. This result may

be counterintuitive. But note that in this problem, all elements of y vanish except the first two,

which are being used to set the boundary conditions. We know from the analytical solution that

the true solution is large-scale; most of the information contained in the differential equation

(5.115a) or its numerical counterpart, (5.116) is an assertion that all small scales are absent;

this information is the most robust and corresponds to the largest singular values. The remaining

information, on the exact nature of the largest scales, is contained in only two of the 51 equations,

is extremely important, but less robust than that concerning the absence of small scales. (Less

“robust” is being used in the sense that small changes in the boundary conditions will lead to

relatively large changes in the largescale structures in the solution because of the division by

relatively small λi.).

E������� 1. Describe and discuss the above solution when k2 < 0.

E������� 2. By the same methods used in this last example, study the behavior of the

solution to the modified Bessel equation

r2
d2x

dr2
+ r

dx

dr
− r2x = 0, a ≤ r ≤ b.

E������ 12. Consider now the classical Neumann problem described in Chapter 1. The

problem is to be solved on a 10×10 grid with A3φ = d3. The singular values of A3 are plotted in

figure 12a; the largest one is λ1 = 7.8, and the smallest non-zero one is λ99 = 0.08. As expected,

λ100 = 0. The singular vector v100 corresponding to the zero singular value is shown in fig. 3—

9b, and as expected is a constant; u100 shown in fig. 12c is not a constant, it has considerable

structure–which provides the solvability condition for the Neumann problem, uTy = 0. The

physical origin of the solvability condition is readily understood: Neumann boundary conditions

prescribe boundary flux rates, and the sum of the interior source strengths plus the boundary

flux rates must sum to zero, otherwise no steady state is possible. If the boundary conditions are

homogeneous, then no flow takes place through the boundary, and the interior sources must sum

to zero. In particular, the value of u100 on the interior grid points is a constant. The Neumann

problem is thus a forward problem requiring one to deal with both a solution nullspace and a

solvability condition.

E������ 13. As another example of solution by the SVD, let there be unit positive flux into

the box of the previous example on the left boundary, unit positive flux out on the right and no

interior sources. The resulting particular SVD solution is shown in fig. 12. No residuals are left

because the system was constructed as fully consistent, and there is an arbitrary constant which
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F���	� 12. (a) Singular values of the coefficient matrix A of the numerical

Neumann problem. All λi are non-zero except the last one. (b) u100, the

nullspace vector of ET defining the solvability or consistency condition for a

solution through uT
100
y =0 meaning there is no net influx of material through

the boundaries or from an interior source. (c) solution nullspace vector v100–a

constant which cannot be determined. (d) Particular SVD solution with equal

and opposite fluxes across the two vertical walls, zero flux across the horizontal

ones, and no interior source. This solution satisfies the solvability condition.

can be added (v100). (The reader may wish to experiment with incompatible specifications for this

problem.) This is an example of a forward problem solved using an inverse method (the SVD).

Related inverse problems are also easily formulated in simply by interchanging conventional

knowns and unknowns. One can also do a number of interesting experiments with the SVD.

For example, if the equations imposing the boundary values are dropped, the resulting range

vectors, vi, describe the particular solution of the partial differential equation, and the nullspace

vectors describe the homogeneous one. In this way, one can “pick apart” the structure of the

solution. A more interesting possibility is to withhold knowledge of the boundary conditions and

ask for their determination, given the interior solution.

5.7. Relation of Least-Squares to the SVD. What is the relationship of the SVD

solution to the least-squares solutions? To some extent, the answer is already obvious from the
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orthonormality of the two sets of singular vectors: they are the least-squares solution, where it

exists. Begin by first asking when the simple least-squares solution will exist? Consider first the

formally overdetermined problem, M > N . The solution (4.9) exists if and only if the matrix

inverse exists. Substituting the SVD for E, one finds

(ET
E)−1 = (VNΛ

T

NU
T

NUNΛNV
T

N )
−1 = (VNΛ

2

NV
T

N )
−1

, (5.117)

where the semi-orthogonality of UN has been used. Suppose that K = N , its maximum possible

value; then Λ2

N
is N ×N with all non-zero diagonal elements λ2

i
. The inverse in (5.117) may

be found by inspection, using VNV
T

N
= IN ,

(ETE)−1 =VNΛ
−2

N
VT

N . (5.118)

Then the solution (4.9) becomes

x̃ = (VNΛ
−2

N
VT

N )VNΛNU
T

N =VNΛ
−1

N
UT

Ny , (5.119)

which is identical to the SVD solution (5.96). IfK < N , Λ2

N
has at least one zero on the diagonal,

no matrix inverse exists and the conventional least-squares solution is not defined. The condition

for its existence is thus K = N , the so-called “full rank overdetermined” case. The condition

K < N is called “rank deficient.” The dependence of the least-squares solution magnitude upon

the possible presence of very small, but non-vanishing, singular values is obvious.

That the full-rank overdetermined case is unbiassed, as previously asserted, can now be seen

from

〈x̃− x〉 =
N∑

i=1

(uT
i
〈y〉)

λi
vi − x =

N∑

i=1

uT
i
y0

λi
vi − x = 0 ,

if 〈n〉 = 0, assuming that the correct E (model) is being used.

Now consider another least-squares problem, the conventional purely underdetermined least-

squares problem, whose solution is (4.75). When does that exist? Substituting the SVD,

x̃ =VMΛMU
T

M (UMΛMV
T

MVMΛ
T

MU
T

M )−1y

=VMΛMU
T

M
(UMΛ

2

M
UT

M
)−1y .

(5.120)

Again, the matrix inverse exists if and only if Λ2

M
has all non-zero diagonal elements, which

occurs only when K = M . Under that specific condition, the inverse is obtained by inspection

and,

x̃ =VMΛMU
T

M (UMΛ
−2

M
UT

M )y =VMΛ
−1

M
UT

My (5.121)

ñ = 0 , (5.122)

which is once again the particular-SVD solution (5.96)–with the nullspace coefficients set to

zero. This situation is usually referred to as the “full-rank underdetermined case.” Again, the

possible influence of small singular values is apparent and an arbitrary sum of nullspace vectors



94 2. BASIC MACHINERY

can be added to (5.121). The bias of (5.120) is given by the nullspace elements, and its formal

uncertainty is only from the nullspace contribution, because with ñ = 0, the formal noise

variance vanishes, and the particular-SVD solution covariance Cxx would be zero.

The particular-SVD solution thus coincides with the two simplest forms of least-squares

solution, and generalizes both of them to the case where the matrix inverses do not exist. All

of the structure imposed by the SVD, in particular the restriction on the residuals in (5.74), is

present in the least-squares solution. If the system is not of full rank, then the simple least-

squares solutions do not exist. The SVD generalizes these results by determining what it can:

the elements of the solution lying in the range of E, and an explicit structure for the resulting

nullspace vectors.

The SVD provides a lot of flexibility. For example, it permits one to modify the simplest

underdetermined solution (4.75) to remove its greatest shortcoming, the necessity that ñ = 0.

One simply truncates the solution (5.80) at K = K ′ <M , thus assigning all vectors vi, K
′+1 ≤

i ≤ K, to an “effective nullspace” (or substitutes K ′ for K everywhere). The resulting residual

is then

ñ =
M∑

i=K′+1

(uT
i
y)ui , (5.123)

with an uncertainty for x̃ given by 5.103, but with the upper limit being K ′ rather than K. Such

truncation has the effect of reducing the solution covariance contribution to the uncertainty, but

increasing the contribution owing to the nullspace (and increasing the potential bias). In the

presence of singular values small compared to σn, the resulting overall reduction in uncertainty

may be very great–at the expense of a possibly very small bias. This consideration is extremely

important–it says that despite the mathematical condition λi �= 0, some structures in the

solution cannot be estimated with sufficient reliability to be useful. The “effective rank” is then

not the same as the mathematical rank.

The solution now consists of three parts,

x̃ =

K
′∑

i=1

u
T

i
y

λi
vi +

K∑

i=K′+1

αi vi +

N∑

i=K+1

αivi , (5.124)

where the middle sum contains the terms appearing with singular values too small to be

employed–for the given noise–and the third sum is the strict nullspace. Usually, one lumps

the two nullspace sums together. The first sum, by itself, represents the particular-SVD solution

in the presence of noise.

It was already noticed that the simplest form of least-squares does not provide a method to

control the ratios of the solution and noise norms. Evidently, truncation of the SVD offers a

simple way to do so–by modifying K ′. It follows that the solution norm necessarily is reduced,

and that the residuals must grow, along with the size of the solution nullspace. The issue of how
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to choose K ′, that is, “rank determination,” in practice involves studying the tradeoff between

the desire for the highest possible resolution (large K ′), and acceptable variance (small K ′). .

5.8. Row and Column Scaling. The effects on the least-squares solutions of the row and

column scaling can now be understood. We discuss them in the context of noise covariances,

but as always in least-squares, the weight matrices need no statistical interpretation, and can

be chosen by the investigator to suit his convenience or taste.

Suppose we have two equations

{
1 1 1

1 1.01 1

}
x1

x2

x3


+

[
n1

n2

]
=

[
y1

y2

]
,

and there is no information about the noise covariance and so no row scaling is reasonable:

W = I. The SVD of E is

U =

{
0.7059 −0.7083

0.7083 0.7059

}
, V =



0.5764 −0.4096 0.7071

0.5793 0.8151 0.0000

0.5764 −0.4096 −0.7071


 ,

λ1 = 2.4536, λ2 = .0058 .

The SVD solutions, choosing ranks K ′ = 1, 2 in succession, are very nearly (the numbers having

been rounded),

x̃ ∼
(y1 + y2)

2.45



.58

.58

.58


 ,

∼

(y1 + y2)

2.45



.58

.58

.58


+

(y1 − y2)

.0058



−.41

.82

.41


 ,

(5.125)

respectively, so that the first term simply averages the two measurements, yi, and the difference

between them contributes–with great uncertainty–in the second term of the rank 2 solution

owing to the very small singular value. The uncertainty is

(EET )−1 =

{
1.51× 104 −1.50× 104

−1.50× 104 1.51× 104

}
. (5.126)

Now suppose that the covariance matrix of the noise is known to be

Rnn =

{
1 0.999999

0.999999 1

}
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(an extreme case, chosen for illustrative purposes). Then, putW = Rnn,

W
1/2
=

{
1.0000 1.0000

0 0.0014

}
, W

−T/2
=

{
1.0000 0

−707.1063 707.1070

}
.

The new system to be solved is

{
1.0000 1.0000 1.0000

0.0007 7.0718 0.0007

}
x1

x2

x3


 =

[
y1

707.1(−y1 + y2)

]
.

The SVD is

U =

{
0.1456 0.9893

0.9893 −0.1456

}
, V =



0.0205 0.7068 0.7071

0.9996 −0.0290 0.0000

0.0205 0.7068 −0.7071




λ1 = 7.1450 , λ2 = 1.3996 .

The second singular value is now much larger relative to the first one, and the two solutions are,

x̃ ∼
(y2 − y1)

7.1



0

1

0


 ,

∼

(y2 − y1)

7.1



0

1

0


+

y1

1.4



.71

0

.71


 ,

(5.127)

and the rank 1 solution is given by the difference of the observations, in stark contrast to the

unscaled solution. The result is quite sensible–the noise in the two equations is so nearly

perfectly correlated, that it can be removed by subtraction; the difference y2 − y1 is a nearly

noise-free piece of information and accurately defines the appropriate structure in x̃. In effect, the

information provided in the row scaling with R permits the SVD to nearly eliminate the noise

at rank 1 by an effective subtraction, whereas without that information, the noise is reduced in

the solution (5.125) at rank 1 only by direct averaging.

At full rank, that is, K = 2, it can be confirmed that the solutions (5.125) and (5.127) are

identical, as they must be. But the error covariances are quite different:

(E′
E

′T )−1 =

{
0.5001 −0.707

−0.707 0.5001

}
.

because the imposed covariance permits a large degree of noise suppression.
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It was previously asserted that in a full-rank formally underdetermined system, row scaling

is irrelevant to x̃, ñ, as may be seen as follows,

x̃ = E
′T (E′

E
′T )−1y′

= ETW−1/2(W−T/2EETW−1/2)−1W−T/2y

= EW−1/2W1/2(EET )−1WT/2W−T/2y

= ET (EET )−1y ,

(5.129)

where we used the result (AB)−1 = B−1A−1 and both inverses must exist, which is possible

only in the full rank situation.

There is a subtlety in row-weighting. Suppose we have two equations of form,

10x1 + 5x2 + x3 = 1 ,

100x1 + 50x2 + 10x3 = 2 ,
(5.130)

after row scaling to make the expected noise variance in each the same. A rank 1 solution

to these equations by SVD is x̃ = [.0165, .0083, .0017]T , which produces residuals ỹ − y =

[−0.79, 0.079]T–much smaller in the second equation than in the first one.

Consider that the second equation is 10 times the first one–in effect we are saying that a

measurement of 10 times the values of 10x1+5x2+x3 has the same noise in it as a measurement

of one times this same linear combination. The second equation clearly represents a much

more accurate determination of this linear combination and the equation should be given much

more weight in determining the unknowns–and both the SVD and ordinary least-squares does

precisely that. To the extent that one finds this result undesirable (one should be careful

about why it is so found), there is an easy remedy–divide the equations by their row norms(∑
j E

2

ij

)
1/2

. But there will be a contradiction with the assertion that the noise in all equations

was the same to begin with. Such row-scaling is best regarded as non-statistical in nature.

An example of this situation is readily apparent in the box balances discussed in Chapter 1.

Equations such as Eq. 3.3 of Chapter 1 could have row norms much larger than those Eq.

3.2, Chapter 1 for the corresponding mass balance, simply because the tracer is measured by

convention in its own units. If the tracer is e.g., oceanic salt, values are, by convention, measured

on the Practical Salinity Scale, and are near 35 (but are dimensionless). Because there is nothing

fundamental about the choice of units, it seems unreasonable to infer that the requirement of

tracer balance has an expected error 35 times smaller than for mass. One usually proceeds in

the obvious way by dividing the tracer equations by their row norms as the first step. (This

approach need have no underlying statistical validity, but is often done simply on the assumption

that salt equations are unlikely to be 35 times more accurate than the mass ones.) The second

step is to ask whether anything further can be said about the relative errors of mass and salt

balance, which would introduce a second, purely statistical row weight.



98 2. BASIC MACHINERY

Column Scaling

In the least-squares problem, we formally introduced a “column scaling” matrix S. Column

scaling operates on the SVD solution exactly as it does in the least-squares solution, to which

it reduces in the two special cases already described. That is, we should apply the SVD to sets

of equations only where any knowledge of the solution element size has been removed first. If

the SVD has been computed for such a column-scaled (and row-scaled) system, the solution is

for the scaled unknown x′, and the physical solution is

x̃ = S
−T/2

x̃
′
. (5.131)

But there are occasions, with underdetermined systems, where a non-statistical scaling may also

be called for, the analogue to the situation considered above where a row-scaling was introduced

on the basis of possible non-statistical considerations.

Example

Suppose we have one equation in two unknowns,

10x1 + 1x2 = 3 . (5.132)

The particular-SVD solution produces x̃ = [0.2970, 0.0297]T in which the magnitude of x1 is

much larger than that of x2 and the result is readily understood. As we have seen, the SVD

automatically finds the exact solution, subject to making the solution norm as small as possible.

Because the coefficient of x1 in (5.132) is 10 times that of x2, it is obviously more efficient in

minimizing the norm to give x1 a larger value than x2–because it contributes more efficiently

in producing y.

Although we have demonstrated this dependence for a trivial example, similar behavior

occurs for underdetermined systems in general. In many cases, this distribution of the elements

of the solution vector x is desirable, the numerical value 10 appearing for good physical reasons.

In other problems–the numerical values appearing in the coefficient matrix E are an “accident.”

In the box-balance example of Chapter 1, the distance defining the interfaces of the boxes are

a consequence of the distance a ship steamed before stopping to make measurements. Unless

one believed that velocities should be larger where the ship steamed further, or the water was

deeper, then the solutions may behave unphysically. Indeed, in some situations the velocities are

expected to be inverse to the water depth and such a prior statistical hypothesis is best imposed

after one has removed the structural accidents from the system. (The tendency for the solutions

to be proportional to the column norms is not rigid. In particular, the equations themselves

may actually preclude the proportionality.)
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Take a positive definite, diagonal matrix S, and rewrite (4.2) as

ES
−T/2ST/2x + n = y.

Then,

E′x′ + n = y′, E′= EST/2, x′= S−T/2x .

Solving

x̃′ = E′T (E′E′T )−1y , x̃ = ST/2x̃′ . (5.133)

How should S be chosen? Apply the recipe (5.133) for the simple one equation example

of (5.132), with

S =

{
1/L11 0

0 1/L22

}

:

E′ =
{

10/L
1/2
11

1/SL
1/2
22

}
, E′E′T=

100

L11

+
1

L22

(5.134)

(
E′E′T

)−1
=

L11L22

100L22 +L11

(5.135)

x̃′ =

{
10/L

1/2
11

1/L
1/2
22

}
L11

100L22 +L11

3, (5.136)

x̃ = S−1/2x̃′ =

{
10/L11

1/L22

}
L11

100L22 +L11

3. (5.137)

The relative magnitudes of the elements of x̃ are proportional to 10/L11, 1/L22. To make the

numerical values of the elements of x̃ the same, we should clearly choose L11 = 10, L22 = 1,

that is, we should divide the elements of the first column of E by
√
10 and the second column

by
√
1. The apparent rule (which is correct and general) is to divide each column of E by the

square root of its length. The square root of the length may be surprising, but arises because

of the second multiplication by the elements of ST/2 in (5.133). This form of column scaling

should be regarded as “non-statistical,” in that it is based upon inferences about the numerical

magnitudes of the columns of E and does not employ information about the statistics of the

solution. Indeed, its purpose is to prevent the imposition of structure on the solution for which

no statistical basis has been anticipated.

If the system is full-rank overdetermined, the column weights drop out, just as we claimed

for least-squares above. To see this, consider that in the full-rank case,

x̃′ = (E′TE′)−1E′Ty

x̃ = ST/2(S1/2ETEST/2)−1S1/2ETy

= ST/2S−T/2(ETE)−1S−1/2S1/2ETy = (ETE)−1ETy .

(5.138)
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Usually row-scaling is done prior to column scaling so that the row norms have a simple physical

interpretation.

5.9. Solution and Observation Resolution. Data Ranking. Typically, either or both

of the set of vectors vi, ui used to present x, y will be deficient in the sense of the expansions

in (5.2). It follows immediately from eqs. (5.3) that the particular-SVD solution is,

x̃ =VKV
T
Kx = Tvx, (5.139)

and the data vector with which both it and the general solution are consistent is

ỹ =UKU
T
Ky = Tuy. (5.140)

It is convenient therefore, to define the solution and observation resolution matrices,

Tv =VKV
T
K , Tu =UKU

T
K . (5.141)

The interpretation of the solution resolution matrix is identical to that in the square-symmetric

case (P.69).

Interpretation of the data resolution matrix is slightly subtle. Suppose an element of y was

fully resolved, that is, some row, j0, of UKU
T
K were all zeros except for diagonal element j0,

which is one. Then a change of unity in yj0 would produce a change in x̃ which would leave

unchanged all other elements of ỹ. If element j0 is not fully resolved, then a change of unity

in observation yj0 produces a solution which leads to changes in other elements of ỹ. Stated

slightly differently, if yi is not fully resolved, the system lacks adequate information to distinguish

equation i from a linear dependence on one or more other equations.

One can use these ideas to construct quantitative statements of which observations are the

most important (“data ranking”). From (5.5), trace(Tu) = K and the relative contribution to

the solution of any particular constraint is given by the corresponding diagonal element of Tu.

Consider the example (5.130) without row weighting. At rank 1,

Tu =

{
0.0099 0.099

0.099 0.9901

}
,

showing that the second equation has played a much more important role in the solution than

the first one–despite the fact that we asserted the expected noise in both to be the same. The

reason is that described above, the second equation in effect asserts that the measurement is 10

times more accurate than in the first equation–and the data resolution matrix informs us of

that explicitly. The elements of Tu can be used to rank the data in order of importance to the

final solution. All of the statements made above to Tu, Tv.

If row and column scaling have been applied to the equations prior to application of the

SVD, the covariance, uncertainty, and resolution expressions apply in those new, scaled spaces.
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The resolution in the original spaces is,

Tv = S
T/2
Tv′S

−T/2
, (5.142)

Tu =W
T/2Tu′W−T/2

, (5.143)

so that

x̃ = Tvx, ỹ = Tuy (5.144)

where Tv′ , Tu′ are the expressions (126), (127) in the scaled space. The uncertainty in the new

space is P = S1/2P′ST/2 where P′ is the uncertainty in the scaled space.

We have seen an interpretation of three matrices obtained from the SVD: VKV
T
K , UKU

T
K ,

VKΛ
−2

K V
T
K . The reader may well wonder, on the basis of the symmetries between solution and

data spaces, whether there is an interpretation of the remaining matrix UKΛ
−2

K U
T
K?

To understand its use, recall, the normal equations (4.71, 4.72) that emerged from the

constrained objective function (4.59). They become, using the SVD for E,

VΛUT
µ = x , (5.145)

UΛVTx = q . (5.146)

These equations show that UΛ2UT
µ = q. The particular SVD solution is,

µ̃ =UKΛ
−2

K U
T
Kq , (5.147)

involving the “missing” fourth matrix. Thus,

∂J

∂q
= 2UKΛ

−2

K U
T
Kq ,

and taking the second derivative,

∂2J

∂y2
= 2UKΛ

−2

K U
T
K (5.148)

is the Hessian of J with respect to the data. If any of the λi become very small, the objec-

tive function will be extremely sensitive to small perturbations in y–producing an effective

nullspace of the problem. Eq. (5.148) supports the suggestion that perfect constraints can lead

to difficulties.

5.10. Relation to Tapered and Weighted Least-Squares. In using least-squares, a

shift was made from the simple objective functions (4.4) and (4.59) to the more complicated ones

in (4.27) or (4.37). The change was made to permit a degree of control of the relative norms of x̃,

ñ, and through the use of W, S of the individual elements and the resulting uncertainties, and

covariances. Application of the weight matrices W, S through their Cholesky decompositions

to the equations prior to the use of the SVD is equally valid–thus providing the same amount

of influence over the solution elements. The SVD provides its control over the solution norms,
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uncertainties and covariances through choice of the effective rank K′. This approach is different

from the use of the extended objective functions (4.27), but the SVD is actually useful in

understanding the effect of such functions.

Assume any necessaryW, S have been applied. Then, the full SVD, including zero singular

values and corresponding singular vectors, is substituted into 4.28,

x̃ = (α2IN +VΛTΛVT )−1VΛTUTy ,

and using VVT = I, we have

x̃ = V(ΛTΛ+ α2I)−1ΛTUTy (5.149)

= V diag
(
λ2i + α2

)
−1
ΛTUTy.

or,

x̃ =
N∑

i=1

λi(u
T

i
y)

λ2
i
+ α2

vi . (5.150)

It is now apparent what the effect of “tapering” has done in least-squares. The word refers

to the tapering down of the coefficients by the presence of α2 of the vi from the values they

would have in the “pure” SVD . In particular, the guarantee that matrices like (ETE + α2I)

always have an inverse despite vanishing singular values, is seen to follow because the presence

of α2 > 0, assures the inverse of the sum always exists, irrespective of the rank of E. The

simple addition of a positive constant to the diagonal of a singular matrix is a well-known ad

hoc method for giving it an approximate inverse. Such methods are a form of what is usually

known as “regularization,” and are just procedures for suppressing nullspaces.

The residuals of the tapered least-squares solution can be written in various forms. Eqs. (4.29)

are,

ñ = α2U(α2I+ΛΛT )−1UTy (5.151)

=
M∑

i=1

(uT
i
y)α2

λ2
i
+ α2

ui ,

that is, the projection of the noise onto the range vectors ui no longer vanishes. Some of the

structure of the range of ET is being attributed to noise and it is no longer true that the residuals

are subject to the rigid requirement (5.74) of having zero contribution from the range vectors.

An increased noise norm is also deemed acceptable, as the price of keeping the solution norm

small, by assuring that none of the coefficients in the sum (5.150) becomes overly large–values

we can control by varying α2. The covariance of this solution about its mean (eq. 4.30) is readily
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rewritten as

Cxx =

N∑

i=1

N∑

j=1

λiλjuiRnnu
T
i

(λ2i + α2)(λ2j + α2)
viv

T
j

= σ2n

N∑

i=1

λ2i

(λ2i + α2)2
viv

T
j

= σ2nV(Λ
T
Λ+ α2IN )

−1
Λ
T
Λ(ΛT

Λ+ α2IN )
−1
V

T

(5.152)

where the second and third lines are again the special case of white noise. The role of α2 in

controlling the solution variance, as well as the solution size, should be plain. The tapered

least-squares solution is biassed –but the presence of the bias can greatly reduce the solution

variance. Study of the solution as a function of α2 is known as “ridge regression”34. Elaborate

techniques have been developed for determining the “right” value of α2.35

The uncertainty, P, is readily found as,

P=α2
N∑

i=1

viv
T
i(

λ
2

i + α
2
)2 + σ

2

n

N∑

i=1

λ
2

i
viv

T

i(
λ
2

i + α
2
)2 (5.153)

= α
2
V
(
Λ
T
Λ+α

2
I
)
−2

V
T
+σ

2

nV
(
Λ
T
Λ+α

2
I
)
−1

Λ
T
Λ
(
Λ
T
Λ+α

2
I
)
−1

V
T

showing the variance reduction possible for finite α2 (reduction of the second term), and the

bias error incurred in compensation in the first term.

The truncated SVD and the tapered SVD-tapered least-squares solutions produce the same

qualitative effect–it is possible to increase the noise norm while decreasing the solution norm.

Although the solutions differ somewhat, they both achieve a purpose stated above–to extend

ordinary least-squares in such a way that one can control the relative noise and solution norms.

The quantitative difference between them is readily stated–the truncated form makes a clear

separation between range and nullspace in both solution and residual spaces: The basic SVD so-

lution contains only range vectors and no nullspace vectors. The residual contains only nullspace

vectors and no range vectors. The tapered form permits a merger of the two different sets of

vectors: Then both solution and residuals contain some contribution from both formal range

and effective nullspaces.

We have already seen several times that preventing ñ from having any contribution from the

range of ET introduces covariances into the residuals, with a consequent inability to produce

values which are strictly white noise in character (although it is only a real issue as the number

of degrees of freedom, M −K, goes toward zero). In the tapered form of least-squares, or the

equivalent tapered SVD, contributions from the range vectors ui, i ≤ K, is permitted, and a

34Hoerl & Kennard (1970a,b).
35Lawson & Hanson (1974), or Hansen (1992). Hansen’s (1992) discussion is particularly interesting because

he exploits the “generalized SVD,” which is used to simultaneously diagonalize two matrices.
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potentially more realistic residual estimate is obtained. (There is usually no good reason why ñ

should be expected to be orthogonal to the range vectors.)

5.11. Resolution and Variance of Tapered Solutions to Simultaneous Equations.

The tapered least-squares solutions have an implicit nullspace, arising from the terms corre-

sponding to zero singular values, or values small compared to α2. But that solution form does

a good job of hiding the existence of what should still be regarded as an effective nullspace.

To obtain a measure of solution resolution when the vi vectors have not been computed,

consider a situation in which the true solution were xj0 ≡ δj,j0 , that is, unity in the j0 element

and zero elsewhere. Then, in the absence of noise (the resolution analysis applies to the noise-free

situation), the correct value of y would be

Exj0 = yj0 , (5.154)

defining yj0 . Suppose we actually knew (had measured) yj0 , what solution xj0 would be ob-

tained?

Suppressing all covariances matrices, tapered least-squares (Eqs. 4.32) produces

x̃j0 = E
T (EET + α2I)−1yj0 = E

T (EET + α2I)−1Exj0 , (5.155)

which is row (or column) j0 of

Tv = E
T (EET + α2I)−1E . (5.156)

Thus we can interpret any row or column of Tv as the solution resolution for a Kronecker delta,

correct solution, in that element. It is an easy matter, using the SVD of E and letting α2
→ 0

to show that (5.156) reduces to VVT . These expressions apply in the row- and column-scaled

space and are suitably modified to take account of any W,S which may have been applied, as

in Eqs. (5.142), (5.143). An obvious variant of (5.156) follows from the alternative least-squares

solution (4.84), with W =α2I, S = I,

Tv=
(
E
T
E+α2I

)
−1
ETE (5.157)

Solution resolution matrices are obtained similarly. Let yj = δjj1.The Eq. (4.47) produces

x̃j1= ET
(
EET

+α2I
)
−1
yj1, (5.158)

which if substituted into the original equations is,

Ex̃j1= EET
(
EET

+α2I
)
−1
yj1 . (5.159)

Thus,

Tu= EET
(
EET

+α2I
)
−1

(5.160)

The alternate form is,

Tu= E
(
ETE+α2I

)
−1
ET . (5.161)
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All of the resolution matrices reduce properly to either UUT
,VV

T as α2 → 0 when the SVD

for E is substituted.

6. Combined Least-Squares and Adjoints (Lagrange Multipliers)

6.1. Exact Constraints. Consider now a modest generalization of the constrained prob-

lem eq. (4.2) in which the unknowns x are also meant to satisfy some constraints exactly, or

nearly so, for example

Ax = d . (6.1)

In some contexts, (6.1) is referred to as the “model,” a term also employed, confusingly, for the

physics defining E along with the statistics assumed to describe x,n. In the end, there is no

unique meaning to the term, and only the context is a guide. We will temporarily refer to Eq.

(6.1) as “perfect constraints,” as opposed to those involving E, which generally always have a

non-zero noise element.

An example of a model in these terms occurs in acoustic tomography (Chapter 1), where

measurements exist of both density and velocity fields, and they are connected by dynamical

relations; the errors in the relations are believed to be so much smaller than those in the data,

that for practical purposes, the constraints (6.1) might as well be treated as though they are

perfect.36 But otherwise, the distinction between constraints (6.1) and the observations is an

arbitrary one, and the introduction of an error term in the former, no matter how small, removes

any particular reason to distinguish them: A may well be some subset of the rows of E. What

follows can in fact be obtained by imposing the zero noise limit for some of the rows of E in

the solutions already described. Furthermore, whether the model should be satisfied exactly, or

should contain a noise element too, is situation dependent. One should be wary of introducing

exact equalities into estimation problems, because they carry the strong possibility of introducing

small eigenvalues, or near singular relationships, into the solution, and which may dominate the

results. Nonetheless, carrying one or more perfect constraints does produce some insight into

how the system is behaving.

Several approaches are possible. Consider for example, the objective function,

J = (Ex− y)T (Ex− y) + α2(Ax− d)T (Ax− d) (6.2)

where W, S have been applied if necessary and α2 is retained as a trade-off parameter. This

objective function corresponds to the requirement of a solution of the combined equation sets,{
E

α
2A

}
x+

[
n

α
2u

]
=

[
y

α
2d

]
(6.3)

36Munk and Wunsch (1982).
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in which u is the model noise. For any finite α2, the perfect constraints are formally “soft”

because they are being applied only as a minimized sum of squares. The solution follows imme-

diately from (4.9) with

E −→

{
E

α
2A

}
, y −→

{
y

α2d

}
,

assuming the matrix inverse exists. As α2 → ∞, the second set of equations is being imposed

with arbitrarily great accuracy, and barring numerical issues, becomes as exactly satisfied as one

wants (this is an example of a “penalty method”).

Alternatively, the model can be applied as a hard constraint. All prior covariances and

scalings having been applied, and Lagrange multipliers introduced, reduces the problem to one

with an objective function

J = nTn− 2µT (Ax− d) = (Ex− y)T (Ex− y)− 2µT (Ax− d) , (6.4)

which is just a variant of (4.59). But now, (6.1) is to be exactly satisfied, and the observations

only approximately so.

Setting the derivatives of J with respect to x, µ to zero, gives the normal equations,

AT
µ = ET (Ex− y) (6.5)

Ax = d (6.6)

Eq. (6.5) represents the adjoint, or “dual” model, for the adjoint or dual solution µ, and the

two equation sets are to be solved simultaneously for x,µ. They are again M +N equations in

M+N unknowns (M of the µi, N of the xi), but need not be full-rank. The first set, sometimes

referred to as the “adjoint model,” determines µ from the difference between Ex, and y. The

last set is just the exact constraints.

We can most easily solve two extreme cases in Eqs. (6.5, 6.6)– one in which A is square,

N ×N , and of full-rank, and one in which E has this property. In the first case,

x̃ =A−1d (6.7)

and,

µ̃ =A−T (ETEA−1 −ET )d . (6.8)

Here, the values of x̃ are completely determined by the full-rank, noiseless model and the mini-

mization of the deviation from the observations is passive. The Lagrange multipliers or adjoint

solution, however, are useful in providing the sensitivity information, ∂J/∂d = 2µ, as already

discussed. The uncertainty of this solution is zero because of the perfect model 6.6.

When E is full-rank, K = N,, from 6.5,

x̃ = (ETE)−1[ETy+AT
µ] ≡ x̃u + (ETE)−1AT

µ
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where x̃u = (ETE)−1ETy is the ordinary, unconstrained least-squares solution. Substituting

into (6.6) produces

µ̃ = [A(ETE)−1AT ]−1(d−Ax̃u) (6.9)

and

x̃ = x̃u + (ETE)−1AT [A(ETE)−1AT ]−1(d−Ax̃u) , (6.10)

assuming A is full-rank underdetermined. The perfect model is underdetermined; its range is

being fit perfectly, with its nullspace being employed to reduce the misfit to the data as far as

possible. The uncertainty of this solution may be written37,

P = D2(x̃− x) (6.11)

= σ2
{
(ET

E)−1 − (ET
E)−1AT (A(ET

E)−1AT )−1A(ET
E)−1

}
,

which represents a reduction in the uncertainty of the ordinary least-squares solution (first term

on the right) by the information in the perfectly known constraints. The presence of A−1 in

these solutions is a manifestation of the warning about the possible introduction of components

dependent upon small eigenvalues of A. If neither ETE nor A is of full-rank one can use, e.g.,

the SVD with the above solution; the combined E,A may be rank deficient, or just determined.

E������ 14. Consider the least-squares problem of solving

x1 + n1 = 1

x2 + n2 = 1

x1 + x2 + n3 = 3

with uniform, uncorrelated noise of variance 1 in each of the equations. The least-squares solu-

tion is then

x̃ =

[
1.3333 1.3333

]T
with uncertainty

P =

{
0.6667 −0.3333

−0.333 0.6667

}
.

But suppose that it is known or desired that x1−x2 = 1. Then (6.10) produces x̃ = [1.8333 0.8333]T ,

µ = 0.5, J ′
= 0.8333, with uncertainty

P =

{
0.1667 0.1667

0.1667 0.1667

}
.

If the constraint is shifted to x1 − x2 = 1.1, the new solution is x̃ =

[
1.8833 0.7833

]
T

and the

new objective function is J
′
= 0.9383, consistent with the sensitivity deduced from µ.

37Seber (1977).
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A more generally useful case occurs when the errors normally expected to be present in the

supposedly exact constraints are explicitly acknowledged. If the exact constraints have errors

either in the “forcing,” d, or in a mis-specification of A, then we write,

Ax = d+Γu , (6.12)

assuming, 〈u〉 = 0,

〈
uuT

〉
= Q. Γ is a known coefficient matrix included for generality: If for

example the errors were thought to be the same in all equations, we could write Γ = [1, 1, ...1]T ,

and then u would be just a scalar. Let the dimension of u by P×1. Such representations are not

unique and more will be said about them in Chapter 4. A hard constraint formulation can still

be used, in which (6.12) is still to be exactly satisfied, imposed through an objective function of

form,

J = (Ex− y)TR−1nn(Ex− y) + u
TQ−1u− 2µT (Ax− d−Γu) . (6.13)

Here, we have explicitly included the noise error covariance matrix. Finding the normal equations

by setting the derivatives with respect to (x,u,µ) to zero produces,

AT
µ = ETR−1

nn
(Ex− y) (6.14)

ΓTµ = Q−1u (6.15)

Ax+Γu = d (6.16)

This system is (2N + P ) equations in (2N + P ) unknowns, where the first equation is again

the adjoint system, and dependent upon Ex− y. Because u is simple function of the Lagrange

multipliers, the system is easily reduced to,

AT
µ = ETR−1nn (Ex− y) (6.17)

Ax+ΓQΓTµ = d (6.18)

which is now 2N × 2N, the u having dropped out. If A is full-rank, the solution is immediate;

otherwise the SVD is used.

To use a soft constraint methodology, write

J = (Ex− y)TR−1
nn
(Ex− y) + (Ax− q− Γu)TQ−1(Ax− q− Γu)T , (6.19)

and find the normal equations. It is again readily confirmed that the solutions using (6.3) or 6.19

are identical, and the hard/soft distinction is seen again to be artificial. The soft constraint

method can deal with perfect constraints, by letting
∥
∥Q−1

∥
∥
→ 0 but stopping when numerical

instability sets in. The resulting numerical algorithms fall under the general subject of “penalty”

and “barrier” methods.38

38Luenberger (1984).
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F����� 13. Numerical solution of the partial differential equation, Eq. 6.20.

Panel (a) shows the imposed symmetric forcing − sinx sin y.(b) Displays the so-

lution φ, and (c) shows the Lagrange multipliers, or adjoint solution, µ and which

is a mirror image of φ.

E����	� 15. A Partial Differential Equation39 Consider the partial differential equation,

ε∇2φ+
∂φ

∂x
= − sinx sin y. (6.20)

A code was written to solve it by finite differences for the case ε = 0.05 and φ = 0 on the

boundaries 0 ≤ x ≤ π, 0 ≤ y ≤ π, as depicted in figure 13 . The discretized form of the model

is then the perfect N ×N system

Ax = q , x = {φij} (6.21)

and q is the equivalently discretized − sinx sin y. The theory of partial differential equations

shows that this system is full-rank and generally well-behaved. But let us pretend that information

is unknown to us, and seek the values x which makes the objective function

J = xTx− 2µT (Ax− q) (6.22)

stationary with respect to x, µ, that is the Eqs. (6.5, 6.6) with E = I, y = 0.. Physically, xTx is

identified with the solution potential energy. The solution µ, corresponding to the circulation of

fig. 13bis shown in fig. 13c. What is the interpretation? The Lagrange multipliers represent the

sensitivity of the solution potential energy to perturbations in the forcing field. The sensitivity

is greatest in the right-half of the basin, and indeed displays a boundary layer character. A

physical interpretation of the Lagrange multipliers can be inferred, given the simple structure

39Schröter and Wunsch (1986).
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of the governing equation (6.20), and the Dirichlet boundary conditions. This equation is not

self-adjoint; the adjoint partial differential equation is of form,

ε∇2
µ−

∂µ

∂x
= d, (6.23)

where d is a forcing term, subject to mixed boundary conditions, and whose discrete form is

obtained by taking the transpose of the A matrix of the discretization (See the Chapter Appendix.)

The forward solution exhibits a boundary layer on the left-hand wall, while the adjoint solution

has a corresponding behavior in the dual space on the right-hand wall. The structure of the

µ would evidently change if J were changed; in the present case, J immediately describes the

sensitivity of the potential energy to any perturbation in q.40

The original objective function J is very closely analogous to the Lagrangian (not to be

confused with the Lagrange multiplier) in classical mechanics. In mechanics, the gradients of

the Lagrangian commonly are forces. The modified Lagrangian, J ′, is used in mechanics to

impose various physical constraints, and the virtual force required to impose the constraints, for

example, the demand that a particle follow a particular path, is the Lagrange multiplier.41 In an

economics/management context, the multipliers are usually called “shadow prices” as they are

intimately related to the question of how much profit will change with a shift in the availability

or cost of a product ingredient.

More generally, there is a close connection between the stationarity requirements imposed

upon various objective functions throughout this book, and the mathematics of classical me-

chanics. An elegant Hamiltonian formulation of the material in Chapter 4 is possible.

6.2. Relation to Green Functions
42
. Consider any linear set of simultaneous equations,

involving a square N ×N matrix, A,

Ax = d. (6.24)

First consider the adjoint equations, for an arbitrary right-hand-side,

A
T
z = r. (6.25)

Then the simple scalar identity,

z
T
Ax− x

T
A
T
z =0 (6.26a)

(the “bilinear identity”) implies,

z
T
d = x

T
r. (6.27)

40In oceanographic terms, the exact constraints describe the Stommel Gulf Stream solution. The eastward

intensification of the adjoint solution corresponds to the change in sign of β in the adjoint model. See Schröter

and Wunsch (1986) for details and an elaboration to a non-linear situation.
41Lanczos (1970) has a good discussion.
42See Lanczos (1961, Section 3.19)
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In the special case, r = 0, we have

zTd =0, (6.28)

that is, d, the right-hand side of the original equations (6.24),must be orthogonal to any solution

of the homogeneous adjoint equations. (In SVD-terms, this result is nothing but the solvability

condition Eq. (5.76)). If A is of full rank, then there is no non-zero solution to the homogeneous

adjoint equations.

Now assume that A is indeed full rank. We add a single equation to (6.24) of the form

xp = αp (6.29)

or

eTp x =αp, (6.30)

where ep = δip (the vector which is all zeros, except for 1 at position p). αp is unknown, but

we also demand that Eq. (6.24) should remain exactly satisfied. The combined system of (6.24)

and (6.30), written as,

A1x = d1 (6.31)

is overdetermined. If it is to have a solution without any residual, it must be orthogonal to any

solution of the homogeneous adjoint equations,

AT
1
z = 0. (6.32)

There is only one such solution (because there is only one vector, z = uN+1, in the null space of

AT
1 ). Write uN+1 = [gp,γ]

T , separating out the first N elements of uN+1, calling them gp, and

calling the one remaining element γ. Thus the solvability condition is,

uTN+1d1 = gTp d+γαp = 0. (6.33)

Choose γ = −1 (any other finite choice can be absorbed into g). Then,

αp = gTp d. (6.34)

If gp were known, then the value of αp in (6.34) would be the only value consistent with the

solutions to (6.24), and would be the correct value of xp. But (6.32) is the same as,

ATgp= ep (6.35)

(recalling γ = −1),and which can be solved because ep is known. Because we would like to find

all elements xp, we would need to solve (6.35) for all 1 ≤ p ≤ N, that is,

A
TG = IN (6.36)
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which is N separate problems, each for the corresponding column of G = {g
1
,g2, ...gN}. Here,

G is the Green function. With G known, we have immediately,

x =GTd, (6.37)

(from Eq. (6.34)). The Green function is an inverse to the adjoint equations (and generalizes in

the continuous case to an operator inverse).

7. Gauss-Markov (Minimum Variance) Estimation

and Simultaneous Equations

The fundamental objective for least-squares is minimization of the noise norm (4.4), although

we complicated the discussion somewhat by introducing trade-offs against ‖x̃‖, various weights in

the norms, and even the restriction that x̃ should satisfy certain equations exactly. Least-squares

methods, whether used directly as in (4.9) or indirectly through the vector representations of the

SVD, are fundamentally deterministic–W, S, α2 need be given no statistical interpretation–

although sometimes one uses covariances for them. Statistics were used only to understand the

sensitivity of the solutions to noise, and to obtain measures of the expected deviation of the

solution from some supposed truth.

But there is another, radically different, approach to obtaining estimates of the solution

to equation sets like (4.2), directed more clearly toward the physical goal: to find an estimate

x̃ which deviates as little as possible in the mean-square from the true solution. That is, we

wish to minimize the statistical quantities 〈(x̃i − xi)
2〉 for all i. The next section is devoted

to understanding how to find such an x̃ (and the corresponding ñ), through an excursion into

statistical estimation theory. It is far from obvious that this x̃ should bear any resemblance to

one of the least-squares estimates; but as will be seen, under some circumstances the two are

identical. Their possible identity is extremely useful, but has apparently led many investigators

to seriously confuse the methodologies, and therefore the interpretation of the result.

7.1. The Fundamental Result. Suppose we are interested in making an estimate of a

physical variable, x, which might be a vector or a scalar, and might be constant with space

and time, but which may vary with either or both. To be definite, let x be a function of an

independent variable r, written discretely as rj (it might be a vector of space coordinates, or

a scalar time, or an accountant’s label). Let us make some suppositions about what is usually

called “prior information.” In particular, suppose we have an estimate of the low-order statistics

describing x, that is, we specify its mean and second moments:

〈x〉 = 0 , 〈x(ri)x(ri)
T 〉 = Rxx(ri, rj) . (7.1)

To make this problem concrete, one might think of x as being the temperature anomaly (about

the mean) at a fixed depth in the ocean (a scalar) and rj a vector of horizontal positions; or
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conductivity in a well, where rj would be the depth coordinate, and x is the vector of scalars at

any location, rp, xp = x (rp). Alternatively, x might be the temperature at a fixed point, with

rj being the scalar of time. But if the field of interest is the velocity vector, then each element

of x is itself a vector, and one can extend the notation in a straightforward fashion. To keep the

notation a little cleaner, however, we will treat the elements of x as scalars.

Now suppose that we have some observations, yi, as a function of the same coordinate ri,

with a known, zero mean, and second moments

Ryy (ri, rj) = 〈y (ri)y (rj)
T 〉 , Rxy(ri, rj) = 〈x(ri)y(rj)

T 〉 , 1 ≤ i, j ≤M (7.2)

(the individual observation elements can also be vectors–for example, two or three components

of velocity and a temperature at a point–but as with x, the modifications required to treat this

case are straightforward, and we here assume scalar observations). Could the measurements be

used to make an estimate of x at a point r̃α where no measurement is available? Or to use many

measurements to obtain a better estimate even at points where there is a measurement? The

idea is to exploit the concept that finite covariances carry predictive capabilities from known

variables to unknown ones. A specific example would be to suppose the measurements are of

temperature y(rj) = y0(rj)+n(rj), where n is the noise and we wish to estimate the temperature

at different locations, perhaps on a regular grid r̃α, 1 ≤ α ≤ N . This special problem is one of

gridding. or mapmaking (the tilde is placed on rα as a device to emphasize that this is a location

where an estimate is sought; the numerical values of these places or labels are assumed known).

Alternatively, and somewhat more interesting, perhaps the measurements are more indirect,

with y(ri) representing a velocity field component at depth in the ocean and believed connected

through the thermal wind equation to the temperature field. We might want to estimate the

temperature from measurements of the velocity.

It is reasonable to ask for an estimate x̃(r̃α), whose dispersion about its true value, x(r̃α) is

as small as possible, that is,

P (r̃α, r̃α) = 〈(x̃(r̃α)− x(r̃α))(x̃(r̃β)− x(r̃β))〉|
r̃α=r̃β

is to be minimized. If we would like to answer the question for more than one point, and if we

would like to understand the covariance of the errors of our estimates at various points r̃α, then

we can form a vector of values to be estimated, {x̃(rα)} ≡ x̃ and the uncertainty among them,

P(r̃α, r̃β) = 〈(x̃(r̃α)− x(r̃α))(x̃(r̃β)− x(r̃β))〉

= 〈(x̃− x)(x̃− x)T 〉 , 1 ≤ α ≤ N , 1 ≤ β ≤ N ,
(7.3)

where the diagonal elements, P(r̃α, r̃α), are to be individually minimized (not in the sum of

squares). Thus we seek the solution with minimum variance about the correct value.
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What should the relationship be between data and estimate? At least initially, one might

try a linear combination of data,

x̃(r̃α) =
M∑

j=1

B(r̃α, rj)y(rj) , (7.4)

for all α, which makes the diagonal elements of P in (7.3) as small as possible. We can treat all

the points r̃α simultaneously by letting B be an M ×N matrix, and

x̃ (rα) = B(r̃α, rj)y (rj) . (7.5)

(This notation is mixed. Eq. (7.5) is a shorthand for (7.4), in which the argument has been put

into B explicitly as a reminder that there is a summation over all the data locations rj for all

mapping locations r̃α, but it is automatically accounted for by the usual matrix multiplication

convention.)

An important result, usually called the “Gauss-Markov theorem,” produces the values of B

that will minimize the diagonal elements of P.43 Substituting (7.5) into (7.3) and expanding,

P(r̃α, r̃β) = 〈(B(r̃α, rj)y (rj)− x(r̃α))(B(r̃β, rl)y (rl)− x(r̃β))
T 〉

≡ 〈(By− x)(By− x)T 〉

= B (̃rα, rj) 〈y (rj)y (rl)
T 〉B (rβ, rl)

T −

〈 ˜x (rα)y (rl)
T 〉B (rα, rl)

T −B
(
r̃α, rj

)
〈y (rj)x (̃rβ)

T 〉+ 〈x (̃rα)x (r̃β)
T 〉

(7.6)

Using Rxy = RT
yx, eq. (7.6) is,

P = BRyyB
T −RxyB

T −BRxy +Rxx . (7.7)

Notice that because Rxx represents the moments of x evaluated at the estimation positions, it

is a function of r̃α, r̃β, whereas Rxy involves covariances of y at the data positions with x at

the estimation positions, and is consequently a function Rxy(r̃α, rj).

Now, using the matrix identity (2.34)–that is, completing the square, (7.7) becomes

P = (B−RxyR
−1

yy )Ryy(B−RxyR
−1

yy )
T
−RxyR

−1

yyR
T
xy +Rxx . (7.8)

Setting r̃α = r̃β so that (7.8) is the variance of the estimate at point r̃α about its true value,

and noting that all three terms in Eq. (7.8) are positive definite, minimization of any diagonal

element of P is obtained by choosing B so that the first term vanishes or,

B(r̃α, rj) = RxyR
−1

yy . (7.9)

43The derivation follows Liebelt (1967).
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(The diagonal elements of (B−RxyR
−1
yy )Ryy(B−RxyR

−1
yy )

T need to be written out explicitly

to see that Eq. (7.9) is necessary.) Thus the minimum variance estimate is

x̃(r̃α) = Rxy (r̃α, ri)R
−1

yy

(
ri, rj

)
y (rj) , (7.10)

and the actual minimum value of the diagonal elements of P is found by substituting back

into (7.7), producing

P(r̃α, r̃β) = Rxx(r̃α, r̃β)−Rxy(r̃α, rj)R
−1

yy (rj , rk)R
T
xy(r̃β, rk) . (7.11)

The bias of (7.11) is

〈x̃− x〉 = RxyR
−1

yy 〈y〉 − x . (7.12)

If 〈y〉 = x = 0, the estimator is unbiassed , and called a “best linear unbiassed estimator,” or

“BLUE”; otherwise it is biassed. The whole development here began with the assumption that

〈x〉 = 〈y〉 = 0; what is usually done is to remove the sample mean from the observations y, and

to ignore the difference between the true and sample means. Under some circumstances, this

approximation is unacceptable, and one must account for the mapping error introduced by the

use of the sample mean. A general approach falls under the label of “kriging”, and which is

briefly discussed in Chapter 3.

7.2. Linear Algebraic Equations. The result (7.9)—(7.11) is the abstract general case

and is deceptively simple. Invocation of the physical problem of interpolating temperatures etc.,

is not necessary: the only information actually used is that there are finite covariances between

x,y,n. Although we will explicitly explore its use for mapping in Chapter 5.3, suppose that the

observations are related to the unknown vector x as in our canonical problem, that is, through a

set of linear equations: Ex+ n = y. The measurement covariance, Ryy, can then be computed

directly as:

Ryy = 〈(Ex+ n)(Ex+ n)T 〉 = ERxxE
T +Rnn. (7.13)

The unnecessary, but simplifying and often excellent, assumption was made that the cross-terms

of form,

Rxn = RT
nx = 0, (7.14)

so that

Rxy = 〈x(Ex+ n)T 〉 = RxxE
T

, (7.15)

that is, there is no correlation between the measurement noise and the actual state vector (e.g.,

that the noise in a temperature measurement does not depend upon whether the true value is

10◦ or 25◦). (The arguments r̃α, rj, etc. are replaced by the corresponding matrix indices of

x,y etc.)

Under these circumstances, eqs. (7.10), (7.11) take on the form:
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x̃ = RxxE
T
(
ERxxE

T
+Rnn

)
−1
y (7.16)

ñ = y−Ex̃ (7.17)

P = Rxx−RxxE
T
(
ERxxE

T
+Rnn

)
−1
ERxx (7.18)

These latter expression are extremely important; they permit discussion of the solution to

a set of linear algebraic equations in the presence of noise using information concerning the

statistics of the noise and of the solution. Notice that they are identical to the least-squares

expression (4.47) if S = Rxx,W = Rnn, except there the uncertainty was estimated about the

mean solution; here it is taken about the true one. As is generally true of all linear methods,

the uncertainty, P, is independent of the actual data, and can be computed in advance should

one wish.

From the matrix inversion lemma, Eqs. (7.16, 7.18) can be rewritten

x̃ =
(
R−1xx+E

TR−1nnE
)
−1

ETR−1nny (7.19)

ñ = y−Ex̃ (7.20)

P =
(
R−1
xx
+ETR−1

nn
E
)
−1

(7.21)

Although these alternate forms are algebraically and numerically identical to the alternative

least-squares form (4.39), the size of the matrices to be inverted changes from M ×M matrices

to N × N , where E is M × N (but note that Rnn is M ×M ; the efficacy of this alternate

form may depend upon whether the inverse of Rnn is known). Depending upon the relative

magnitudes of M , N , one form may be much preferable to the other; finally, (7.21) has an

important interpretation we will discuss when we come to recursive methods. Recall, too, the

options we had with the SVD of solving M ×M or N ×N problems. Note that in the limit of

complete a priori ignorance of the solution,
∥
∥R

−1
xx

∥
∥
→ 0, Eqs. (7.19, 7.21) reduce to,

x̃=
(
ETR−1nnE

)
−1

ETRnny,

P=
(
ETR−1nnE

)
−1

,

the conventional weighted least-squares solution, now with P = Cxx. More generally, the pres-

ence of finite R−1
xx

introduces a bias into the solution so that 〈x̃〉 �= x, which however, produces

a smaller solution variance than the unbiassed solution has (e.g., the truncated SVD solution).

The solution (7.16-7.18, 7.19-7.21) is an “estimator”; it was found by demanding a solution

with the minimum dispersion about the true solution and is found, surprisingly, to be identical
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with the tapered, weighted least-squares solution when S = Rxx, W = Rnnthe least-squares

objective function weights are chosen, as is commonly done. This correspondence of the two

solutions often leads them to be seriously confused. It is essential to recognize that the logic of

the derivations are distinct: We were free in the least-squares derivation to use weight matrices

which were anything we wished–as long as appropriate inverses existed.

The correspondence of least-squares with what is usually known as minimum variance es-

timation can be understood by recognizing that the Gauss-Markov estimator was derived by

minimizing a quadratic objective function. The least-squares estimate was obtained from mini-

mizing a summation which is a sample estimate of the Gauss-Markov objective function when

S = Rxx, W = Rnn.

7.3. Testing After the Fact. As with any statistical estimator, an essential step is the

testing after an apparent solution has been found, that the behavior of x̃, ñ is consistent with the

assumed prior statistics reflected in Rxx, Rnn, and any assumptions about their means or other

properties. Such a posteriori checks are both necessary and very demanding. One sometimes

hears it said that estimation using Gauss-Markov and related methods is “pulling solutions out

of the air” because the prior covariance matrices Rxx, Rnn often are only poorly known. But

producing solutions which pass the test of consistency with the prior covariances can be very

difficult. It is also true that the solutions tend to be somewhat insensitive to the details of the

prior covariances and it is easy to become overly concerned with the detailed structure of Rxx,

Rnn.

As stated previously, it is also rare to be faced with a situation in which one is truly ignorant

of the covariances, true ignorance meaning that arbitrarily large or small numerical values of xi,

ni would be acceptable. In the box inversions of Chapter 1 (to be revisited extensivley later),

deep velocity fields of order 1000 cm/s might be absurd, and their absurdity is readily asserted

by choosing Rxx = (10 cm/s)2, which reflects a mild belief that velocities are 0(10 cm/s) with

no known correlations with each other. Testing of statistical estimates against prior hypotheses

is a highly developed field in applied statistics, and we leave it to the references already listed

for their discussion. Should such tests be failed, one must reject the solutions x̃, ñ and ask why

they failed–as it usually implies an incorrect model (E, and the assumed statistics of solution

and/or noise).

7.4. Use of Basis Functions. A superficially different way of dealing with prior statistical

information is often commonly used. Suppose that the indices of xi refer to a spatial or temporal

position, call it ri, so that xi = x(ri). Then it is often sensible to consider expanding the unknown

x in a set of basis functions, Fj, for example, sines and cosines, Chebyschev polynomials, ordinary
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polynomials, etc. One might write

x(ri) =
L∑

j=1

αjFj(ri)

or

x = Fα , F =




F1(r1) F2(r1) · · · FL(r1)

F1(r2) F2(r2) · · · FL(r2)

· · · ·

F1(rN ) F2(rN ) · · · FL(rN )



, α =




α1

.

.

.

αL




T

which, when substituted into (4.2), produces

Lα+ n = y , L = EF . (7.22)

If L < M < N , one can convert an underdetermined system into one which is formally overde-

termined and, of course, the reverse is possible as well. It should be apparent, however, that the

solution to (7.22) will have a covariance structure dictated in large part by that contained in

the basis functions chosen, and thus there is no fundamental gain in employing basis functions

although they may be convenient, numerically or otherwise. If Pαα denotes the uncertainty of

α,then

P = FPααF
T (7.23)

is the uncertainty of x̃. If there are special conditions applying to x, such as boundary conditions

at certain positions, rB, a choice of basis function satisfying those conditions could be more

convenient than appending them as additional equations.

E������ 16. The underdetermined system{
1 1 1 1

1 −1 −1 1

}
x+ n =

[
1

−1

]
,

with noise variance 〈nnT 〉 = .01I, has a solution, if Rxx = I, of

x̃ = E
T (EET + .01I)−1y =

[
0 .4988 .4988 0

]
T

, ñ =

[
.0025 −.0025

]
T

.

If the solution was thought to be large scale and smooth, one might use the covariance

Rxx =




1 .999 .998 .997

.999 1 .999 .998

.998 .999 1 .999

.997 .998 .999 1




,
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which produces a solution

x̃ =

[
0.2402± 0.028 0.2595± 0.0264 0.2595± 0.0264 0.2402± 0.0283

]
T

,

ñ =

[
0.0006 −0.9615

]
T

,

which has the desired large-scale property. (One might worry a bit about the structure of the

residuals; but two equations are wholly inadequate to draw any conclusions.) If one attempts a

solution as a first order polynomial,

xi = a+ bri, r1 = 0, r2 = 1, r3 = 2, . . .

the system will become two equations in the two unknowns a, b:

EF

[
a

b

]
=

{
4 6

0 0

}[
a

b

]
+ n =

[
1

−1

]
,

and if no prior information about the covariance of a, b is provided,

[ã, b̃] = [0.0769, 0.1154] ,

x̃ =
[
0.0769± 0.0077 0.1923± 0.0192 0.3076± 0.0308 0.4230± 0.0423

]
,

ñ = [0.0002, −1.00] ,

which is also large scale and smooth, but clearly different than that from the Gauss-Markov

estimator. Although this latter solution has been obtained from a just-determined system, it is

not clearly “better.” If a linear trend is expected in the solution, then the polynomial expansion is

certainly convenient–although such a structure can be imposed through use of Rxx by specifying

a growing variance with ri.

7.5. Determining a Mean Value. Let the measurements of the physical quantity con-

tinue to be denoted yi and suppose that each is made up of an unknown large scale mean m,

plus a deviation from that mean of θi. Then,

m+ θi = yi , 1 ≤ i ≤M (7.24)

or

Dm+ θ = y , DT
=

[
1 1 1 · · · 1

]T
, (7.25)

and we seek a best estimate, m̃, of m. In (7.24) or (7.25) the unknown x has become the scalar

m, and the deviation of the field from its mean is the noise, that is, θ ≡ n, whose true mean

is zero. The problem is evidently a special case of the use of basis functions, in which only one

function–a zeroth—order polynomial, m, is retained.

Set Rnn = 〈θθT 〉. If, for example, we were looking for a large-scale mean temperature in a

field of oceanic mesoscale eddies, then Rnn is the sum of the covariance of the eddy field plus
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that of observational errors and any other fields contributing to the difference between yi and

the true mean m. To be general, suppose Rxx = 〈m2〉 =m2

0
and from (7.19),

m̃ =

{
1

m2
0

+DTR−1nnD

}
−1

DTR−1nny

=
1

1/m2

0
+DTR−1nnD

DTR−1nny

(7.26)

(DTR−1nnD is a scalar). The expected uncertainty of this estimate is (7.21),

P =

{
1

m2
0

+DTR−1
nn
D

}
−1

=
1

1/m2
0
+DTR−1nnD

, (7.27)

(a scalar).44

The estimates may appear somewhat unfamiliar; they reduce to more common expressions

in certain limits. Let the θi be uncorrelated, with uniform variance σ2; Rnn is then diagonal

and (7.26) reduces to

m̃ =
1

(1/m2

0
+M/σ2)σ2

M∑

i=1

yi =
m2

0

σ2 +Mm2
0

M∑

i=1

yi , (7.28)

where the relations DTD =M , DTy =
∑

M

i=1
yi were used. The expected value of the estimate

is

〈m̃〉 =
m2

0

σ2 +Mm2
0

M∑

i

〈yi〉 =
m2

0

σ2 +Mm2
0

Mm �=m, (7.29)

that is, it is biassed , as inferred above, unless 〈yi〉 = 0, implying m = 0. P becomes,

P =
1

1/m2
0
+M/σ2

=
σ2m2

0

σ2 +Mm2
0

. (7.30)

Under the further assumption that m2

0
→∞,

m̃ =
1

M

M∑

i=1

yi , (7.31)

P = σ2/M , (7.32)

which are the ordinary average and its variance (the latter expression is the well-known “square

root of M rule” for the standard deviation of an average; recall Eq. (3.5)); 〈m̃〉 in (7.31) is

readily seen to be the true mean–this estimate has become unbiassed . But the magnitude

of (7.32) always exceeds that of (7.30)–acceptance of bias in the estimate (7.28) reduces the

uncertainty of the result.

Eqs. (7.26)—(7.27) are the more general estimation rule–accounting through Rnn for cor-

relations in the observations and their irregular distribution. Because many samples are not

44See also Bretherton et al. (1976).
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independent, (7.32) may be extremely optimistic. Eq. (7.27) gives one the appropriate expres-

sion for the variance when the data are correlated (that is, when there are fewer degrees of

freedom than the number of sample points).[?Example needed.]

The use of the prior estimate, m2

0
, is interesting. Letting m2

0
go to infinity does not mean

that an infinite mean is expected ((7.31) is finite). It is is merely a statement that there is no

information whatever, before we start, as to the magnitude of the true average–it could be

arbitrarily large (or small and of either sign) and if it came out that way, would be acceptable.

Such a situation is, of course, unlikely and even though we might choose not to use information

concerning the probable size of the solution, we should remain aware that we could do so (the

importance of the prior estimate diminishes as M grows–so that with an infinite amount of

data it has no effect at all on the estimate). If a prior estimate of m itself is available, rather

than just its mean square, the problem should be reformulated as one for the estimate of the

perturbation about this value.

It is very important not to be tempted into making a first estimate of m2

0
by using (7.31),

substituting into (7.28), thinking to reduce the error variance. For the Gauss-Markov theorem

to be valid, the prior information must be truly independent of the data being used.

8. Improving Recursively

A common situation arises that one has a solution x̃, ñ,P, and more information becomes

available, often. in the form of further noisy linear constraints. One way of using the new infor-

mation is to simply combine the old and new equations into one larger system, and re-solve. This

approach may well be the best one. Sometimes however, perhaps because the earlier equations

have been discarded, or for reasons of storage or both, one prefers to retain the information in

the previous solution without re-solving the entire system. So-called recursive methods, in both

least-squares and minimum variance estimation provide the appropriate recipes.

Let the original equations be re-labeled so that we can distinguish them from those that

come later, in the form,

E(1)x+ n(1) = y(1) (8.1)

where the noise n(1) has zero mean and covariance matrix Rnn(1). Let the estimate of the

solution to (8.1) from one of the estimators be written as x̃(1), with uncertainty P(1). As a

specific example, suppose (8.1) is full-rank overdetermined, and was solved using row weighted

least-squares as,

x̃(1) =
[
E(1)TRnn(1)

−1E(1)
]
−1

E(1)TRnn(1)
−1y(1), (8.2)

with corresponding P(1) (column weighting has no effect in the full-rank fully-determined case).
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Some new observations, y(2), are obtained, with the error covariance of the new observations

given by Rnn(2), so that the problem for the unknown x is{
E(1)

E(2)

}
x+

[
n(1)

n(2)

]
=

[
y(1)

y(2)

]
(8.3)

where x is the same unknown. We assume 〈n(2)〉 = 0 and 〈n(1)n(2)T 〉 = 0, that is, no

correlation of the old and new measurement errors. A solution to (8.3) should give a better

estimate of x than (8.1) alone, because more observations are available. It is sensible to row

weight the concatenated set to[
Rnn(1)−T/2E(1)

Rnn(2)
−T/2E(2)

]
x+

[
Rnn(1)−T/2n(1)

Rnn(2)
−T/2n(2)

]
=

[
Rnn(1)−T/2y(1)

Rnn(2)
−T/2y(2)

]
. (8.4)

“Recursive weighted least-squares” seeks the solution to (8.4) without inverting the new, larger

matrix, by taking advantage of the existing knowledge of x (1) , P (1) –however they might

actually have been obtained. The objective function corresponding to finding the minimum

weighted error norm in (8.4) is,

J = (y(1)−E(1)x)TRnn(1)
−1(y(1)−E(1)x)

+ (y(2)−E(2)x)Rnn(2)
−1(y(2)−E(2)x) .

(8.5)

Taking the derivatives with respect to x, the normal equations produce a new solution,

x̃(2) =
{
E(1)Rnn(1)

−1E(1) +E(2)TRnn(2)
−1E(2)

}
−1

{
E(1)TRnn(1)

−1y(1) +E(2)TRnn(2)
−1y(2)

}
.

(8.6)

This is the result from the brute-force re-solution. But one can manipulate (8.6) into45,

x̃ (2) = x̃(1)+

P (1)E (2)T
[
E (2)P (1)E (2)T +Rnn (2)

]
−1

[y (2)−E (2) x̃ (1)]

= x̃ (1) +K (2) [y (2)−E (2) x̃ (1)] (8.7)

P (2) = P (1)−K (2)E (2)P (1) (8.8)

where,

K (2) = P (1)E (2)T
[
E (2)P (1)E (2)T +Rnn (2)

]
−1

(8.9)

45Brogan (1985).
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An alternate form, for P (2) , found from the matrix inversion lemma, is

P (2) =
[
P (1)−1+E (2)Rnn (2)E (2)

]
−1

. (8.10)

A similar alternative for x̃(2) also exists, involving different dimensions of the matrices to be

inverted is also available from the matrix inversion lemma, but is generally less useful. (In some

large problems, matrix inversion can prove less onerous than matrix multiplication.)

The solution (8.7) is just the least-squares solution to the full set, but rearranged after a

bit of algebra. The original data, y(1), and coefficient matrix, E(1), have disappeared, to be

replaced by the first solution x̃(1) and its uncertainty P(1). That is to say, one need not retain

the original data and E(1) for the new solution to be computed. All information is included in

x̃(1),P (1) . Furthermore, because the new solution depends only upon x̃(1), P(1), the particular

methodology originally employed for obtaining them is irrelevant: they might even have been

obtained from an educated guess, or from some long previous calculation of arbitrary complexity.

If the initial set of equations (8.1) is actually underdetermined, and should it have been solved

using the SVD, one must be careful that P(1) includes the estimated error owing to the missing

nullspace. Otherwise, these elements would be assigned zero error variance, and the new data

could never affect them.

The structure of the improved solution (8.7) is also interesting and suggestive. It is made

up of two terms: the previous estimate plus a term proportional to the difference between the

new observations y(2), and a prediction of what those observations should have been were the

first estimate the wholly correct one and the new observations perfect. It thus has the form

of a “predictor-corrector.” The difference between the prediction and the forecast can be called

the “prediction error,” but recall there is observational noise in y(2). The new estimate is a

weighted average of this difference and the prior estimate, with the weighting depending upon

the details of the uncertainty of prior estimate and new data. The behavior of the updated

estimate is worth understanding in various limits. For example, suppose the initial uncertainty

estimate is diagonal, P(1) = ∆2I. Then,

K(2) = E(2)T
[
E(2)E(2)T +Rnn(2)/∆

2
]
−1

. (8.11)

If the norm of Rnn(2)/∆2 is small and if the second set of observations is full rank underdeter-

mined, then,

K(2) −→ E(2)T (E(2)E(2)T )−1

and

x̃(2) = x̃(1) +E(2)T (E(2)E(2)T )−1[y(2)−E(2)x̃(1)]

= [I−E(2)T (E(2)E(2)T )−1E(2)]x̃(1) +E(2)T (E(2)E(2)T )−1y(2)
(8.12)
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Now, [I −E(2)T (E(2)E(2)T )E(2)−1] = IN −VV
T = QvQ

T
v

, where V is the full-rank singular

vector matrix for E (2) , spans the nullspace (see Eq. 5.101) of E(2) ). The update thus replaces,

in the the first estimate, all the structures given perfectly by the second set of observations, but

retains those structures from the first estimate about which the new observations say nothing–

an eminently reasonable result.

At the opposite extreme, when the new observations are very noisy compared to the previous

ones,
∥
∥Rnn/∆

2
∥
∥
→∞, ‖K(2)‖ → 0, and the first estimate is left unchanged. The general case

represents a weighted average of the previous estimate with elements found from the new data,

with the weighting depending both upon the relative noise in each, and upon the structure of

the observations relative to the structure of x as represented in P (1) , Rnn (2) , E (2) .

The matrix being inverted in (8.9) is the sum of the measurement error covariance Rnn(2),

and the error covariance of the “forecast” E(2)x̃(1). To see this, let γ be the error component

in x̃(1), which by definition has covariance 〈γγT 〉 = P(1). Then the expected covariance of the

error of prediction is 〈E(1)γγTET 〉 = E(1)P(1)E(1)T , which appears in K(2).

It is useful to notice that Eq. (6.11), the solution to the least-squares problem subject

to certain perfect constraints imposed by a Lagrange multiplier, can be recovered from the

minimum variance solution (8.7) by putting E(2) = A, y(2) = q, Rnn(2) → 0. That is, this

earlier solution can be conceived of as having been obtained by first solving the conventional

least-squares problem, and then being modified by the later information that Ax = q, with very

high accuracy.

The possibility of a recursion based on Eqs. 8.7, 8.8 (or 8.10) is obvious–all subscript 1

variables being replaced by subscript 2 variables, which in turn are replaced by subscript 3

variables, etc. The general form would be,

x̃ (n) = x̃ (n− 1)+K (n) [y (n)−E (n) x̃ (n− 1)] (8.13)

K (n) = P (n− 1)E (n)T
[
E (n)P (n− 1)E (n)T +Rnn (n)

]
−1

(8.14)

P (n) = P (n− 1)−K (n)E (n)P (n− 1) (8.15)

The alternative form for Eq. (8.15) is, from (8.10),

P (n) =
[
P (n− 1)−1+E (n)Rnn (n)

−1
E (n)

]
−1

. (8.16)

The computational load of the recursive solution needs to be addressed. A least-squares

solution does not require one to calculate the uncertainty P (although the utility of x̃ without

such an estimate is unclear). But to use the recursive form, one must have P (n− 1) , otherwise
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the update step, Eq. (8.13) cannot be used. In very large problems, such as appear in fluid

flows, the computation of the uncertainty, from 8.15, or 8.16 can become extremely burdensome,

if not prohibitive. In such a situation, one might simply store all the data, and do one large,

single calculation–if this is feasible. Normally, it will involve less pure computation than will

the recursive solution which must repeatedly update P (n) .

The comparatively simple interpretation of the recursive, weighted least-squares problem

will be used in Chapter 4 to derive the Kalman filter and suboptimal filters in a very simple

form. It also becomes the key to understanding “assimilation” schemes such as “nudging” and

“forcing to climatology,” and “robust diagnostic” methods.

Let us confirm directly that the recursive least-squares result is identical to a recursive

estimation procedure, if appropriate least-squares weight matrices were used. Suppose there exist

two independent estimates of an unknown vector x, denoted x̃a, x̃b with estimated uncertainties

Pa, Pb, respectively. They are either unbiassed , or have the same bias, that is, 〈x̃a〉 = 〈x̃b〉 = xB.

How should the two be combined to give a third estimate x̃+ with minimum error? Try a linear

combination,

x̃
+ = Lax̃a +Lbx̃b . (8.17)

If the new estimate is to be unbiassed, or is to retain the prior bias, it follows that,

〈x̃+〉 = La〈x̃a〉+Lb〈x̃b〉 (8.18)

or,

xB= LaxB+LbxB (8.19)

or,

Lb= I−La (8.20)

Then the uncertainty is,

P+ = 〈(x̃+ − x)(x̃+ − x)T 〉 = 〈(Lax̃a + (I−La)x̃b)(Lax̃a + (I−La)x̃b)
T 〉

= LaPaL
T

a + (I−La)Pb(I−La)
T

(8.21)

where the independence assumption has been used to set 〈(x̃a−x) (x̃b−x)〉 = 0. P+ is positive

definite; minimizing its diagonal elements with respect to La yields (after writing out the diagonal

elements of the products, just as in the Gauss-Markov theorem derivation),

La = Pb(Pa +Pb)
−1

, Lb = Pa(Pa +Pb)
−1

.

The new combined estimate is then,

x̃+ = Pb(Pa +Pb)
−1x̃a +Pa(Pa +Pb)

−1x̃b .

This last expression can be rewritten by adding and subtracting x̃a as,
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x̃+ = x̃a +Pb(Pa +Pb)
−1x̃a

+Pa(Pa +Pb)
−1x̃b − (Pa +Pb)(Pa +Pb)

−1x̃a

= x̃a +Pa(Pa +Pb)
−1(x̃b − x̃a) . (8.22)

Notice in particular, the re-appearance of a predictor-corrector form relative to x̃a.

The uncertainty of the estimate (8.22) is easily evaluated as

P+ = Pa −Pa(Pa +Pb)
−1Pa . (8.23)

and which, by straightforward application of the matrix inversion lemma, is,

P+ = (P−1a +P−1
b
)−1. (8.24)

As is always the case with linear estimation methods, the uncertainty is independent of the ob-

servations. Eqs. (8.22-8.24) are the general rules for combining two estimates with uncorrelated

errors.

Now suppose that x̃a and its uncertainty are known, but that instead of x̃b there are mea-

surements,

E(2)x+ n(2) = y(2), (8.25)

with 〈n(2)〉 = 0, 〈n(2)n(2)T 〉 = Rnn(2). From this second set of observations, we estimate the

solution, using the minimum variance estimator (7.19, 7.21) with no use of the solution variance;

that is, let ‖R−1xx ‖→ 0. The reason for suppressing Rxx, which logically could come from Pa, is

to maintain the independence of the previous and the new estimates. Then,

x̃b = (ETRnn (2)
−1
E)−1ETRnn(2)

−1y (8.26)

Pb = (ETRnn (2)
−1
E)−1 . (8.27)

Substituting (8.26), (8.27) into (8.22), (8.23), and using the matrix inversion lemma gives

x̃+ = x̃a +PaE(2)[E(2)PaE(2)
T +Rnn(2)]

−1(y−E(2)x̃a) , (8.28)

which is the same as (8.13), and thus a recursive minimum variance estimate coincides with

a corresponding weighted least-squares recursion. The new covariance may also be confirmed

to be (8.15 or 8.16). Notice that if x̃a was itself estimated from an earlier set of observations,

that those data have disappeared from the problem, with all the information derived from them

contained in x̃a and Pa. Thus, again, earlier data can be wholly discarded after use.
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9. A Recapitulation

This chapter has not exhausted the possibilities for inverse methods, and the techniques

will be extended in several directions in the next Chapters. Given the lengthy nature of the

discussion so far, some summary of what has been accomplished may be helpful.

The focus is on making inferences about parameters or fields, x, n satisfying linear relation-

ships of the form

Ex+ n = y .

Such equations arise as we have seen, from both “forward” and “inverse” problems, but the tech-

niques for estimating x, n and their uncertainty are useful whatever the physical origin of the

equations. Two methods for estimating x, n have been the focus of the chapter: least-squares

(including the singular value decomposition) and the Gauss-Markov or minimum variance tech-

nique. Least-squares, in any of its many guises, is a very powerful method–but its power and

ease of use have (judging from the published literature) led many investigators into serious con-

fusion about what they are doing–invoking the language of minimum variance estimation while

solving their problem with least-squares.

An attempt is made therefore, to emphasize the two distinct roles of least-squares: as a

method of approximation, and as a method of estimation. It is only in the second formulation

that it can be regarded as an inverse method. A working definition of an inverse method is a

technique able to estimate unknown parameters or fields of a model, while producing an estimate

of the uncertainties of the results. Solution plus uncertainty are the fundamental requirements.

There are many desirable additional features of inverse methods which can prove extremely im-

portant. Among these features are: (1) Separation of nullspace uncertainties from observational

noise uncertainties, (2) the ability to rank the data in its importance to the solution, (3) the

ability to use prior statistical knowledge, (4) understanding of solution structures in terms of

data structure, (5) the ability to trade resolution against variance. (The list is not exhaustive.

For example, in Chapter 3 we will briefly examine the use of inequality information.) As with all

estimation methods, one also trades computational load against the need for information (the

SVD is a powerful form of least-squares, but requires more computation that do other forms).

The Gauss-Markov approach has the strength of forcing explicit use of prior statistical informa-

tion and is directed at the central goal of obtaining x, n with smallest mean-square error, and

for this reason might well be regarded as the default methodology for linear inverse problems. It

has the added advantage that we know we can obtain precisely the same result with appropriate

versions of least-squares, including the SVD, permitting the use of least-squares algorithms, but

at the risk of losing sight of what we are actually attempting.

A number of different procedures for producing estimates of the solution to a set of noisy

simultaneous equations of arbitrary dimension have been described here. The reader may wonder
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which of the variants makes the most sense to use in practice. Because, in the presence of noise

one is dealing with a statistical estimation problem, there is no single “best” answer, and one

must be guided by model context and goals. A few general remarks might be helpful.

In any problem where data are to be used to make inferences about physical parameters,

one typically needs some approximate idea of just how large the solution is likely to be and

how large the residuals probably are. In this nearly agnostic case, where almost nothing else

is known, and the problem is very large, the weighted, tapered least-squares solution is a good

first choice–it is easily and efficiently computed and coincides with the Gauss-Markov and

tapered SVD solutions, if the weight matricesare the appropriate covariances. Sparse matrix

methods for its solution exist should that be necessary46. Coincidence with the Gauss-Markov

solution means one can reinterpret it as a minimum-variance or maximum-likelihood solution

(the Chapter Appendix) should one wish.

It is a comparatively easy matter to vary the trade-off parameter, α2, to explore the con-

sequences of any errors in specifying the noise and solution variances. Once a value for α2 is

known, the tapered SVD can then be computed to understand the relationships between solution

and data structures, their resolution and their variance. For problems of small to moderate size

(the meaning of “moderate” is constantly shifting, but it is difficult to examine and interpret

matrices of more than about 500× 500), the SVD, whether in the truncated or tapered forms is

probably the method of choice–because it provides the fullest information about data and its

relationship to the solution. Its only disadvantages are that one can easily be overwhelmed by

the available information, particularly if a range of solutions must be examined, and it cannot

take advantage of sparsity in large problems. The SVD has a flexibility beyond even what we

have discussed–one could, for example, change the degree of tapering in each of the terms

of (5.149)—(5.150) should there be reason to repartition the variance between solution and noise,

or some terms could be dropped out of the truncated form at will–should the investigator know

enough to justify it.

To the extent that either or both of x,n have expected structures expressible through co-

variance matrices, these structures can be removed from the problem through the various weight

matrices and/or the Cholesky decomposition. The resulting problem is then one in completely

unstructured (equivalent to white noise) elements x,n. In the resulting scaled and rotated sys-

tems, one can use the simplest of all objective functions. Covariance, resolution etc., in the

original spaces of x,n is readily recovered by appropriately applying the weight matrices to the

results of the scaled/rotated space.

Both ordinary weighted least-squares and the SVD applied to row- and column-weighted

equations are best thought of as approximation, rather than estimation, methods and thus have

46Paige & Saunders (1982)
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a lot to recommend them. In particular, the truncated SVD does not produce a minimum

variance estimate the way the tapered version can. The tapered SVD (along with the Gauss-

Markov estimate, or the tapered least-squares solutions) produce the minimum variance property

by tolerating a bias in the solution. Whether the bias is more desirable than a larger uncertainty

is a decision the user must make. But the reader is warned against the belief that there is any

single best method whose determination should take precedence over understanding the problem

physics.

10. Appendix to Chapter. Maximum Likelihood

The estimation procedure used in this book is primarily based upon the idea of minimizing

the variance of the estimate about the true value. Alternatives exist. Given a set of observations

with known joint probability density, one can base of method for estimating various sample

parameters upon a principle of “maximum likelihood.” This very general and powerful principle

attempts to find those estimated parameters which render the actual observations the most

likely to have occurred. By way of motivation, consider the simple case of uncorrelated jointly

normal stationary time series, xi, where,

〈xi〉 =m, 〈(xi −m) (xj −m)〉 = σ2δij.

The corresponding joint probability density for x = [x1, x2, ..., xN ] can be written,

px (X) =
1

(2π)N/2 σN
× (10.1)

exp

{
−

1

2σ2

[
(X1 −m)2 + (X2 −m)2 + ...+ (XN −m)2

]}

Substitution of the observed values, X1 = x1,X2 = x2, ... into Eq. (10.1) permits evaluation

of the probability that these particular values occurred. Denote the corresponding probability

density as L. One can demand those values of m,σ rendering the value of L as large as possible.

L will be a maximum if log (L) is as large as possible: that is we seek to maximize,

log (L) = −
1

2σ2

[
(x1 −m)2 + (x2 −m)2 + ...+ (xN −m)2

]
+N log (σ) +

N

2
log (2π)

with respect to m,σ. Setting the corresponding partial derivatives to zero and solving produces,

m̃ =
1

N

M∑
i=1

xi, σ̃
2 =

1

N

N∑
i=1

(xi − m̃)2 .

That is, the usual sample mean, and biassed sample variance maximize the probability of the

observed data actually occurring. A similar calculation is readily carried out using correlated

normal, or any random variables with a different probability density.
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Likelihood estimation, and its close cousin, Bayesian methods, are general powerful estima-

tion methods which can be used as an alternative to almost everything covered in this book.47

Some will prefer that route, but the methods used here are more intuitive and adequate for a

very wide range of problems.

11. Appendix to Chapter. Relationship to Differential Operators and Green

Functions

Adjoints appear prominently in the theory of differential operators and are usually defined

independent of any optimization problem. Many of the concepts are those used in defining Green

functions.

Consider an example. Suppose we want to solve an ordinary differential equation,

du (ξ)

dξ
+

d2u (ξ)

dξ2
= ρ (ξ) , (11.1)

subject to boundary conditions on u (ξ) at ξ = 0, L. To proceed, seek first a solution to

α
∂v (ξ, ξ0)

∂ξ
+

∂2v (ξ, ξ0)

∂ξ2
= δ (ξ0 − ξ) (11.2)

where α is arbitrary for the time being. Multiply (11.1) by v, and (11.2) by u and subtract:

v (ξ, ξ0)
du (ξ)

dξ
+ v (ξ, ξ0)

d2u (ξ)

dξ2
− u (ξ)α

∂v (ξ, ξ0)

∂ξ
− u (ξ)

∂2v (ξ, ξ0)

∂ξ2

= v (ξ, ξ0)ρ (ξ)− u (ξ) v (ξ, ξ0) . (11.3)

Integrate this last equation over the domain,∫
L

0

{
v (ξ, ξ0)

du (ξ)

dξ
+

v (ξ, ξ0)
d2u (ξ)

dξ2
− u (ξ)α

∂v (ξ, ξ0)

∂ξ
− u (ξ)

∂2v (ξ, ξ0)

∂ξ2

}
dξ (11.4)

=

∫
L

0

{v (ξ, ξ0) ρ (ξ)− u (ξ) δ (ξ0 − ξ)} dξ, (11.5)

or, ∫
L

0

d

dξ

{
v
du

dξ
− αu

dv

dξ

}
dξ +

∫
L

0

{
u
d2v (ξ, ξ0)

dξ2
− u

d2v (ξ, ξ0)

dξ2

}
dξ

=

∫
L

0

v (ξ, ξ0) ρ (ξ) dξ − u (ξ0) (11.6)

Choose α = −1; then the first term on the left hand-side is integrable, as,∫
L

0

d

dξ
{uv} dξ = uv|L

0
, (11.7)

47See especially, van Trees (1968).
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as is the second term on the left,
∫
L

0

d

dξ

{
u
dv

dξ
− v

du

dξ

}
dξ =

[
u
dv

dξ
− v

du

dξ

]L
0

(11.8)

and thus,

u (ξ0) =

∫
L

0

v (ξ, ξ0)ρ (ξ)dξ + uv|L
0
+

[
u
dv

dξ
− v

du

dξ

]
L

0

(11.9)

Because the boundary conditions on v were not specified, we are free to choose them such that

v = 0 on ξ = 0, L such that e.g., the boundary terms reduce simply to [udv/dξ]L
0
, which is then

known.

Here, v is the adjoint solution to Eq. (11.2) with α = −1, defining the adjoint equation to

(11.1); it was found by requiring that the terms on the left-hand-side of Eq. (11.6) should be ex-

actly integrable. v is also the problem Green function (although the Green function is sometimes

defined so as to satisfy the forward operator, rather than the adjoint one). Textbooks show that

for a general differential operator, L, the requirement that v should render the analogous terms

integrable is that,

uTLv = vTLTu (11.10)

where here the superscript T denotes the adjoint, Eq. (7.19) defines the adjoint operator (com-

pare to (6.26a)).

12. Exercises

E������� 3. Using an eigenvector/eigenvalue analysis, solve (a)


1 1 −2

1 2 −1

−2 −1 6






x1

x2

x3


 =




1

0

1


 , (12.1)

and (b) 


1 1 −2

1 2 −1

1.5 2 −2.5






x1

x2

x3


 =




1

0

1


 (12.2)

E������� 4. (a) Find the ranges and null spaces of

A =

{
2 −1 1

3 2 1

}
(12.3)

and calculate the solution and data resolution matrices. (b) Let there be a set of observations

y, such that

Ax+ n =

[
1

2

]
(12.4)
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This problem is clearly formally undetermined. Find the solution which minimizes

J = x
T
x (12.5)

and compare it to the SVD solution with null space set to zero. What is the uncertainty of this

solution? (c) Now consider instead

A =




2 3

−1 2

1 1


 , (12.6)

and the formally overdetermined problem

Ax+ n =




1

2

−1


 (12.7)

and find the least-squares solution which minimizes nTn. What is the uncertainty of this solution?

How does the solution compare to the SVD solution? (d) For an arbitrary A, solve the least-

squares problem of minimizng

J = x
T
x+α

−2
n
T
n (12.8)

and re-write the solution in terms of its SVD. Discuss what happens to the small singular value

contributions.

E������� 5. There is one observation

x+ n1 = 1 (12.9)

and a priori statistics < n >=< x >= 0, < n2 >= 1/2,< x2 >= 1/2. (a)What is the best

estimate of x,n? (b) A second measurement becomes available,

x+ n2 = 3 (12.10)

with < n2 >= 0,< n2
2
>= 4. What is the new best estimate of x and what is its estimated

uncertainty. Are the various a priori statistics consistent with the final result?

E������� 6. Two observations of unknown x produce the apparent results

x = 1 (12.11)

x = 3 (12.12)

Produce a reasonable value for x under the assumption that (a) both observations are equally

reliable, and (b) that the second observation is much more reliable (but not infinitely so) than

the first (make some reasonable numerical assumption about what “reliable” means and state

what you are doing). Can you re-write eqs. (12.11,12.12) in a more sensible form?
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E������� 7. Two observations of 3 unknowns, x, y, z produce the apparent result,

x− y − z = 1 (12.13)

x− y − z = 3 (12.14)

Discuss what if, anything, might be inferred from such a peculiar result. You can make some

sensible assumptions about what is going on, but say what they are.

E������� 8. The temperature along an oceanic transect is believed to satisfy a linear rule,

θ = ar+ b,where r is the distance from a reference point, and a, b are constants. Measurements

of θ at sea, called y, produce the following values,r = 0, y = 10; r = 1, y = 9.5; r = 2, y =

11.1, r = 3, y = 12. (a) Using ordinary least-squares, find an estimate of a, b and the noise in

each measurement, and their standard errors. (b) Solve it again using the SVD and discuss, via

the resolution matrices, which of the observations, if any proved most important. Is the solution

fully resolved?

E������� 9. Consider the system of equations

{
1 2 1

1 2.1 1

}
x+ n =

[
1

2

]
. (12.15)

Using the SVD, compare the solutions at ranks 1, 2 for the two cases of

R = I2,R =

{
1 0.99999

0.99999 1

}
. (12.16)

How do the rank 1 solutions differ in their treatment of the noise? What is the difference in the

solutions at rank 2?

E������� 10. Figure 14
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F����� 14. Special case of a tracer flux problem with only three reservoirs (plus

an external one). Jij represent flows from box i to box j and the Ci are tracer

concentrations.

depicts a simple “box-model”. There are concentrations Ci in each of three boxes and the mass

flux from box i to box j is Jij > 0. Box “0” corresponds to externally imposed conditions. (a)

Write the simultaneous equations for mass conservation in each box. (b) Let the concentration

source or sink in box i be denoted qi. Write the simultaneous equations for concentration steady-

state in each box. (c) Initially all Jij are thought to be about 8 (this is a not very sophisticated

way of dealing with the positivity constraint on Jij) and measurements show C0 = 5, C1 =

3, C3 = 1, q1 = 20± 2, q2 = −2± 2, q3 = 8± 10. Assuming the measurements of Ci are perfect,

make a better estimate of Jij ,by finding the various corrections ∆Jij. (d) Assuming < ∆Jij >=

0,< ∆J2

ij >= 10, find a solution using the truncated and tapered SVD and the Gauss-Markov

Theorem. Find the uncertainty of the estimates. (e) Solve the problem by linear programming

without using the a priori variances, but enforcing the positivity constraints on the Jij.

E������� 11. For the Laplace-Poisson equation ∇2φ = ρ with Dirichlet boundary conditions

in a square domain, put it into discrete form and code it on a computer so that it can be written,

Ax = b. (12.17)

Choose any reasonable dimension for the number of grid points or finite elements or basis func-

tions. Confirm that A is square. (a) For any reasonable boundary conditions φb and values of

ρ, solve (12.17) as a forward problem (b) Add some random noise to φb and solve it again. (c)

Omit any knowledge of ρ over some part of the domain and find at least one possible solution

(you could use least-squares). (d) Omit any knowledge of φb over some part of the domain and
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find at least one possible solution. (e) Suppose φ from (a) is known over part of the domain,

use that knowledge to help improve the solutions in (b-d).

E������� 12. Consider the simultaneous equations, Ax = y,



1 1 −1

2 1 1

−1 0 −2







x1

x2

x3


 =



1

2

2




(a) Using a numerical routine for symmetric matrix eigenvalue/eigenvector problems (i.e., do

not use a singular value decomposition program such as MATLAB’s SVD), find the singular

value decomposition for the matrix A. (b) Find the null space and ranges of A,A
T (c) Using

the singular vectors and singular values, find the general solution to the equations and explain

the behavior of this solution. Are there any residuals? (d) Find the resolution matrix for the

solution and for the “data”, y.

E������� 13. You have five data points, yt = 1,−2,−3,−2,−1 ,t = 0, 1, 3, 4, 5 and you have

reason to believe they are given by a reduced Fourier series

yt = a cos(2πt/6) + b sin (2πt/3) + nt (12.18)

where nt is noise. Solve this problem for estimates of a, b, nt in three ways (a) As an ordinary

least-squares problem. (You can use a matrix inversion routine if you wish.). (b) As an under-

determined problem in 7 unknowns. (c) By the singular value decomposition (you may use an

svd routine if you want). Explain the differences among the solutions. (d) The noise variance

is believed to be < n2t >= 1.5. Make an estimate of the uncertainty in your estimates of a, b.

E������� 14. (a) Set up the Neumann problem on a grid and show explicitly that there is

a solution and “observation” null space. Interpret them. (b) Let the normal boundary condition

be ∂φ/∂n = 3 everywhere. Is there any difficulty? What is its character, and how might it be

dealt with?

E������� 15. For the Neumann problem, write the model equations with error terms, and

solve the problem with additional information providing estimates of φij at several grid points

(rendering the problem formally overdetermined).



CHAPTER 4

The Time-Dependent Inverse Problem: State Estimation

1. Background

The discussion so far has treated models and data that most naturally represent a static

world. Much data however, represent systems that are changing to some degree. Many familiar

differential equations describe phenomena that are intrinsically time-dependent; a good example

is the ordinary wave equation,

1

c2
∂2x (t, r)

∂t2
−

∂2x(t, r)

∂r2
= 0. (1.1)

One may well wonder if the methods described in Chapter 2 have any use with data thought

to be described by (1.1). One way to answer the question is to recognize that t is simply

another coordinate, and can be regarded e.g., as the counterpart of one of the space coordinates

encountered in the previous discussion of two dimensional partial differential equations. From

this point of view, time dependent systems are nothing but versions of the systems already

developed. (The statement is even more obvious for the simpler equation,

d2x (t)

dt2
= q (t) . (1.2)

That the coordinate is labelled t is a detail.)

On the other hand, time often has a somewhat different flavor to it than does a spatial

coordinate because it has an associated direction. The most obvious example occurs when one

has data up to and including some particular time t, and one asks for a forecast of some elements

of the system at some future time t′ > t. Even this role of time is not unique: one could imagine

a completely equivalent spatial forecast problem, in which e.g., one required extrapolation of

the map of an ore body beyond some area in which measurements exist. In state estimation,

time does not introduce truly novel problems. The main issue is really a computational one:

problems in two or more spatial dimensions, when time dependent, typically generate system

dimensions which are simply too large for conventionally available computer systems. Simply

on the basis of computational load, one seeks state estimation algorithms that are more efficient

in some way, than what can be achieved with the methods used so far. Consider as an example,

∂φ

∂t
= κ∇2φ, (1.3)

139
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a two dimensional generalization of the Laplace equation (a diffusion equation). Using a one-

sided time difference, and the discrete form of the Laplacian in Eq. (2.2, Chapter 1), one has

φij ((n+ 1)∆t)− φij (n∆t)

∆t
= (1.4)

κ
{
φi+1,j (n∆t)− 2φi,j (n∆t) + φi−1,j (n∆t) + φi,j+1 (n∆t)− 2φi,j (n∆t) + φi,j−1 (n∆t)

}

If there are M2 elements defining φij at each time n∆t, then the number of elements over the

entire time span of T time steps, would be TM2 and which grows rapidly as the number of time

steps increases. Typically the relevant observation numbers also grows rapidly through time.

On the other hand, the operation,

x =vec
(
φij (n∆t)

)
, (1.5)

renders Eq. (1.4) in the familiar form

A1x = 0, (1.6)

and with some boundary conditions, some initial conditions and/or observations, and a big

enough computer, one could proceed with any of the methods in Chapter 2 completely un-

changed. There are however, many times when T, M2 become so large, that even the biggest

extant computer is inadquate. One then seeks methods, which can take advantage of special

structures built into time evolving equations to reduce the computational load. (Note however,

that A1 is sparse.)

This chapter is in no sense exhaustive; many entire books are devoted to the material and

its extensions, which are important for understanding and practical use. The intention is to lay

out the fundamental ideas, which are generalizations of methods already described in Chapters 2

and with the hope that they will permit the reader to penetrate the wider literature. Several very

useful textbooks are available for readers who are not deterred by discussions in contexts differing

from their own applications.1 Most of the methods now being used in fields like oceanography

and meteorology have been known for years under the general heading of control theory and

control engineering. The experience in these latter fields is very helpful; the main issues in

applications to fluid problems concern the size of the models and data encountered: they are

typically many orders of magnitude larger than anything contemplated by engineers, and one

requires novel computational approaches. In meteorology, estimation for forecasting is called

assimilation.2

There are several notation systems in wide use. I have chosen here to use one that appears

to be both simple and adequate to our needs, and it is taken directly from the control theory

1I have found those by Liebelt (1967), Gelb (1974), Bryson and Ho (1975), Brown (1983), and Anderson and

Moore (1979) to be especially helpful
2Daley (1991)
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literature. Meteorologists have tended to go their own idiosyncratic way3, with some loss of

transparency and in the ability to easily import ideas from other fields.

2. Some Basic Ideas and Notation

2.1. Models. In the context of this chapter, by “models” is meant statements about the

connections between the system variables in some place at some time, and those in all other places

and times. Maxwell’s equations are a model of the behavior of time-dependent electromagnetic

disturbances. These equations can be used to connect the magnetic and electric fields everywhere

in space and time. Other physical systems are described by the Schrodinger, elastic wave, or

fluid-dynamical equations. Static situations are simply special limits, e.g., for an electrostatic

field in a container with known boundary conditions.

A useful concept is that of the system “state”. By that is meant the information at a single

moment in time required to fully describe the system a small time step into the future. So for

example, the time evolution of a system described by the tracer diffusion equation,

∂C (r,t)

∂t
− κ∇2C (r,t) = 0,

inside a closed container can be calculated with arbitrary accuracy at time t+∆t, if one knows

C (r,t) , and the boundary conditions CB (t) ,as ∆t → 0. C (r, t) is the state variable, with the

boundary conditions being regarded as separate externally provided variables (but the distinction

is, as we will see, to some degree an arbitrary one) In practice, such quantities as initial and

boundary conditions, container shape, etc. are always imperfectly known, typically arise from

observation, and the problems are identical to those already considered.

Consider any model, whether time dependent or steady, but rendered in discrete time. The

“state vector” x (t) is defined as those elements of the model employed to describe fully the

physical state of the system at any time and all places as required by the model in use. For the

discrete Laplace/Poisson equation in Chapter 1,
[
φij

]
is the state vector. In an ocean general

circulation model, the state vector might consist of three components of velocity, pressure and

density at each of millions of grid points, and it will be a function of time, x(t), as well. (One

might want to regard the complete description,

xB = [x (1∆t) ,x (2∆t) , ..,x (T∆t)]T , (2.1)

as the state vector, but by convention, it refers to the subvectors, x (n∆t) , each of which is

sufficient to compute any future one, given the boundary conditions.)

3Ide et al. (1997)
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Consider a partial differential equation4

∂

∂t
(∇2

hp) + β
∂p

∂η
= q (ξ, η, t) , (2.2)

Suppose it is solved by an expansion

p(ξ, η, t) =

N/2∑

j=1

a2j(t) cos(kj · r) + a2j−1(t) sin(kj · r). (2.3)

[kj = (kξ, kη), r = (ξ, η)], then a(t) =
[
a1(t) a2(t) · · ·a2j−1(t) . . .

]T
is a discrete description and

becomes the N−dimensional state vector5 Any adequate discretization can provide the state

vector, it is non-unique, and careful choice can greatly simplify calculations.

In the most general terms, we can write any discrete model as a set of functional relations

L
(
x(0), . . . ,x(t−∆t), x(t), x(t+∆t), . . .x(tf ) . . . , B(t)q(t) ,

B(t)q(t+∆t), . . . , t
)
= 0

(2.4)

whereB(t)q(t) represents a general, canonical, form for boundary and initial conditions/sources/sinks.6

We almost always choose the time units so that ∆t = 1. The static system equation

Ax = q (2.5)

is a special case. In practice, the collection of relationships (2.4) always can be rewritten as a

time-stepping rule—for example

x(t+ 1) = L
(
x(t), B(t)q(t), t

)
, ∆t = 1, (2.6)

or, if the model is linear,

x(t+ 1) = A(t)x(t) +B(t)q(t) . (2.7)

If the model is time invariant, A(t) =A, and B may also be time invariant. These relationships

have complete analogues in the continuous-time case; for example, (2.7) would be

dx(t)

dt
=A1(t)x(t) +B(t)q(t) . (2.8)

A time-dependent model is a set of rules for computing the state vector at time t + 1 from

knowledge of its values at time t and the externally imposed forces and boundary conditions. It

is generally true that any linear discretized model can be put into this canonical form, although

it may take some work. By the same historical conventions described in Chapter 1, solution

4Oceanographers will recognize this equation as that describing so-called barotropic Rossby waves. For

present purposes, it is just one of many such equations one is faced with.
5Gaspar and Wunsch (1989)
6Construction of computer codes for the fluid dynamical equations is a large and complex subject in its

own right. Readers interested in the general problem of oceanic numerical models can consult textbooks such as

Haidvogel and Beckmann ().
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of systems like (2.6), subject to appropriate initial and boundary conditions, constitutes the

forward or direct problem.

Example: The Straight Line. The straight-line model, discussed in Chapter 1, can be put

into the time-evolving framework. Let ξ(t), satisfy the rule,

d2ξ

dt2
= 0 , (2.9)

which can be discretized as

ξ(t+∆t)− 2ξ(t) + ξ(t−∆t) = 0 . (2.10)

Putting

x1(t) = ξ(t) , x2(t) = ξ(t−∆t) ,

one has

x(t+∆t) =Ax(t)

where

A =

{
2 −1

1 0

}
,

which is of the standard form (2.7), with B = 0.

Example: The Mass-Spring Oscillator. The elementary mass-spring oscillator satisfies the

differential equation

m
d2ξ(t)

dt2
+ r

dξ(t)

dt
+ kξ(t) = q(t)

where r is a damping constant. A simple one-sided time discretization produces

m
(
ξ(t+∆t)− 2ξ(t) + ξ(t−∆t)

)
+ r∆t

(
ξ(t)− ξ(t−∆t)

)
+ k(∆t)2 ξ(t)

= q(t) (∆t)2

or

ξ(t+∆t) =

(
2−

r∆t

m
−

k(∆t)2

m

)
ξ(t)

+

(
r∆t

m
− 1

)
ξ(t−∆t) + (∆t)2

q(t)

m
,

which is 
ξ(t+∆t)

ξ(t)


 =



2− r

m∆t− k
m(∆t)2 r∆t

m − 1

0 1




 ξ(t)

ξ(t−∆t)




+


(∆t)2

q(t)
m

0




(2.11)

and is the canonical form with A independent of time,

x(t) =
[
ξ(t) ξ(t−∆t)

]T
, B(t)q(t) =

[
(∆t)2 q(t)/m 0

]T
.
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Example: A Linear Difference Equation. A difference equation important in time-series

analysis7 is,

ξ(t) + a1ξ(t− 1) + a2ξ(t− 2) + · · ·+ aNξ(t−N) = η(t) (2.12)

where η(t) is a zero-mean, white-noise process [Equation (2.12) is an example of an autoregressive

process (AR)]. To put this into the canonical form, write8,

x1(t) = ξ(t−N)

x2(t) = ξ(t−N + 1)

...

xN (t) = ξ(t− 1)

xN (t+ 1) = −a1 xN−1(t)− a2 xN−2(t) · · · − aN x1(t) + η(t) .

It follows that x1(t+ 1) = x2(t), etc., or

x(t+ 1) =




0 1 0 · · · 0 0

0 0 1 · · · 0 0

· · · · · · · ·

−aN −aN−1 −aN−2 · · · −a2 −a1



x(t) +




0

0

·

1



η(t) . (2.13)

Coefficients of the form in (2.13) are known as companion matrices; Equation (2.13) connects

this Chapter with the field of time-series analysis. Here, B(t) = [0 0 · 1]T , q(t) = η(t).

Given that most time-dependent models can be written as in (2.6) or (2.7), the forward

model solution involves marching forward from known initial conditions at t = 0, subject to

specified boundary values. So, for example, the linear model (2.7), with given initial conditions

x(0) = x0, involves the sequence,

x(1) =A(0)x0 +B(0)q(0)

x(2) =A(1)x(1) +B(1)q(1)

=A(1)A(0)x0 +A(1)B(0)q(0) +B(1)q(1)

...

x(tf ) =A(tf − 1)x(tf − 1) +B(tf − 1)q(tf − 1)

=A(tf − 1)A(tf − 2) . . .A(0)x0 + . . . .

Most of the basic ideas can be understood in the notationally simplest case of time-independent

A, B, and that is usually the situation we will address with little loss of generality. Figure 1a

7Box et al. (1994)
8Luenberger (1979)
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F����� 1. (a) The time history of x1(t) from the state vector of a linearized

discrete oscillator driven by white noise forcing (the control). Here, ∆t = 1,

k = 0.25, r = 0, Q = 1, 〈u(t)〉 = 0. The large excursions possible with a

zero-mean small variance forcing are a simple illustration of the random walk

phenomenon. (b) Early portion of the time history x1(t) (solid line) displayed in

(a), and the Kalman filter estimate of it (dashed). The filter was started with

x̃(0) = [10, 10]T (correct value is x(0) = [0, 0]T ), P(0) = 100I, E = [1, 0], Q = 1,

and R = 1000. The controls were treated as completely unknown. The system

gradually converges to the true state and is consistent within one standard error

of the truth. (c) The variance P11(t) of the Kalman filter estimate displayed in

(b). Note the initial oscillatory behavior derived from the dynamics and then the

asymptote as the incoming data stream just balances the uncertainties introduced

by the unknown u(t). (d) The same as (b) except that the data were available

only every 25 time-steps (t = 25, 50, . . .). Convergence still takes place but is

much slower.

depicts the time history for the harmonic oscillator, with the parameter choice ∆t = 1, k = 0.25,

m = 1, r = 0, so that

A =

{
1.75 −1

1 0

}
, Bq(t) =

[
1

0

]
u(t)

where 〈u(t)2〉 = 1. The initial conditions were x(0) =
[
ξ(0) ξ(−1)

]T
. The general t1/2 growth

of the displacement of a randomly forced, undamped oscillator is apparent.

If the model is a “black box” in which A is unknown, it can be found in a number of ways.

Suppose that Bq(t) = 0, and Equation (2.7) is solved N times, starting at time t0, subject to
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x
(i)(t0) = column i of I–that is, the model is stepped forward for N different initial conditions

corresponding to the N-different problems of unit initial condition at a single grid or boundary

point, with zero initial conditions everywhere else. Let each column of G(t, t0) correspond to

the appropriate value of x(t)–that is,

G(t0, t0) = I

G(t0 + 1, t0) =A(t0)G(t0, t0)

G(t0 + 2, t0) =A(t0 + 1)G(t0 + 1, t0) =A(t0 + 1)A(t0)

...

G(t0 + t, t0) =A(t0 + t− 1)A(t0 + t− 2) · · ·A(t0) .

We refer to G(t, t0) as a unit solution; it is closely related to the Green function discussed in

Chapter 2. The solution for arbitrary initial conditions is then,

x(t) =G(t, t0)x(t0) , (2.14)

and the modification for Bq �= 0 is straightforward.

A is necessarily square. It is also often true that A−1 exists, and a generalized inverse can

be used if necessary. If A−1 can be computed, one can contemplate the possibility (important

later) of running a model backward in time, for example as,

x(t) =A−1x(t + 1)−A−1B(t)q(t) .

Such a computation may be inaccurate if carried on for long times, but the same may well be

true of the forward model.

Some attention must be paid to the structure of B(t)q(t). The partitioning into these

elements is not unique and can be done to suit one’s convenience. The dimension of B is that of

the size of the state vector by the dimension of q, which typically would reflect the number of

independent degrees of freedom in the forcing/boundary conditions. (Forcing is hereafter used

to include boundary conditions, sources and sinks, and anything normally prescribed externally

to the model.) Consider the model grid points displayed in Figure 2.. Suppose that the boundary

grid points are numbered 1—5, 6, 10, 46—50, and all others are interior. If there are no interior

forces, and all boundary values have a time history q(t), then we could take,

B = [1 1 1 1 1 1 0 0 0 · · · 1 1]T , (2.15)

where the 1−s occur at the boundary points, and the zeros at the interior ones.
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F����� 2. (a) Simple numerical grid for use of discrete form of model; × denote

boundary grid points, and o are interior ones. Numbering is sequential down the

columns, as shown. (b) Tomographic velocity integral is assumed given between

i1, i2.

Suppose, instead, that boundary grid point 2 has values q1(t), all other boundary conditions

are zero, and interior point 7 has a forcing history q2(t) and all others are unforced; then

Bq(t) =




0 0

1 0

0 0

0 0

0 0

0 0

0 1

· ·

0 0




[
q1(t)

q2(t)

]
. (2.16)

A time-dependent B would correspond to time-evolving positions at which forces were

prescribed–a somewhat unusual situation. It would be useful, for example, if one were driving a

fluid model with a heat flux or stress in the presence of a prescribed moving ice cover. One could

also impose initial conditions using a time-dependent B(t), which would vanish after t = 0.

As with steady models, we need to be careful about understanding the propagation of errors

in time and space. If we have some knowledge of the initial oceanic state, x̃(0), and are doing

an experiment at a later time t, the prior information–the estimated initial conditions–carries
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information in addition to what we are currently measuring. We seek to combine the two sets

of information. How does information propagate forward in time? Formally, the rule (2.6) tells

us exactly what to do. But because there are always errors in x̃(0), we need to be careful

about assuming that a model computation of x̃(t) is useful. Depending upon the details of

the model, one can qualitatively distinguish the behavior of the errors through time. (1) The

model has decaying components. If the amplitudes of these components are partially erroneous,

then for large enough t, these elements will have diminished, perhaps to the point where they

are negligible. (2) The model has neutral components. At time t, the erroneous elements have

amplitudes no larger than they were at t = 0. (3) The model has unstable components; at time

t any erroneous parts may have grown to swamp everything else computed by the model.

Realistic models, particularly fluid ones, can contain all three types of behavior simultane-

ously. It thus becomes necessary to determine which elements of the forecast x̃(t) can be used to

help estimate the system state by combination with new data, and which should be suppressed

as partially or completely erroneous. Simply assuming all components are equally accurate can

be a disastrous recipe.

Before proceeding, we reiterate the point that time need not be accorded a privileged posi-

tion. From the inclusive state vector, xB defined in Eq. (2.1). Then models of the form (2.7)

can be written in the whole-domain form,

ABxB = dB

AB =




−A I 0 · · 0 0

0 −A I 0 · 0 0

· · · · · −A I




, dB =



Bq(0)

Bq(1)
...


 ,

which is no different, except for its possibly enormous size, from that of a static system and can

be handled by any of the methods of earlier chapters if the computational capacity is sufficient.

Note the block-banded nature of AB.

2.2. How to Find the Matrix A (t). Most modern large-scale time-evolving models,

even if completely linear, are written in terms of computer codes, typically in languages such

as Fortran90 or C/C++. The state transition matrix is not normally explicitly constructed,

instead individual elements of xi (t) are explicitly time-stepped to produce xi (t+ 1), usually

using various vectorizations. For many purposes, A (t) is never explicitly required, as all one

cares about is its operation on x (t), and the forward model code does the equivalent. But often,

as will be seen below, the availability of A (t) can be very useful, and the question arises as to

how one might obtain A (t) from the existing model code?
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Several methods exist, but consider now only the case of a steady model, with no time-

dependence in any of the governing model matrices (A,B,Γ).For maximum simplicity, set

B = Γ = 0.

(1) Define N−independent initial condition vectors x
(i)
0 , 1 ≤ i ≤ N, and form a matrix,

X0 =
{
x
(i)
0

}
.

Time step-the model once, equivalent to,

X1 =AX0

and invert:

A =X1X
−1

0 .

The inverse will exist by the assumption of independence (spanning set) in the initial condition

vectors. One must run the model N−times in this approach. A special, useful case, would be

when x
(i)
o = δij (unit perturbation initial conditions), in which case the solution X1 would be

the Green function.

The changes from X0 to X1 may be too small for adequate numerical accuracy, and one

might use multiple time-steps, computing

Xn =A
nX0

which would determine An, and A itself can be found by one of the matrix root algorithms.9

(2) Suppose the statistics of the solutions are known, e.g.,

R (0) = 〈x (t)x (t)〉 , R (1) = 〈x (t+ 1)x (t)〉 ,

perhaps because the model has been run many times–making it possible to estimate these from

stored output. Then noting,

〈x (t+ 1)x (t)〉 =A 〈x (t)x (t)〉 ,

or

R (1)=AR (0) ,

and

A = R (1)R (0)−1 .

That is to say, knowledge of these covariances is equivalent to knowledge of the model itself (and

vice-versa).10 Again, multiple time steps can be used if necessary to infer An.

Note that determination of B,Γ, can be done analogously using a spanning set of q(i),u(i)

respectively, as boundary conditions, setting x (0) = 0.

9Menemenlis and Wunsch (1997); Stammer and Wunsch (1996)
10von Storch, et al. (1988).
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(3) Automatic differentiation (AD) tools exist11 which can take computer code (at the mo-

ment only Fortran, but other languages will become available soon), for the forward model, and

produce by analysis of the code, equivalent computer code (Fortran) for construction of A. Some

codes preferentially produce AT , but simple transposition then can be employed.

If the model is fully time-dependent, then A (t) has be deduced at each separate time-step,

as above. For some purposes, one might seek temporal averages, so defining and Ā, as

Ā
n=A (0)A (1) ..A (n− 2)A (n− 1) .

2.3. Observations and Data. Here, observations are introduced into the modeling dis-

cussion so that they stand on an equal footing with the set of model equations (2.6) or (2.7).

Observations will be represented as a set of linear simultaneous equations at time t,

E(t)x(t) + n(t) = y(t) , (2.17)

a straightforward generalization of the previous static systems where t did not appear explicitly;

here, E is sometimes called the design or observation matrix. The notation used in Chapter 2

to discuss recursive estimation was deliberately chosen to be the same as here.

The requirement that the observations be linear combinations of the state-vector elements

can be relaxed if necessary, but most common observations are of that form. [An obvious excep-

tion would be the situation in which the state vector included velocity components, u(t), v(t),

but an instrument measuring speed,
√
(u(t)2 + v(t)2), would be a nonlinear relation between

yi(t) and the state vector. Such systems are usually handled by some form of linearization.12]

To be specific, the noise n(t) is supposed to have zero mean and known second-moment

matrix,

〈n(t)〉 = 0, 〈n(t)n(t)T 〉 =R(t) . (2.18)

But

〈n(t)n(t′)T 〉 = 0, t �= t′ . (2.19)

That is, the observational noise should not be correlated from one measurement time to another;

there is a considerable literature on how to proceed when this crucial assumption fails (called

the colored-noise problem13). Unless specifically stated otherwise, we will assume that (2.19) is

valid.

The matrix E(t) can accommodate almost any form of linear measurement. If, at some

time, there are no measurements, then E(t) vanishes, along with R(t). If a single element xi(t)

is measured, then E(t) is a row vector that is zero everywhere except in column i, where it is

11Giering and Kaminski (1997), Marotzke et al. (1999).
12For example, Bryson and Ho (1975, p. 351).
13For example, Stengel (1986).
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1. It is particularly important to recognize that many measurements are weighted averages of

the state-vector elements. Some measurements–for example, tomographic ones14 as described

in Chapter 1–are explicitly spatial averages (integrals) obtained by measuring some property

along a ray travelling between two points; see Fig. 2. Any such data representing spatially

filtered versions of the state vector can be written

y(t) =
∑

αjxj(t) . (2.20)

Point observations often occur at positions not coincident with model grid positions (al-

though many models, e.g., spectral ones, do not use grids). Then (2.17) is an interpolation

rule, possibly either very simple or conceivably a full-objective mapping calculation, of the value

of the state vector at the measurement point. Often the number of model grid points vastly

exceeds the number of the data grid points; thus, it is convenient that the formulation (2.17)

demands interpolation from the dense model grid to the sparse data positions. (In the unusual

situation where the data density is greater than the model grid density, one can restructure the

problem so the interpolation goes the other way.) More complex filtered measurements exist.

In particular, one may have measurements of a state vector only in specific wavenumber bands;

but such band-passed observations are automatically in the form (2.17).

As with the model, the observations of the combined state vector can be concatenated into

a single observational set

EBxB + nB = yB (2.21)

where

EB =




0 0 0 · 0

0 E(1) 0 · 0

0 0 E(2) · ·

· · · 0 E(tf )




, nB =




0

n(1)
...

n(tf )




, yB =




0

y(1)
...

y(tf )




.

EB is also block-banded and often very sparse. If the size is no problem, the concatenated

model and observations could be dealt with using any of the methods of Chapter 2. The rest of

this chapter can be thought of as an attempt to produce from the model/data combination the

same type of estimates as were found useful in Chapter 2, but exploiting the special structure

of matrices AB and EB so as to avoid having to store them in the computer all at once, which

may be physically impossible.

The unit solution formulation of Chapter 2, Eq. (??) leads to a particularly simple reduced

form if, for example, only the initial conditions x(0) are unknown, one has immediately

y(t) = E(t)G(t, 0)x(0) + n(t) , 1 ≤ t ≤ tf ,

14Munk, Worcester, & Wunsch (1995).
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which are readily solved in whole-domain form for x (0) . If only a subset of the x(0) are thought

to be nonzero, the columns of G need to be computed only for those elements.15

3. Estimation

3.1. Model and Data Consistency. In many scientific fields, the central issue is to make

estimates of what is going on from the combination of a model with measurements. The model

is intended to encompass all one’s theoretical knowledge about how the system behaves, and the

data are the complete observational knowledge of the same system. If done properly, inferences

from the model/data combination should be no worse, and may well be very much better, than

those made from either alone. It is the latter possibility that motivates the development of

state estimation procedures. “Best-estimates” made by combining models with observations are

often used to forecast a system (e.g., to land an airplane), but this is by no means the major

application.

Such model/data problems are ones of statistical inference with a host of specific subtypes.

Some powerful techniques are available, but like any powerful tools (a chain saw, for example),

they can be dangerous to the user! In general, one is confronted with a two-stage problem. Stage

1 involves developing a suitable model that is likely to be consistent with the data. “Consistent”

means that within the estimated data errors (and obtaining the data errors is itself a serious

modeling problem), the model is likely to be able to describe the features of interest. One can go

very badly wrong here, before any computation takes place. If one attempts to model elastic wave

propagation using the equations of fluid dynamics, estimation methods will commonly produce

some kind of “answer”, but one which would be nonsensical. Model failure can of course, be

much more subtle, in which some supposed secondary element (e.g., a time-dependence) proves

to be critical to a description of the data. Good technique alerts users to the presence of such

failures, along with clues as to what should be changed in the model. But these issues do not

however, apply only to the model. The assertion that a particular data set carries a signal of a

particular kind, can prove to be false in a large number of ways. A temperature signal thought

to represent the seasonal cycle might prove, on careful examination to be dominated by higher

or lower frequency structures, and thus its use with an excellent model of annual variation might

prove disastrous. Whether this is regarded as a data or as a model issue is evidently somewhat

arbitrary.

Thus stage 1 of any estimation problem has to involve understanding of whether the data

and the model are physically and statistically consistent. If they are not, one should stop. Often

where they are believed to be generally consistent up to certain quantitative adjustments, one can

combine the two stages. A model may have adjustable parameters (turbulent mixing coefficients;

15A method exploited by Stammer and Wunsch (1996).
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boundary condition errors; etc.) which could bring the model and the data into consistency, and

then the estimation procedure becomes, in part, an attempt to find those parameters in addition

to the state. Alternatively, the data error covariance, R (t), may be regarded as incompletely

known, and one might seek as part of the state estimation procedure to improve one’s estimate

of it. (Problems like this one are taken up here under the subject of “adaptive filtering.”)

Assuming for now that the model and data are likely to prove consistent, one can address

what might be thought of as a form of interpolation: Given a set of observations in space and

time as described by Equation (2.17), use the dynamics as described by the model (2.6) or (2.7)

to estimate various state-vector elements at various times of interest. Yet another, less familiar,

problem recognizes that some of the forcing terms B(t)q(t) are partially or wholly unknown (e.g.,

no one believes that the windstress boundary conditions over the ocean are perfectly known),

and one might seek to estimate them from whatever ocean observations are available and from

the known model dynamics. Many real problems contain both these issues..

The forcing terms–representing boundary conditions as well as interior sources/sinks and

forces–almost always need to be divided into two elements: the known and the unknown parts.

The latter will often be perturbations about the known values. Thus, rewrite (2.7) in the

modified form

x(t+ 1) =A(t)x(t) +B(t)q(t) + Γ(t)u(t), (3.1)

where now B(t)q(t) represent the known forcing terms and Γ(t)u(t) the unknown ones, which

we will generally refer to as the controls, or control terms. Γ(t) is known and plays the same

role for u(t) as does B(t) for q(t). Usually B(t), Γ(t) will be treated as time independent, but

this simplification is not necessary. Almost always, we can make some estimate of the size of

the control terms, as for example,

〈u(t)〉 = 0, 〈u(t)u(t)T 〉 = Q(t) . (3.2)

The controls have a second, somewhat different role: They can also represent the model

error. Most models are inaccurate to a degree–approximations are often made to the equations

describing any particular physical situation. One can expect that the person who constructed

the model has some idea of the size and structure of the physics or chemistry, or biology,. . .

that has been omitted or distorted in the model construction. In this context, Q represents

the covariance of the model error, and the control terms represent the missing physics. The

assumption 〈u(t)〉 = 0 must be critically examined in this case, and in the event of failure,

some modification of the model must be made or the variance artificially modified to attempt to

accommodate what becomes a model bias error. But the most serious problem is that models are

rarely produced with any quantitative description of their accuracy beyond one or two examples

of comparison with known solutions, and one is left to make pure guesses at Q(t). Getting

beyond such guesses is again a problem of adaptive estimation addressed later.
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Collecting the standard equations of model and data:

x (t+ 1)= A (t)x (t)+Bq (t)+Γu (t) , 0 ≤ t ≤ tf − 1 (3.3)

E (t)x (t)+n (t)= y (t) , 1 ≤ t ≤ tf (3.4)

n (t)= 0,

〈
n (t)n (t)T

〉
= R (t) ,

〈
n (t)n

(
t′
)〉
= 0, t �= t′ (3.5)

〈u〉= 0, 〈u (t)u (t)〉= Q (t) (3.6)

x̃ (0)= x0,
〈
(x̃ (0)−x (0)) (x̃ (0)−x (0))T

〉
= P (0) (3.7)

where tf defines the endpoint of the interval of interest. The last equation, (3.7), treats the

initial conditions of the model as a special case–the uncertain initialization problem, where

x(0) is the true initial condition and x̃(0) = x0 is the value actually used but with uncertainty

P(0). Alternatively, one could write

E(0)x (0) + n (0) = x0, E (0)= I,
〈
n (0)n (0)T

〉
= P (0) , (3.8)

and include the initial conditions as a special case of the observations–recognizing explicitly

that one often obtains initial conditions from observations.

This general form permits one to grapple with reality. In the spirit of ordinary least squares

and its intimate cousin, minimum-error variance estimation, consider the general problem of

finding state vectors and controls, u (t) , that minimize an objective function,

J =
(
x(0)− x0

)T
P(0)−1

(
x(0)− x0

)

+

tf∑

t=1

(
E(t)x(t)− y(t)

)T
R(t)−1

(
E(t)x(t)− y(t)

)

+

tf−1∑

t=0

u(t)TQ(t)−1u(t) ,

(3.9)

subject to the model, (3.3, 3.6) As written here, this choice of an objective function is somewhat

arbitrary, but perhaps reasonable, as the direct analogue to those used in Chapter 2. It seeks a

state vector x(t) , 0 ≤ t ≤ tf , and a set of controls, u(t) , 0 ≤ t ≤ tf − 1, that satisfy the model

and that agree with the observations to an extent determined by the weight matrices R(t) and

Q(t), respectively. From the previous discussions of least squares and minimum-error variance

estimation, the minimum-square requirement Eq.( 3.9) will produce a solution identical to that

derived from minimum variance estimation by the specific choice of the weight matrices as the

corresponding prior uncertainties, R(t), Q(t), P(0). In a Gaussian system, it also proves to
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be the maximum likelihood estimate. The introduction of the controls, u(t), into the objective

function, represents an acknowledgment that arbitrarily large controls (forces) would not usually

be an acceptable solution; they should be consistent with Q (t) .

Much of the rest of this chapter will be directed at solving the problem of finding the

minimum of J subject to the model. Notice that J involves the state vector, the controls,

and the observations over the entire time period under consideration, 0 ≤ t ≤ tf . This type of

objective function is the one usually of most interest to scientists attempting to understand their

system–in which data are stored and employed over a finite time. In some other applications,

most notably forecasting and which is taken up immediately below, one has only the past

measurements available; this situation proves to be a special case of the more general one.

Although we will not keep repeating the warning each time an objective function such as Eq.

(3.9) is encountered, the reader is reminded of the general message: The assumption that the

model and observations are consistent and that the minimum of the objective function produces

a meaningful and useful estimate must always be tested after the fact. That is, at the minimum,

ũ(t) must prove consistent with Q(t), and x̃(t) must produce residuals consistent with R(t).

Failure of these and other posterior tests should lead to rejection of the model. As always, one

can thus reject a model [which includes Q(t), R(t)] on the basis of a failed consistency with

observations. One can never prove a model “correct,” merely “consistent.”16

3.2. The Kalman Filter. We begin with a special case. Suppose that by some means at

time t = 0 we have an unbiased estimate, x̃(0), of the state vector with known uncertainty P(0).

At time t = 1, observations from Eq. (3.4) are available. How would the information available

best be used to estimate x(1)?

The model permits a forecast of what x(1) should be, were x̃(0) known perfectly,

x̃(1,−) =Ax̃(0) +Bq(0), (3.10)

where the unknown control terms have been replaced by the best estimate we can make of

them–their mean, which is zero, and A has been assumed to be time independent. A minus

sign has been introduced into the argument of x̃(1,−) to show that no data have yet been used

to make the estimate at t = 1, in a notation we will generally use. How good is this forecast?

Suppose the erroneous components of x̃(0) are,

γ(0) = x̃(0)− x(0) , (3.11)

16Some modelers like to claim “validation” or “verification” of their models. The fallacy of this idea is

discussed by Oreskes et al. (1994).
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then the erroneous components of the forecast are,

γ(1) ≡ x̃(1,−)− x(1) =Ax̃(0) +Bq(0)−
(
Ax(0) +Bq(0) + Γu(0)

)

=Aγ(0)− Γu(0) ,

(3.12)

that is, composed of two distinct elements: the propagated erroneous portion of x̃(0), and the

unknown control term. Their second moments are

〈γ(1)γ(1)T 〉 = 〈
(
Aγ(0)− Γu(0)

)(
Aγ(0)− Γu(0)

)
T
〉

= A〈γ(0)γ(0)T 〉AT +Γ〈u(0)u(0)T 〉ΓT

= AP(0)AT +ΓQ(0)ΓT

≡ P(1,−)

(3.13)

by the definitions of P(0),Q(0) and the assumption that the unknown controls are not correlated

with the error in the state estimate at t = 0. We now have an estimate of x(1) with uncertainty

P(1,−) and a set of observations,

E(1)x(1) + n(1) = y(1) . (3.14)

To combine the two sets of information, we use the recursive least-squares solution Ch. 2 Eqs.

(8.7, 8.8). By assumption, the uncertainty in y(1) is uncorrelated with that in x̃(1,−). Making

the appropriate substitutions into those equations,

x̃(1) = x̃(1,−) +K(1)
[
y(1)−E(1) x̃(1,−)

]
,

K(1) = P(1,−)E(1)T
[
E(1)P(1,−)E(1)T +R(1)

]
−1

(3.15)

with new uncertainty

P(1) = P(1,−)−K(1)E(1)P(1,−) . (3.16)

Thus there are four steps:

(1) Make a forecast using the model (3.3) with the unknown control terms Γu set to zero.

(2) Calculate the uncertainty of this forecast, (3.13), which is made up of two separate

terms.

(3) Do a weighted average (3.15) of the forecast with the observations, the weighting being

chosen to reflect the relative uncertainties.

(4) Compute the uncertainty of the final weighted average 3.16..

Such a computation is called a Kalman filter.17. It is conventionally given a more formal

derivation. K is called the Kalman gain. At the stage where the forecast (3.10) has already

17Kalman (1960). Kalman’s derivation was for this discrete case. The continuous case, derived later, is

known as the Kalman-Bucy filter and is a much more complicated object.
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been made, the problem was reduced to finding the minimum of the objective function,

J =
[
x̃(1,−)− x(1)

]T
P(1,−)−1

[
x̃(1,−)− x(1)

]

+
[
y(1)−E(1)x(1)

]T
R(1)−1

[
y(1)−E(1)x(1)

]
,

(3.17)

which is a special case of the objective function used to define the recursive least-squares al-

gorithm in Ch. 2. In this final stage, the explicit model has disappeared, being present only

implicitly through the uncertainty P(1,−). Notice that the model is being satisfied exactly; in

the terminology introduced in Chapter 2, it is a hard constraint. But again, as was true with

the static models, the hard constraint description is somewhat misleading, as the presence of

the terms in u means that model errors are permitted.

A complete recursion can now be defined through the Equations (3.10)—(3.16), replacing all

the t = 0 variables with t = 1 variables, the t = 1 variables becoming t = 2 variables, etc. In

terms of arbitrary t, the recursion is

,

x̃ (t,−)=A (t− 1) x̃ (t− 1)+B (t− 1)q (t− 1) (3.18)

P (t,−)=A (t− 1)P (t− 1)A (t− 1)+ΓQ (t− 1)ΓT (3.19)

x̃ (t)= x̃ (t,−)+K (t) [y (t)−E (t) x̃ (t,−)] (3.20)

K (t)= P (t,−)E (t)T
[
E (t)P (t,−)E (t)T +R (t)

]
−1

(3.21)

P (t)= P (t,−)−K (t)E (t)P (t,−) , 1 ≤ t ≤ tf (3.22)

These equations are those for the complete Kalman filter. Note that some authors prefer

to write it for x̃ (t+ 1,−) in terms of x̃ (t) , etc. The matrix inversion lemma permits one to

rewrite Eq. (3.22) as,

P (t) =
[
P (t,−)−1+E (t)T R (t)−1E (t)

]
−1

, (3.23)

and an alternate form for the gain is18

K (t) = P (t)E (t)T R (t)−1 , (3.24)

and other rearrangements are possible too. These re-written forms are often important for

computational efficiency and accuracy.

If observations are not available at some time step, t, the best estimate reduces to that from

the model forecast alone, K (t) = 0, P (t) = P (t,−) and one simply proceeds. Typically in such

situations, the error variances will grow from the accumulation of the unknown u (t), at least,

18Stengel (1986, Eq. 4.3-22)
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until such times as an observation does become available. If u (t) is purely random, the system

will undergo a form of random walk.19

Example: Straight Line. Let us reconsider the problem of fitting a straight line to data, as

discussed in Chapter 2, but now in the context of a Kalman filter, using the canonical form

derived from (3.18-3.22). “Data” were generated as depicted in Figure 3–a straight line plus

noise. The observation equation is

y(t) = x1(t) + n(t) ,

that is, E(t) = {1 0}, R(t) = 100. The model was assumed perfect, Q(t) = 0, but the initial

state estimate was set erroneously as x(0) = [10 10]T with an uncertainty

P(0) =

{
100 0

0 100

}
.

The result of the computation for the fit is shown in Figure 3 for 50 time steps. Figure 4 shows

the standard error,
√

P11(t′) of x1(t), and its decline as observations accumulate.

If the state vector is redefined to consist of the two model parameters a, b, then x = [a b]T

and A = I. Now the observation matrix is E = [1 t]—that is, time-dependent. Notice the

radical change in the state vector from a time-varying one to a constant. The same grossly

incorrect estimates x̃(0) = [10 10]T were used, with the same P(0) (the correct values are

a = 1, b = 2) and with the time histories of the estimates depicted in Figure 4a. At the end

of 100 time steps, we have ã = 1.85 ± 2.0, b̃ = 2.0 ± 0.03, both of which are consistent with

the correct values. For reasons the reader might wish to think about, the uncertainty of the

intercept is much greater than for the slope.

Example: The Mass-Spring Oscillator. Consider the mass-spring oscillator described earlier

with time history in Figure 1a. It was supposed that the initial conditions were perfectly known,

but that the forcing was completely unknown. Noisy observations of x1(t) were provided at every

time step with a noise variance R = 9. The Kalman filter was computed by (3.18-3.22) and

used to estimate the position at each time step. The result for part of the time history is in

Figure 1b, showing the true value and the estimated value. The time history of the uncertainty

of x1(t) is depicted in Figure 1c and is reaching an asymptote. Overall, the filter manages to

track the position of the oscillator within two standard deviations.

It was then supposed that the same noisy observations were available but only at every

25th time step. In general, the presence of the model error, or control uncertainty, accumulates

over the 25 time steps as the model is run forward without observations. The expected error

of such a system is shown for 150 time steps in Figure 5e. Notice (1) the growing envelope as

uncertainty accumulates faster than the observations can reduce it; (2) the periodic nature of

19Feller (195x).
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F����� 3. (a) For the model of a straight line in time, the “0” are the obser-

vations, y, and the dotted line is the Kalman filter estimate for the first 50 time

steps. There is an observation at each time-step. The filter does a reasonable

job of tracking the straight line in the presence of noisy observations, converging

to it at the end. The dashed line is the result of the RTS smoother applied to

the results of the Kalman filter. Now the result is very near the correct straight-

line state estimate. (b) Standard error of the Kalman filter estimate of x1 (solid

line), and the standard error of the smoothed estimate (dotted line). The correct

values and the estimated values are generally within one standard error of each

other, as they should be most of the time. Notice that the filter and smoother

covarance begin with identical values at the terminal time with the smoother

error reaching a minimum near the center of the time interval, increasing again

toward t = 0 owing to the very large initial estimate of P(0). Again, the best

estimates are, unsurprisingly, in the center of the observation period.

the error within the growing envelope; and (3) that the envelope appears to be asymptoting to

a fixed upper bound for large t. The true and estimated time histories for a portion of the time

history are shown in Figure 1d. With fewer available observations, as expected, the misfit of the

estimated and true values is larger than with data at every time step. At every 25th point, the

error norm drops as observations become available.

If the observation is that of the velocity x1(t + 1) − x2(t + 1) = ξ(t + 1) − ξ(t), then

E = {1 − 1}. A portion of the time history of the Kalman filtered estimate with a velocity

observation available only at every 25th point may be seen in Figure 5f. Velocity observations are
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F����� 4. (a) Estimate of straight-line intercept, a, when the state vector

was defined to be x = [a, b]T . The initial estimate was 10, when the cor-

rect value was 1. Notice that the smoothed estimate is a constant over

the entire domain, consistent with the dynamical model for x. (b) Stan-

dard errors of the filter and smoother for estimates in (a). (c) Filter and

smoother estimates of straight-line slope (correct value is b = 2) when slope

was part of the state vector. Convergence is much more rapid than for

the intercept. (d) The standard errors of the filtered and smoothed esti-

mate in (c).

evidently useful for estimating position, owing to the connection between velocity and position

provided by the model and is a simple example of how observations of almost anything can be

used to improve a state estimate.

The Kalman filter does not produce the minimum of the objective function Eq. (3.9) because

the data from times later than t are not being used to make estimates of the earlier values of

the state vector or of u(t). At each step, the Kalman filter is instead minimizing an objective

function of the form Eq. (3.17), where t corresponds to the previous t = 0, and t+1 corresponds

to t = 1. To obtain the needed minimum we have to consider what is called the smoothing

problem, to which we will turn in a moment.

But the Kalman filter is extremely important in practice for many problems. In particular,

if one must literally make a forecast (e.g., such filters are used to help land airplanes or, in a

primitive way, to forecast the weather), then the future data are simply unavailable, and the

state estimate made at time t+1, using data up to and including time t+1, is the best one can
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F����� 5. (e) The variance P11(t) for the Kalman filter estimate in Figure 1a,

when data were available only every 25th time-step. An error asymptote is still

achieved, but only after a longer time than shown and only in the envelope, with

the values oscillating between data availability. Values are considerably higher

than in 1c. (f) The Kalman filter estimate for the first part of Figure 1a, with the

same parameters, except here the observation is supposed to be of the “velocity”:

y(t) = x1(t)− x2(t)+n(t), (E = [1,−1]), R = 1000, at every time-step. Conver-

gence to the correct state still takes place but is slow. (g) The variance, P11(t),

for the filter estimate in (f), which can be compared to that in 1c. The slower

convergence to the correct solution in (f) is consistent with the slower asymptote

and the higher ultimate value of the uncertainty that is achieved. (h) Smoothed

estimate, x̃1(t,+) (shown as open circles, from the RTS smoother started from

t = tf = 150 from the Kalman filter estimate x̃(150) in Figure 1b. The cor-

rect value, x1(t), is the solid curve. As expected in a smoothing algorithm, the

smoother significantly improves agreement with the true values in the center of

the interval. Its value and uncertainty agree with that of the Kalman filter at

t = tf and somewhat improves the values at the time origin.

do. Some history of the idea of the filter, its origins in the work of Wiener and Kolmogoroff .

(Much of the discussion in the wider literature is in terms of continuous time. The continuous

form of the filter is usually known as the Kalman-Bucy filter.20)

20See, for example, Bucy & Joseph (1968). The Kalman filter is so important that entire books are devoted

to its theory and practice, and many thousands of papers have been published on it and its extensions. A history

with a number of applications can be found in Sorenson (1985). Ghil, Cohn, Tavantzis, Bube, and Isaacson, (1981)

discuss it in a meteorological context; Miller (1986), Wunsch (1988b), Miller and Cane (1989), Fu, Vazquez, and
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F����� 6. (i) Uncertainty, P11(t,+), for the RTS smoother estimate in Figure

5h showing the minimum expected error in the center of the interval. This uncer-

tainty should be compared to that of the filter in Figure 1c. (j) Uncertainty esti-

mate Q(t,+), for the control estimate, ũ(t,+), from the RTS smoother. [ũ(t,+)

is not shown, being a set of random numbers, as is u(t), and is uninteresting.

The two do agree within the uncertainty shown. Note that the data error here

was very large, and hence the final uncertainty is little reduced over the initial

value of 1.

For estimation, the Kalman filter is only a first step owing to its failure to use data from

the formal future. It also raises questions about computational feasibility. As with all recursive

estimators, the uncertainties P(t,−), P(t) must be available so as to form the weighted averages.

If the state vector contains N elements, then the model, Eq. (3.18), requires multiplying an

N-dimensional vector by an N × N matrix at each time step. The covariance update (3.19)

requires updating each of N columns of P(t) in the same way, and then doing it again [i.e.,

in practice, one forms AP(t), transposes it, and forms A
(
AP(t)

)
T
, equivalent to running the

model 2N times at each time step]. In many applications, this covariance update step dominates

the calculation and renders it impractical.

The Kalman filter is nonetheless of crucial importance. Someday we will need to make fore-

casts (some limited forecasting of El Niño is already attempted; navies forecast acoustic features

for antisubmarine warfare maneuvers; storm surge forecasting,21 etc.). That the Kalman filter

is the desired result is of great theoretical importance, and it becomes a guide in understanding

Perigaud (1991), and Gaspar and Wunsch (1989) discuss oceanographic applications; and Ghil and Malanotte-

Rizzoli (1991) and Bennett (1992) provide reviews in the wider field of geophysical fluid dynamics.
21Heemink and Kloosterhuis (1990).
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potentially more practical, suboptimal methods. Furthermore, it is also a central element of

most algorithms that do solve the problem of using all the data, as well as their suboptimal

approximations.

The Kalman filter was derived heuristically as a simple generalization of the ideas used

in Chapter 2. Unsurprisingly, the static inverse results are readily obtained from the filter in

various limits. As one example, consider the nearly noise-free case in which both process and

observation noise are very small, i.e. ‖Q‖, ‖R‖ → 0. Then if P(t + 1,−) is nearly diagonal,

P(t+ 1,−) ∼ δ2I,

K(t+ 1) −→ ET
(
EE

T
)
−1

,

assuming existence of the inverse and,

x̃(t) ∼Ax̃(t− 1) +Bq(t− 1)

+ET (EET )−1
{
y(t)−E

[
Ax̃(t− 1) +Bq(t− 1)

]}

= ET (EET )−1y(t)

+
[
I−ET

(
EET

)
−1
E
] [
Ax̃(t− 1) +Bq(t− 1)

]
.

(3.25)

ET
(
EET

)
−1
y(t) is just the expression in Ch 2. for the direct estimate of x(t) from a set of

full-rank, underdetermined, noise-free observations. It is the static estimate we would use at

time t if no dynamics were available to permit the use of prior observations. Equation 3.25

will be recognized as identical to Ch 2. Eq. (8.18) from the recursive least-squares solution.

The only difference is that here the dynamical evolution equation transmits information about

previous observations to help improve the static estimate. The columns of I − ET
(
EET

)
−1
E

are the nullspace of E and (3.25) thus employs only those elements of the forecast lying in

the nullspace of the observations–a sensible result given that the observations here produce

perfect estimates of components of x(t+1) in the range of E. Thus, in this particular limit, the

Kalman filter computes from the noise-free observations those elements of x(t + 1) that it can,

and for those which cannot be so determined, it forecasts them from the dynamics. The reader

ought to examine other limiting cases—retaining process and/or observational noise—including

the behavior of the error covariance propagation.

A number of more general reformulations of the equations into algebraically equivalent forms

are particularly important. In one form, one works not with the covariances, P(t + 1,−), . . . ,

but with their inverses, the so-called information matrices, P(t+1,−)−1, etc. This information

filter form may be more efficient if, for example, the information matrices are banded and sparse

while the covariance matrices are not. In another formulation, one uses the square roots of the

covariance matrices rather than the matrices themselves. The square root filter can be of great

importance as there is a tendency for the computation of the updated values of P to become
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nonpositive-definite owing to round-off errors and other problems. The square root formulation

guarantees positive definite covariances22.

Example: It is interesting to apply some of these expressions to the simple problem of finding

the mean of a set of observations. The model is of an unchanging scalar mean,

x(t) = x(t− 1)

observed in the presence of noise,

y(t) = x(t) + n(t)

where 〈n(t)2〉 = R, so E = 1, A = 1. In contrast to the situation in Chapter 2, the machinery we

have developed here requires that the noise be uncorrelated: 〈n(t)n(t′)〉 = 0, t �= t′, although as

already mentioned, methods exist to overcome this restriction. Suppose that the initial estimate

of the mean is 0–that is, x̃(0) = 0, with uncertainty P (0). Then (3.19) is P (t+ 1,−) = P (t),

and the Kalman filter uncertainty, in the form (3.23), is

1

P (t+ 1)
=

1

P (t)
+

1

R
,

a difference equation, with known initial condition, whose solution by inspection is

1

P (t)
=

t

R
+

1

P (0)
.

Using (3.20) with E = 1, and successively stepping forward (Bryson & Ho, 1975, p. 363, or

Brown, 1983, p. 218) produces

x̃(t) =
R

R+ tP (0)




P (0)

R

t∑
j=1

y(j)


 , (3.26)

whose limit as t→∞ is

x̃(t) −→
1

t

t∑
j=1

y(j) ,

the simple average, with uncertainty P (t)→ 0, as t→∞. If there is no useful estimate available

of P (0) , rewrite Eq. (3.26) as,

x̃(t) =
R

R/P (0) + t




1

R

t∑
j=1

y(j)


 , (3.27)

and take the agnostic limit, 1/P (0)→ 0, or

x̃(t) =
1

t

t∑
j=1

y(j), (3.28)

which is again wholly conventional.

22Anderson and Moore (1979) discuss these and other variants of the Kalman filter equations.
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The Kalman filter permits one to make an optimal forecast from a linear model, subject

to the accuracy of the various assumptions being made. When data are available, the state-

averaging step produces the best estimate at that time. In between the times when data are

available, the state estimate evolves according to the governing dynamics in the model. The

system state trajectory thus follows a dynamically consistent pathway in between observations.

At the time of observation however, the state trajectory jumps, perhaps dramatically, owing to

the employment of the data. These jumps are not normally consistent with the model dynamics,

and the resulting estimates, x̃ (t) , can be problematic for dynamical understanding of how the

physics are evolving. To obtain a consistent state trajectory, we need to solve the problem as

originally stated.

3.3. The Smoothing Problem. Minimization of J in Eq. (3.9) subject to the model

is still the goal. Begin the discussion by again considering a one-step process.23 Consider a

problem where there are only two time steps involved, t = 0, 1. There is an initial estimate

x̃(0), ũ(0) ≡ 0 with uncertainties P(0),Q(0) for the initial state and control vectors, respectively,

a set of measurements at time-step 1, and the model. A suitable objective function is,

J =
(
x̃(0,+)− x̃(0)

)
T
P(0)−1

(
x̃(0,+)− x̃(0)

)

+
(
ũ(0,+)− ũ(0)

)
T
Q(0)−1

(
ũ(0,+)− ũ(0)

)

+
(
y(1)−E(1) x̃(1)

)
T
R(1)−1

(
y(1)−E(1) x̃(1)

)
,

(3.29)

subject to the model

x̃(1) =A(0) x̃(0,+) +B(0)q(0) + Γũ(0,+) , (3.30)

with the weight matrices again chosen as the inverses of the prior covariances. A minimizing

solution to this objective function would produce a new estimate of x(0), denoted x̃(0,+), with

error covariance P(0,+); the + denotes use of future observations, y(1), in the estimate. On

the other hand, we would still denote the estimate at t = 1 as x̃(1), coinciding with the Kalman

filter estimate, because only data prior to and at the same time would have been used. The

estimate x̃(1) must be given by Eq. (3.15), but it remains to improve ũ(0), x̃(0).

The basic issue can be understood by observing that the initial estimates ũ(0), x̃(0) (the

former is usually taken to be zero) lead to a forecast that disagrees with the final best estimate

x̃(1). If either of ũ(0), x̃(0) were known perfectly, the forecast discrepancy could be ascribed

to the other one, permitting ready computation of the required value. In practice, both are

somewhat uncertain, and the modification must be partitioned between them. One would not

be surprised to find that the partitioning proves to be proportional to their initial uncertainty.

23Adapted here from Bryson & Ho, 1975, Chapter 13, whose notation is unfortunately somewhat difficult.
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To find the stationary point (we will not trouble to prove it a minimum rather than a

maximum), set the differential of J with respect to x̃(0,+), x̃(1), ũ(0,+) to zero,

dJ

2
= dx̃(0,+)TP(0)−1

[
x̃(0,+)− x̃(0)

]

+ dũ(0,+)TQ(0)−1
[
ũ(0,+)− ũ(0)

]

− dx̃(1)TE(1)TR(1)−1
[
y(1)−E(1)x̃(1)

]
= 0 .

(3.31)

The coefficients of the differentials cannot be set to zero separately because they are connected

via the model, Equation (3.30), which provides a relationship

dx̃(1) =A(0)dx̃(0,+) + Γ(0)dũ(0,+) . (3.32)

Eliminating dx̃(1),

dJ

2
= dx̃(0,+)T

[
P(0)−1

(
x̃(0,+)− x̃(0)

)

−A(0)TE(1)TR(1)−1
(
y(1)−E(1)x̃(1)

]

+ dũ(0,+)T
[
Q(0)−1

(
ũ(0,+)− ũ(0)

)

+ΓT (0)E(1)TR(1)−1
(
y(1)−E(1)x̃(1)

)]
.

(3.33)

Now the differential vanishes, producing a stationary value of J only if the coefficients of

dx̃(0,+), dũ(0,+) separately vanish, yielding

x̃(0,+) = x̃(0) +P(0)A(0)TE(1)TR(1)−1
(
y(1)−E(1)x̃(1)

)
(3.34)

ũ(0,+) = ũ(0) +Q(0)Γ(0)TE(1)TR(1)−1
(
y(1)− E(1)x̃(1)

)
(3.35)

and

x̃(1) = x̃(1,−)

+P(1,−)E(1)T
[
E(1)P(1,−)E(1)T +R(1)

]
−1(
y(1)−E(1)x̃(1,−)

) (3.36)

using the previous definitions of x̃(1,−), P(1,−), which is recognized as the Kalman filter

estimate. At this point we are essentially done: An estimate has been produced not only of x(1),

but an improvement has been made in the prior estimate of x(0) using the future measurements,

and we have estimated the control term. Notice the corrections to ũ(0), x̃(0) are proportional

to P(0), Q(0), respectively, as anticipated. We still need to examine the uncertainties of these

latter quantities.

First rewrite the estimates (3.34)—(3.35) as

x̃(0,+) = x̃(0) +L(1)
(
x̃(1)− x̃(1,−)

)
, L(1) = P(0)A(0)TP(1,−)−1 ,

ũ(0,+) = ũ(0) +M(1)
(
x̃(1)− x̃(1,−)

)
, M(1) = Q(0)Γ(0)TP(1,−)−1 ,

(3.37)
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which can be done by extended, but uninteresting, algebraic manipulation. The importance

of these latter two expressions is that both x̃(0,+), ũ(0,+) are expressed in terms of their

prior estimates in a weighted average with the difference between the prediction of the state at

t = 1, x̃(1,−) and what was actually estimated there following the data use, x̃(1). [But the data

do not appear explicitly in (3.37).] Then it is also possible to show that

P(0,+) = P(0) +L(1)
(
P(1)−P(1,−)

)
L(1)T

Q(0,+) =Q(0) +M(1)
(
P(1)−P(1,−)

)
M(1)T .

(3.38)

Based upon this one-step derivation, a complete recursion for any time interval can be

inferred. Suppose the Kalman filter has been run all the way to a terminal time tf . The result is

x̃(tf ) and its variance P(tf ). With no future data available, x̃(tf ) cannot be further improved.

At time tf−1, we have an estimate x̃(tf−1) with uncertainty P(tf−1), which could be improved

by knowledge of the future observations at tf . But this situation is precisely the one addressed

by the objective function Eq. (3.29) with tf replacing t = 1, and tf − 1 replacing t = 0. Now

having improved the estimate at tf −1 and calling it x̃(tf − 1,+) with uncertainty P(tf −1,+),

this new estimate is used to improve the prior estimate x̃(tf − 2), and we step all the way back

to t = 0. The complete recursion is

x̃(t,+) = x̃(t) +L(t + 1)
[
x̃(t + 1,+)− x̃(t + 1,−)

]
,

L(t + 1) = P(t)A(t)T P(t + 1,−)−1
(3.39)

ũ(t,+) = ũ(t) +M(t + 1)
[
x̃(t + 1,+)− x̃(t + 1,−)

]
,

M(t + 1) = Q(t)Γ(t)TP(t + 1,−)−1 ,
(3.40)

P(t,+)=P(t)+L(t+1)
[
P(t+1,+)−P(t+1,−)

]
L(t+1)T , (3.41)

Q(t,+)=Q(t)+M(t+1)
[
P(t+1,+)−P(t+1,−)

]
M(t+1)T , (3.42)

with x̃(tf ,+) ≡ x̃(tf ), P(tf ,+) ≡ P(tf ) .

This recipe, which uses the Kalman filter on a first forward sweep to the end of the available

data, and which then successively improves the prior estimates by sweeping backwards, is called

the RTS algorithm, for Rauch, Tung, and Striebel (1965). The particular form has the advan-

tage that the data are not involved in the backward sweep, since all the available information

has been used in the filter calculation. It does have the potential disadvantage of requiring the

storage at each time step of P(t), and the inversion of P(t,−). P(t,−) is readily recomputed

from (3.19) and need not be stored. By direct analogy with the one-step objective function, the
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recursion Eqs. (3.39)—(3.42) is seen to be the solution to the minimization of the objective func-

tion Eq. (3.30) subject to the model. Most important, assuming consistency of all assumptions,

the resulting state vector trajectory x̃ (t,+) now satisfies the model which was assumed to apply

at all times, and along with the control vector estimate ũ (t) lends itself to scientific analysis.

It is possible to examine limiting cases of the RTS smoother much as with the Kalman filter.

For example, suppose again that Q vanishes, and A−1 exists. Then,

L(t+ 1) −→ P(t)AT
(
AP(t)AT

)
−1

=A−1 (3.43)

for diagonal P(t), and Equation (3.39) becomes

x̃(t,+) −→A−1
[
x̃(t+ 1,+)−Bq(t)

]
, (3.44)

a sensible backward estimate obtained by simply solving

x̃(t+ 1) = Ax̃(t) +Bq(t) (3.45)

for x̃(t). Other limits are also illuminating but are left to the reader.

Example: The Straight Line. The smoother result for the straight-line model (2.10) is shown

in Figures 3 and 4 for both forms of state vector. The time-evolving estimate is now a nearly

perfect straight line, whose uncertainty (e.g., Figure 3) has a terminal value at t = 100 equal to

that for the Kalman filter estimate, as it must, and reaches a minimum near the middle of the

estimation period, before growing again toward t = 0, where the initial uncertainty was very

large. In the case where the state vector consisted of the constant intercept and slope of the

line, both smoothed estimates are seen, in contrast to the filter estimate, to conform very well

to the known true behavior. Again, the system has more information available to determine the

slope value than it does the intercept. It should be apparent that the best-fitting, straight-line

solution of Chapter 2 is also the solution to the smoothing problem, but with the data and

model handled all at once, a whole-domain method, rather than sequentially.

Example: The Mass-Spring Oscillator. Figure 5h shows the state estimate for the mass-

spring oscillator made from a smoothing computation run backward from t = 150, and its

variance is shown in Figure 5i. On average (but not everywhere), the smoothed estimate is

closer to the correct value than is the filtered estimate, as expected. The standard error is also

smaller for the smoothed estimate. Figure 5j displays the variance, Q11(t), of the estimate one

can make of the scalar control variable u(t). ũ(t) is not shown because the actual value was

white noise, and the plot is uninteresting [estimate and truth do agree consistent with Q11(t)].

Example: Tracer Problem. Consider a problem stimulated by the need to extract information

from transient tracers, C, in a fluid, which are assumed to satisfy an equation like

∂C

∂t
+ v ·∇C − κ∇2C = −λC + q(r, t) (3.46)
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F����� 7. Tracer box model where Jij represent fluxes between boxes and are

chosen to be mass conserving. Boxes with shaded corners are boundary boxes

with externally prescribed concentrations. Numbers in upper right corner are

used to identify the boxes.

F����� 8. Time histories of the forward computation in which boundary concen-

trations shown were prescribed, and values computed for boxes 6,7,10,11. These

represent the “truth”.

where q represents sources/sinks and λ is a decay rate if the tracer is radioactive. To have a

simple model that will capture the structure of this problem, the fluid is divided into a set of boxes

as depicted in Figure 7. The flow field, as depicted there, is represented by exchanges between

boxes given by the Jij ≥ 0. That is, the Jij are just a simplified representation of the effects of

advection and mixing on a dye C (the relationship between such simple parameterizations and

more formal and elaborate finite-difference schemes. Here, it will only be remarked that Jij are
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F����� 9. The left two panels show the correct values for boundary boxes (upper

panel) and interior ones (lower panel). The right panels show the results of

the Kalman filter for boundary (upper panel) and interior boxes (lower panel)

when noisy observations were provided at t = 5, 9, 12. At the observation times,

estimates are pulled toward the observations but tend to diverge afterward. By

the time the last observations are used, estimated and correct values are quite

close. Although not displayed here, there is an uncertainty estimate at all times.

F����� 10. Smoothed estimates of boundary (left panel) and interior (right

panel) values of tracers.

chosen to be mass conserving so that the sum over all Jij entering and leaving a box vanishes.
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The discrete analogue of (3.46) is taken to be

Ci(t+ 1) = Ci(t)− λ∆tCi(t)

−

∆t

V

∑

j∈N(i)

Ci(t)Jij +
∆t

V

∑

j∈N(i)

Cj(t)Jji
(3.47)

where the notation j ∈ N(i) denotes an index sum over the neighboring boxes to box i, V is a

volume for the boxes, and ∆t is the time step. This model can easily be put into the canonical

form

x(t+ 1) = Ax(t) +Bq(t) + Γu(t) , Q = 0 , (3.48)

with the state vector being the vector of box concentrations x (t) = [[Ci(t), Ci(t− 1)]]T .

A forward computation was run with initial concentrations everywhere of 0, using the bound-

ary conditions depicted in Figure 8, resulting in interior box values as shown. Based upon

these correct values, noisy “observations” of the interior boxes only were constructed at times

t = 5, 9, 12.

An initial estimate of tracer concentrations at t = 0 was taken (correctly) to be zero, but

this estimate was given a large variance [diagonal P(0) with large norm]. The boundary box

concentrations were set erroneously to C = 2 for all t and held at that value. A Kalman filter

computation was run as shown in Figure 9. Initially, the interior box concentration estimates

rise erroneously (owing to the dye leaking in from the high nonzero concentrations in the bound-

ary boxes). At t = 5, the first set of observations becomes available, and the combined estimate

is driven much closer to the true values. By the time the last set of observations is used, the

estimated and correct concentrations are quite close, although the time history of the interior

is somewhat in error. The RTS algorithm was then applied to generate the smoothed histories

shown in Figure 10 and to estimate the boundary concentrations (the controls). As expected,

the smoothed estimates are closer to the true time history than are the filtered ones (the uncer-

tainty estimates are not shown, but the results are consistent with the “truth” within statistical

expectation). Unless further information is provided, no other estimation procedure could do

better, given that the model is the correct one.

Example: Altimetry. Consider Equation (2.2). Write the solution to the equation as in (2.3)

so that the state vector consisted of the expansion coefficients,24

x(t) =
[
a1(t) a2(t) · · · a2N−1(t) a2N (t)

]
T

.

As is usually true in real, as opposed to textbook, problems, most of the effort lay in specifying

the covariances P(0), R, Q. Figure 11 shows an estimate of the initial values, x̃(0,+) from six

months of data. Figure 12 displays the filtered and smoothed estimates of some of the wave

amplitudes and phases over the observational duration. The smoothed estimates are indeed much

24Gaspar and Wunsch (1996).



172 4. THE TIME-DEPENDENT INVERSE PROBLEM: STATE ESTIMATION

F����� 11. Estimates of the initial values of the seasurface elevation model

amplitudes from the RTS smoother, contoured in wavenumber space.

smoother than those from the filter, as one would expect from what is basically an interpolation

computation as opposed to the extrapolation of the pure filter.

There are many versions of smoother algorithms chosen for special purposes (e.g., succes-

sively improving an estimate at a fixed time as data continue to accumulate–the so-called

fixed-point smoother–or to achieve various trade-offs of computations versus storage require-

ments). Consider one other approach to smoothing. Suppose the Kalman filter has been run

forward to some time tc, producing an estimate x̃(tc) with uncertainty P(tc). Now suppose, per-

haps on the basis of some further observations, that at a later time tf an independent estimate

x̃(tf ) has been made, with uncertainty P(tf ). The independence is crucial–we suppose this

latter estimate is made without using any observations at time tc or earlier so that any errors

in x̃(tc) and x̃(tf ) are uncorrelated.

Let us run the model backward in time from tf to tf − 1:

x̃b(tf − 1) =A−1x̃(tf )−A
−1Bq(tf − 1) (3.49)

where the subscript b denotes a backward-in-time estimate. The reader may object that running

a model backward in time will often be an unstable operation, and this objection needs to be



3. ESTIMATION 173

F����� 12. Time histories from the Kalman filter (solid lines) and RTS smoother

(dashed) of two typical modal amplitudes (left panels), and phases (right panels)

from six months of real altimetric data.

addressed, but ignore it for the moment. The uncertainty of x̃(tf − 1) is

Pb(tf − 1) =A−1P(tf )A
−T +A−1ΓQ(tf − 1)ΓTA−T (3.50)

in direct analogy to the forward model computation. This backward computation can be con-

tinued to time tc, at which point we will have an estimate, x̃b(tc), with uncertainty Pb(tc).

The two independent estimates of x(tc) can be combined to make an improved estimate

using the relations Chapter 2, Eq. (8.22),

x̃(tc,+) = x̃(tc) +P(tc)
(
P(tc) +Pb(tc)

)
−1
(
x̃b(tc)− x̃(tc)

)
(3.51)

and

P(tc) =
〈(
x̃(tc,+)− x(tc)

) (
x̃(tc,+)− x(tc)

)T〉

=
(
P(tc)

−1 +Pb(tc)
−1
)
−1

.

(3.52)

This estimate is the same as obtained from the RTS algorithm because the same objective

function, model, and data have been employed.

Running the model backward may indeed be unstable if it contains any dissipative terms. A

forward model may be unstable too, if there are unstable modes of motion, either real or numer-

ical artifacts. But the expressions in Eqs. (3.51), (3.52) are stable, because the computation of

Pb(t) and its use in the updating expression (3.52) automatically downweight unstable elements

whose errors will be very large, which will not carry useful information about the earlier state.
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F����� 13. Mass-spring oscillator model with friction (r = 0.01) run backwards

in time from conditions specified at t = 1000.The system is unstable, and small

uncertainties in the starting conditions would amplify. but the Kalman filter run

backwards remains stable because its error estimate grows too, systematically

downweighting the model forecast relative to any data that become available at

earlier times. A model with unstable elements in the forward direction would be-

have analogously when integrated in time with growing estimated model forecast

error.

The same situation would occur if the forward model had unstable elements—these instabilities

would amplify slight errors in the statement of their initial conditions, rendering them difficult

to estimate from observations at later times (see Figure 13). Examination of the covariance

propagation equation and the filter gain matrix shows that these elements are suppressed in

the Kalman filter estimate, with correspondingly large uncertainties. Thus, the filter/smoother

formalism properly accounts for unstable, and hence difficult-to-calculate, parameters by esti-

mating their uncertainty as very large, thus handling very general ill-conditioning. In practice,

one needs to be careful, for numerical reasons, of the pitfalls in computing and using matrices

that may have norms growing exponentially in time. But the conceptual problem is solved.

As with the Kalman filter, it is possible to rewrite the RTS smoother expressions (3.39)—

(3.42) in various ways for computational efficiency, storage reduction, and improved accuracy.25

The dominant computational load in the smoother is again the calculation of the updated

covariance matrices, whose size is square of the state-vector dimension, at every time step,

leading to efforts to construct simplified algorithms that retain most of the virtues of the filter/

smoother combination but with reduced load. For example, it may have already occurred to

the reader that in some of the examples displayed, the state vector uncertainties, P, in both the

25Gelb, 1974; Bryson & Ho, 1975; Anderson & Moore, 1979; Goodwin & Sin, 1984; Sorenson, 1985
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filter and the smoother appear to approach rapidly a steady state. This asymptotic behavior

in turn means that the gain matrices, K, L, M will also achieve a steady state, implying that

one no longer needs to undertake the updating steps—fixed gains can be used. Such steady-state

operators are known asWiener filters and smoothers and if achieved, they represent a potentially

very large computational savings. One needs to understand the circumstances under which such

steady states can be expected to appear, and we will examine the problem in Section xx.

We turn now instead to another approach to reducing the computational load—the so-called

adjoint methods. We will demonstrate how they work and their equivalence to smoothing.

4. Control Problems: The Pontryagin Principle and Adjoint Methods

4.1. Lagrange Multiplier Constraints. The results of the last section are recursive

schemes for computing a filtered and then a smoothed estimate. As with recursive least squares,

the necessity to combine two pieces of information to make an improved estimate demands

knowledge of the uncertainty of the information.

Because the covariance computation will usually dominate and potentially overwhelm the

filter/smoother algorithms, it is very attractive, at least superficially, to find algorithms that

do not require the covariances–that is, which employ the entire time domain of observations

simultaneously, a whole-domain method. The algorithms that emerge are best known in the

context of control theory. Essentially, there is a more specific focus upon determining the u(t):

the control variables. In many problems, one literally wishes to drive a system in desirable

ways. Although oceanographers and meteorologists can drive their models in ways analogous to

controlling a machine tool, they do not ever control the real ocean or atmosphere. It will help

the reader who further explores these methods to recognize that we are still doing estimation,

combining observations and models, but sometimes using algorithms best known under the

control rubric.

To see the possibilities, consider again a two-point objective function

J =
(
x̃(0,+)− x̃(0)

)
P(0)−1

(
x̃(0,+)− x̃(0)

)

+
(
ũ(0,+)− ũ(0)

)
T
Q(0)−1

(
ũ(0,+)− ũ(0)

)

+
(
y(1)−E(1)x̃(1)

)
T
R(1)−1

(
y(1)−E(1)x̃(1)

)

− 2µ(1)T
(
x̃(1)−Ax̃(0,+)−Bq(0)− Γũ(0,+)

)
.

(4.1)

where P, etc., are just weight matrices without necessarily having a statistical significance. We

wish to find the minimum of J subject to (3.30). To use a variant method, append the model

equations as done in Chapter 2 [compare with Ch. 2 Eq. (4.59)], with a vector of Lagrange

multipliers µ(1), for a new objective function As with the filter and smoother, the model is being

imposed as a hard constraint, but with the control term rendering the result indistinguishable
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from a soft one. In contrast to the approach in the last section, the presence of the Lagrange

multiplier permits treating the differentials as independent; taking the derivatives of J with

respect to x̃(0,+), x̃(1), ũ(0,+), µ(1) and setting them to zero,

P(0)−1
(
x̃(0,+)− x̃(0)

)
+AT

µ(1) = 0 (4.2)

ETR(1)−1
(
y(1)−Ex̃(1)

)
+µ(1) = 0 (4.3)

Q(0)−1
(
ũ(0,+)− ũ(0)

)
+ΓTµ(1) = 0 (4.4)

x̃(1)−Ax̃(0,+)−Bq(0)− Γũ(0,+) = 0 . (4.5)

Because the objective function in (4.1) is identical with that used with the smoother, and

because the identical dynamical model has been imposed [in one case through the differentials

in (3.32), in the other explicitly through the Lagrange multipliers], Equations (4.2)—(4.5) must

produce the identical solution to that produced by the smoother. A demonstration that Equa-

tions (4.2)—(4.5) can be manipulated into the form (3.37) is an exercise in matrix identities.26

As with smoothing algorithms, the finding of the solution of (4.2)—(4.5) can be arranged in a

number of different ways, trading computation against storage, coding ease, convenience, etc.

Let us show explicitly the identity of smoother and adjoint solution for a restricted case–

that for which the initial conditions are known exactly, so that x̃(0) is not modified by the later

observations. For the one-term smoother, the result is obtained by dropping (4.2), as x(0) is no

longer an adjustable parameter. Without further loss of generality, we may put ũ(0) = 0, and

set R(1) = R, reducing the system to

x̃(1) =Ax̃(0) +Bq(0) + Γũ(0,+) (4.6)

ũ(0,+) = −Q(0)ΓTµ(1) (4.7)

= Q(0)ΓTETR−1
[
y(1)−E(1)x̃(1)

]
. (4.8)

Eliminating ũ(0,+) from (4.6) produces

x̃(1) =Ax̃(0) +Bq(0) + ΓQ(0)ΓTETR−1
[
y(1)−Ex̃(1)

]
. (4.9)

With no initial error in x(0), P(1,−) = ΓQ(0)ΓT and defining,

x̃(1,−) ≡Ax(0) +Bq(0) (4.10)

so that (4.9) can be written

[
I+P(1,−)ETR−1E

]
x̃(1) = x̃(1,−) +P(1,−)ETR−1y(1) (4.11)

26Some guidance is provided by Bryson and Ho (1975, pp. 390—5) or Liebelt (1967). In particular, Bryson and

Ho (1975) introduce the Lagrange multipliers (their equations 13.2.7—13.2.8) simply as an intermediate numerical

device for solving the smoother equations.
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or [factoring P(1,−)]

x̃(1) =
{
P(1,−)−1 +ETR−1E

}
−1

P(1,−)−1x̃(1,−)

+
{
P(1,−)−1 +ETR−1E

}
−1
ETR−1y(1) .

Applying the matrix inversion lemma in the form Ch. 2. Eq. 3.24 to the first term on the right,

and in the form Ch. 2, Eq. 3.25 to the second term on the right,

x̃(1) =
{
P(1,−)−P(1,−)ET

[
EP(1,−)ET +R

]
−1
EP(1,−)

}

·P(1,−)−1x̃(1,−) +PET
[
R+EP(1,−)ET

]
−1
y(1)

(4.12)

or

x̃(1) = x̃(1,−) +P(1,−)ET
[
EP(1,−)ET +R

]
−1
(
y(1)−Ex̃(1,−)

)
. (4.13)

This last result is the ordinary Kalman filter estimate, as it must be, but it results here from

the adjoint formalism.

We need to consider the adjoint approach for the entire interval 0 ≤ t ≤ tf . Let us start

with the objective function (3.9) and append the model consistency demand using Lagrange

multipliers,

J =
(
x(0)− x̃(0)

)T
P(0)−1

(
x(0)− x̃(0)

)

+

tf∑

t=1

(
E(t)x(t)− y(t)

)
T
R(t)−1

(
E(t)x(t)− y(t)

)

+

tf−1∑

t=0

u(t)TQ−1u(t)

− 2

tf∑

t=1

µ(t)T
[
x(t)−Ax(t− 1)−Bq(t− 1)− Γu(t− 1)

]
.

(4.14)

Note the differing lower limits of summation.

Setting all the derivatives to zero gives the normal equations,
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1

2

∂J

∂u(t)
= Q−1u(t− 1) + ΓTµ(t) = 0 , 0 ≤ t ≤ tf − 1 (4.15)

1

2

∂J

∂µ(t)
= x(t)−Ax(t− 1)−Bq(t− 1)− Γu(t− 1) = 0, (4.16)

1 ≤ t ≤ tf

1

2

∂J

∂x(0)
= P(0)−1

(
x(0)− x̃(0)

)
+AT

µ(1) = 0 , (4.17)

1

2

∂J

∂x (t)
= E (t)R (t)−1 [E (t)x (t)−y (t)]−µ (t) +AT

µ (t+ 1) , (4.18)

1 ≤ t ≤ tf

1

2

∂J

∂x(tf )
= E(tf )

TR(tf )
−1

[
E(tf )x(tf )− y(tf )

]
−µ(tf ) = 0 (4.19)

where the derivatives for x(t), at t = 0, t = tf , have been computed separately for clarity. The

so-called adjoint model is now given by (4.18). An equation count shows that the number of

equations is exactly equal to the number of unknowns [x(t), u(t), µ(t)]. With a large enough

computer, we could contemplate solving them by brute force. But for real oceanic models with

large time spans and large state vectors, even the biggest supercomputers are easily swamped,

and one needs to find other methods.

Eq. (4.18), when re-written slightly is the adjoint evolution equation,

µ (t) =AT
µ (t+ 1) +E (t)R (t)−1 [E (t)x (t)−y (t)] , (4.20)

in which the model/data misfit appears as a “source term.” It is sometimes said that time runs

backwards in this equation, with µ (t) being computed most naturally from µ (t+ 1) and the

source term. Eq. (4.19) provides a “starting condition” in this view. But in fact, time has

no particular direction here, as the equations govern a time interval, 1 ≤ t ≤ tf , and indeed if

A−1 exists, there is no problem in rewriting Eq. (4.18) so that µ (t+ 1) is given in terms of

A−Tµ (t) .

The Lagrange multipliers–that is, the adjoint model–have the same interpretation that

they did for the steady models described in Chapter 2–that is, as a measure of the objective

function sensitivity to the data,

1

2

∂J ′

∂Bq(t)
= µ(t+ 1) . (4.21)

The physics of the adjoint model, as in Chapter 2, are again represented by the matrix AT .

For a forward model that is both linear and self-adjoint (AT = A), the adjoint solution would

have the same physics as the state vector. If the model is not self-adjoint (the usual situation),

the evolution of the adjoint may have a radically different interpretation than x(t). Insight into

that physics is the road to understanding of information flow in the ocean. For example, if one
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employed a large general circulation model to compute the oceanic flux of heat, and wished to

understand the extent to which the result was sensitive to the wind forcing at various places,

or to a prescribed flux somewhere, the adjoint solution carries that information. In the future,

one expects to see display and discussion of the results of the adjoint model on a nearly equal

footing with that of the forward model.

4.2. Terminal Constraint Problem: Open Loop Control. Consider first the adjoint

approach in the context of the simple chemical box model already described and depicted in

Figure 7. The following idealized situation was considered. At t = 0, the tracer concentrations

in the boxes are known to vanish–that is, x(0) = x0 = 0 (the initial conditions are supposedly

known exactly). At t = tf , the region is surveyed, and the concentrations y(tf ) = E(tf )x(tf ) +

n(tf ), E(tf ) ≡ I, 〈n(t)〉 = 0, 〈n(tf )n(tf )
T 〉 =R are known. No other observations are available.

The question posed is: If the boundary conditions are all unknown a priori–that is Bq ≡ 0–

what boundary conditions would produce the observed values at tf within the estimated error

bars?

The problem is an example of a terminal constraint control problem—it seeks controls (forces,

etc.) able to drive the system from an observed initial state to within a given tolerance of a

required terminal state27. But in the present context, we interpret the result as an estimate of

the actual boundary condition. For this special case, take the objective function,

J =
(
x(tf )− xd

)T
R(tf )

−1
(
x(tf )− xd

)
+

tf−1∑

t=0

uT (t)Q−1u(t)

− 2

tf−1∑

0

µ(t)T
[
x(t)−Ax(t− 1)−Bq(t− 1)− Γu(t− 1)

]
,

(4.22)

and the governing normal equations are ,

µ(t− 1) =AT
µ(t) (4.23)

µ(tf ) = R
−1

(
x(tf )− xd

)
(4.24)

Q−1u(t− 1) = −ΓTµ(t) (4.25)

plus the model. Eliminating

u(t− 1) = −QΓTµ(t) (4.26)

27Luenberger (1979)
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and substituting into the model, the system to be solved is

x(t) =Ax(t− 1)− ΓQΓTµ(t) , x(0) = x0 ≡ 0 , (4.27)

µ(t− 1) =AT
µ(t) , 1 ≤ t ≤ tf − 1 , (4.28)

µ(tf ) = R
−1

(
x(tf )− xd

)
. (4.29)

The coupled problem must be solved for x(t), µ(t) but with the initial conditions on the state

vector provided at t = 0 and those for the Lagrange multipliers provided at the terminal time tf ,

in terms of the still unknown x(tf ) [Equation (4.29)], recognizing that the estimated terminal

state and the desired one will almost always differ.

This present problem can be solved in straightforward fashion without having to deal with

the giant set of simultaneous equations by exploiting the special structure present in them.

Using (4.29), step backward in time from tf via (4.28) to produce

µ(tf − 1) =AT
R
−1

(
x(tf )− xd

)

...

µ(0) =A(tf )TR
−1

(
x(tf )− xd

)
(4.30)

[?check this?] so µ(t) is given in terms of the known xd and the still unknown x(tf ). Substituting

into (4.27) generates

x(1) =Ax(0)− ΓQΓTA(tf−1)TR−1
(
x(tf )− xd

)

x(2) =Ax(1)− ΓQΓTA(tf−2)TR−1
(
x(tf )− xd

)

=A2x(0)−AΓQΓTA(tf−1)TR−1
(
x(tf )− xd

)

− ΓQΓTA(tf−2)TR−1
(
x(tf )− xd

)

...

x(tf ) =A
tfx(0)−A(tf−1)ΓQΓTA(tf−1)TR−1

(
x(tf )− xd

)

−A(tf−2)ΓQΓTA(tf−2)TR−1
(
x(tf )− xd

)

− · · · − ΓQΓTR−1
(
x(tf )− xd

)
.

The last equation permits us to bring the terms in x(tf ) over to the left-hand side and solve for

x(tf ) in terms of xd and x(0):
{
I+A(tf−1)ΓQΓTA(tf−1)TR−1

+ A(tf−2)ΓQΓTA(tf−2)TR−1 + · · ·+ΓQΓTR−1
}
x(tf )

=Atfx(0) +
{
A(tf−1)ΓQΓTA(tf−1)TR−1

+ A(tf−2)ΓQΓTA(tf−2)TR−1 + · · · +ΓQΓTR−1
}
xd .
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F����� 14. Terminal time concentrations (corresponding to the time histories in

Figure 8), representing the terminal constraint (within error bars) of the control

problem for transient tracers.

[?check all]

With x(t) now known, µ(t) can be computed for all t from (4.28, 4.29). Then the control

u(t) is also known from (4.25) and the state vector can be found from (4.27). The resulting

solution for ũ(t) is in terms of the externally prescribed x0, xd.

Let x̃(tf ) be as shown in Figure 14. The initial conditions were taken as zero. Then Figure 15

shows the controls able to produce these terminal conditions within a tolerance governed by R.

The adjoint solution is depicted in Figure 15c.28

The canonical form for a terminal constraint problem usually used in the literature differs

slightly; it is specified in terms of a given, nonzero, initial condition x(0), and the controls are

determined so as to come close to a desired terminal state, which is zero. The solution to this

so-called deadbeat control (driving the system to rest) problem can be used to solve the problem

for an arbitrary desired terminal state.

The smoothing problem has been solved without computing the uncertainty, and is the

great advantage of Lagrange multiplier/adjoint methods over the sequential estimators. Adjoint

methods solve for the entire time domain at once; consequently, there is no weighted averag-

ing of intermediate solutions and no need for the uncertainties. On the other hand, in view

of everything that has come before in this book, the utility of solutions without uncertainty

estimates must be questioned. In the context of Chapter 1, problems of arbitrary posedness

are being solved. The various methods using objective functions, prior statistics, etc., whether

28A version of this methodology was used by Wunsch (1988a) and Mémery and Wunsch (1990) to discuss

the evolution of observed tritium in the North Atlantic.
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F����� 15. For the model in Fig. 14. the upper panel (b) displays the concentra-

tion rate of change–that is, du/dt – of the boundary concentrations (controls)

as estimated through the Lagrange multiplier method. Middle panel shows du/dt

for the “truth” and the lowest panel shows the time history of tracer concentra-

tions in the interior boxes from the controls in the upper-most panel. These

interior values can be compared to the “truth” in Fig. 8. The terminal con-

straint can be reached with the tolerances imposed from the initial conditions by

a set of boundary controls quite different from the correct ones. The available

terminal observations only loosely constrain the boundary conditions. (c) The

upper panel shows the Lagrange multipliers (adjoint solution) for boundary boxes

2, 3, 5, and the lower panel for the interior boxes. As is typical of many control

problems, the adjoint solution shows its greatest structure near the terminal time

when comparatively large “forces” are exerted by the controls to push the system

into the required terminal state.

in time-evolving or static situations, permit stable, useful estimates to be made under almost

any circumstances, using almost any sort of available information. But the reader will by now

appreciate that the use of such methods can produce structures in the solution, pleasing or oth-

erwise, that may be present because they are required by (1) the observations, (2) the model,

(3) the prior statistics, (4) some norm or smoothness demand on elements of the solution, or (5)

all of the preceding in concert. A solution produced in ignorance of these differing sources of

structure can hardly be thought very useful, and it is the uncertainty matrices that are usually



4. CONTROL PROBLEMS: THE PONTRYAGIN PRINCIPLE AND ADJOINT METHODS 183

the key to understanding. Consequently, we will later spend some time examining the problem

of obtaining the missing covariances. In the meantime, one should note that the covariances of

the filter/smoother will also describe the uncertainty of the Lagrange multiplier/adjoint solu-

tion, because they are the same solution to the same set of equations deriving from the same

objective function.

There is one situation where a solution without uncertainty estimates is plainly useful–it is

where one simply inquires, “Is there a solution at all?”–that is, when one wants to know if the

observations actually contradict the model. In that situation, mere existence of an acceptable

solution may be of greatest importance, suggesting, for example, that a model of adequate

complexity is already available.

4.3. Representers/Method of Unit Solutions/Boundary Green Functions. The

particular structure of Eqs. (4.15-4.19) permits several different methods of solution. The

solution just given is an example. Let us generalize this problem by assuming observations at a

set of arbitrary times (not just the terminal time),

y (t)= E (t)x (t)+n (t) .

We will do this in two ways.

Take the objective function to be,

J =

tf∑

t=1

(E (t)x (t)− y (t))T R (t)−1 (E (t)x (t)− y (t)) +

tf−1∑

t=0

u (t)T Q−1u (t)

− 2

tf−1∑

t=0

µ (t + 1)T [x (t + 1)−Ax (t)−Bq (t)−Γ (t)u (t)] ,

so that the terminal state estimate is subsumed into the first term with E (tf ) = I, R (tf ) =

P (tf ) . Let xa (t) be the solution to the pure, unconstrained, forward problem,

xa (t+ 1) = Axa (t) +Bq (t) , xa (0) = x0, (4.31)

and redefine x (t) to be the difference, x (t) → x (t)−xa (t) , that is the deviation from what

can be regarded as the a priori solution. The purpose of this redefinition is to remove any

inhomogeneous initial or boundary conditions from the problem–exploiting the system linearity.

The normal equations are then,

1

2

∂J

∂u (t)
= Q−1u (t) +ΓTµ (t + 1) = 0

1

2

∂J

∂x (t)
= E (t)T R (t)−1 [E (t)x (t)− y (t)] +AT

µ (t+ 1)−µ (t) = 0

1

2

∂J

∂µ (t)
= x (t+ 1)−Ax (t)−Γ (t)u (t) = 0, x (0) = 0.
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Eliminating the control term in favor of µ, we have, as before,

x (t+ 1) = Ax (t)−ΓQ−1ΓTµ (t+ 1) (4.32)

µ (t) =AT
µ (t + 1) +E (t)T R (t)−1 [E (t)x (t)−y (t)] . (4.33)

The system is linear, so we can examine the solution for the inhomogeneous term in (4.33) at

one time, t = tm. The inhomogeneous term on the right-hand side of (4.33) is however, unknown

until x (tm) has been determined. So to proceed, let us first solve the different problem,

M (t, tm) =ATM (t + 1, tm) + Iδt,tm , t ≤ tm (4.34)

M (t, tm) = 0, t > tm, (4.35)

where the second argument denotes the time of the observations (notice that M is a matrix).

The inhomogeneous term is known here and has unit amplitude. There is a corresponding

solution to (4.32) with these values of µ,

G (t+ 1, tm) =AG (t, tm)−ΓQ
−1ΓTM (t+ 1, tm) . (4.36)

Both G,M are computable independent of the actual data values. Now put,

m (t, tm) =
{
E (tm)T R (tm)−1 [E (tm)x (tm)−y (tm)]

}
T

M (t, tm) , (4.37)

which is the solution to (4.33) once x (tm) is known. Let

x (t, tm) =
{
E (tm)T R (tm)−1 [E (tm)x (tm, tm)−y (tm)]

}
T

G (t, tm) , (4.38)

substitute into (4.32) and solve,:

x (tm, tm) = (4.39)

−

[
I−E (tm)T R (tm)−1E (tm)

]
−1

[E (tm)R (tm)y (tm)]T G (tm, tm) .

With x (tm, tm) known, Eq. (4.38) produces a fully determined x (t, tm) in representer form.

This solution is evidently just a variant of Eqs. (6.3.35-6.3.37).

One can then sum the results from all observation times:

x̃ (t) =

tf∑

tm=1

x (t, tm) . (4.40)

and after adding xa (t) to the result, the entire problem is solved.

The solutions M (t, tm) are obviously the Green function for the adjoint model equation,

and the G (t, tm) are “representers.”29 If the data distribution is spatially sparse, one need only

compute the subsets of the columns of M,G that correspond to the positions of the data.

29Bennett (2002).
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The representer emerged naturally from the Lagrange multiplier formulation. Let us re-

derive the solution without the use of Lagrange multipliers to demonstrate how the adjoint

model appears in unconstrained l2 norm problems (soft constraints) and to connect to the

continuous time formulation. Introduce the model into the same objective function as above,

except we do it by substitution for the control terms; let Γ = I, making it possible to solve for

u (t) explicitly and producing the simplest results. The objective function then is,

J =

tf∑

t=0

(E (t)x (t)− y (t))T R (t)−1 (E (t)x (t)− y (t))+ (4.41)

tf−1∑

t=0

[x (t + 1)−Ax (t)]T Q (t)−1 [x (t + 1)−Ax (t)] , (4.42)

again assume that x (t) is the anomaly relative to the known xa (t) .

The normal equations are:

1

2

∂J

∂x (t)
= E (t)T R (t)−1 [E (t)x (t)− y (t)]−

ATQ (t)−1 [x (t+ 1)−Ax (t)]+

Q (t)−1 [x (t)−Ax (t− 1)] = 0 (4.43)

Define

ν (t + 1) = −Q (t)−1 [x (t + 1)−Ax (t)] (4.44)

so that the system (4.43) can be written as

ν (t) =AT
ν (t + 1) +E (t)T R (t)−1 [E (t)x (t)− y (t)] (4.45)

which along with (4.44) is precisely the same system of equations (4.32, 4.33) that emerged

from the adjoint/Lagrange multiplier approach, if we let µ→ ν, Γ = I. Representers are again

defined as the unit disturbance solution to the system. As a by-product, we see once again, that

l2−norm least-squares and the adjoint method are simply different algorithmic approaches to

the same problem.30

4.4. The Initialization Problem. Another special case of wide interest is determination

of the initial conditions, x̃(0), from later observations. Let us attempt it using several different

methods.

For notational simplicity and without loss of generality, assume that the known controls

vanish so that the model is

x(t+ 1) = Ax(t) + Γu(t) , (4.46)

30The use of the adjoint to solve l2-norm problems is discussed by Bryson and Ho (1975, Section 13.3), who

relax the restriction of full controllability, Γ = I. Because of the connection to regulator/control problems, a

variety of methods for solution is explored there.



186 4. THE TIME-DEPENDENT INVERSE PROBLEM: STATE ESTIMATION

that there is an existing estimate of the initial conditions, x̃0(0), with estimated uncertainty

P(0), and that there is a single terminal observation of the complete state,

y(tf ) = Ex(tf ) + n(tf ) , E = I (4.47)

where the observational noise covariance is again R(tf ).

We now can solve this problem in four seemingly different but nonetheless identical ways:

(1) The terminal observations can be written explicitly in terms of the initial conditions as

y(tf ) =Atfx(0) +Atf−1Γu(0) +Atf−2Γu(1) + · · ·

+Γu(tf − 1) + n(tf ) ,
(4.48)

which is in canonical observation equation form,

y(tf ) = Epx(0) + np(tf ) , Ep =Atf ,

np =Atf−1Γu(0) + · · ·+Γu(tf − 1) + n(tf ) ,

and where the covariance of this combined error is

Rp ≡
〈
npn

T
p

〉
=Atf−1ΓQΓTA(tf−1)T + · · · +ΓQΓT +R(tf ) . (4.49)

Then the least-squares recursive solution leads to

x̃(0) = x̃0(0) +P(0)E
T
p

(
EpP(0)E

T
p +Rp

)
−1[
y(tf )−Epx̃0(0)

]
, (4.50)

and the uncertainty estimate follows immediately.

(2) A second method (which the reader should confirm produces the same answer) is to

run the Kalman filter forward to tf and then run the smoother backward to t = 0.

There is more computation here, but a byproduct is an estimate of the intermediate

values of the state vectors, of the controls, and their uncertainty.

(3) Write the model in backward form,

x(t) =A−1x(t+ 1)−A−1Γu , (4.51)

and use the Kalman filter on this model, with time running backward. The observation

equation (4.47) provides the initial estimate of x(tf ), and its error covariance becomes

the initial estimate covariance P(tf ). At t = 0, the original estimate of x̃0(0) is treated

as an observation, with uncertainty P(0) taking the place of the usual R. The reader

should again confirm that the answer is the same as in (1).

(4) The problem has already been solved using the Lagrange multiplier/adjoint formalism.



5. THE STEADY-STATE FILTER AND ADJOINT 187

5. The Steady-State Filter and Adjoint

For linear models, the Lagrange multiplier/adjoint method and the filter/smoother algo-

rithms produce identical solutions. In both cases, the computation of the uncertainty remains

an issue—in the former case because it is not part of the solution, and in the latter because it

may overwhelm the computation. However, if the uncertainty is computed for the sequential

estimator solutions, it must also represent the uncertainty derived from the Lagrange multi-

plier/adjoint principle. In the interests of gaining insight into both methods, and of ultimately

finding uncertainty estimates, consider the covariance propagation equation for the Kalman

filter:

P(t+ 1,−) =A(t)P(t)A(t)T +Γ(t)Q(t)ΓT (5.1)

P(t+ 1) = P(t+ 1,−)

−P(t+ 1,−)E(t+ 1)T
[
E(t+ 1)P(t+ 1,−)E(t+ 1)T

+ R(t+ 1)
]
−1
E(t+ 1)P(t+ 1,−)

(5.2)

where we have substituted for K(t+ 1).

As we have seen, the computation of the covariances often dominates the Kalman filter

(and smoother) and sometimes leads to the conclusion that the procedures are impractical. But

as with all linear least-square–like estimation problems, the state vector uncertainty does not

depend upon the actual data values, only upon the prior error covariances. Thus, the filter and

smoother uncertainties (and the filter and smoother gains) can be computed in advance of the

actual application to data, and stored. The computation can be done by stepping through the

recursion in (5.1) starting from t = 0

Furthermore, it was pointed out that in Kalman filter problems, the covariances and Kalman

gain approach a steady state, in which P(t), P(t,−),K(t) do not depend upon time after awhile.

Physically, the growth in error from the propagation Equation (5.1) is just balanced by the

reduction in uncertainty from the incoming data stream. [This simple description supposes the

data come in at every time step; often the data appear only intermittently (but periodically),

and the steady-state solution is periodic–errors displaying a characteristic saw-tooth structure

between observation times.31]

31See the examples in Ghil et al. (1981) or Figure 5e.
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If one can find these steady-state values, then the necessity to update the covariances and

gain matrix disappears, and the computational load is much reduced, potentially by many orders

of magnitude. The steady-state equation is often known as the algebraic Riccati equation.32.

A steady-state solution to the Riccati equation would correspond not only to a determination

of the steady-state filter and smoother covariances but also to the steady-state solution of the

Lagrange multiplier/adjoint equations–a so-called steady-state control. Generalizations to the

steady-state problem exist; an important one is the possibility of a periodic steady state.33

Before seeking a steady-state solution, one must determine whether one exists. That no such

solution will exist in general is readily seen by considering, for example, a physical system in

which certain components (elements of the flow) are not readily observed. If these components

are initialized with partially erroneous values, then if they are unstable, they will grow without

bound, and there will be no limiting steady-state value for the uncertainty, which will also have to

grow without bound. Alternatively, suppose there are elements of the state vector whose values

cannot be modified by the available control variables. Then no observations of the state vector

produce information about the control variables; if the control vector uncertainty is described

by Q, then this uncertainty will accumulate from one time step to another, growing without

bound with the number of time steps.

6. Controllability and Observability

In addition to determining whether there exists a steady-state solution either to the Riccati

equation, there are many reasons for examining in some detail the existence of many of the ma-

trix operations that have been employed routinely throughout. Matrix inverses occur throughout

the developments above, and the issue of whether they actually exist has been ignored. Ulti-

mately, however, one must face up to questions of whether some of the computations (e.g., the

determination of deadbeat controls, or the finding of initial conditions from later observations,

or the steady-state solution to the Riccati equation) are actually possible. The questions are

intimately connected to some very useful structural descriptions of models and data that we will

now examine briefly.

Consider the question of whether controls can be found to drive a system from a given initial

state x(0) to an arbitrary x(tf ). If the answer is “yes,” the system is said to be controllable. To

find an answer, consider for simplicity,34 a model with B = 0 and with the control, u, a scalar.

32See Reid (1972) for a discussion of the history of the Riccati equation in general; it is intimately related to

Bessel’s equation and has been studied in scalar form since the 18th century. Bittanti et al. (1991a) discuss many

different aspects of the matrix form.
33Discussed by Bittanti et al. (1991b)
34(following Franklin et al., 1990)
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Then the model time steps can be written

x(1) =Ax(0) + Γu(0)

x(2) =Ax(1) + Γu(1)

= A
2
x(0) +AΓu(0) + Γu(1)

...

x(tf ) =A
tfx(0) +

tf−1∑

j=0

A
tf−1−jΓu(j)

= Atfx(0) +
[
Γ AΓ · · ·A

tf−1Γ
]


u(tf − 1)

...

u(0)


 .

(6.1)

To determine u(t), we must be able to solve the system

[
Γ AΓ · · ·Atf−1Γ

]


u(tf − 1)

...

u(0)


 = x(tf )−A

tfx(0) ,

or

Cu = x(tf )−A
tfx(0)

(6.2)

for u(t). The state vector dimension is N ; therefore the dimension of C is N by the number of

columns, tf [a special case–u(t) being scalar means that Γ is N ×1]. Therefore, Equation (6.2)

has no (ordinary) solution if tf is less than N . If tf = N and C is nonsingular–that is, of

rank N–there is a unique solution, and the system is controllable. If the dimensions of C

are nonsquare, one could have a discussion, familiar from Chapter 2, of solutions for u(t) with

nullspaces present. If tf < N , there is a nullspace of the desired output, and the system would

not be controllable. If tf > N , then there will still be a nullspace of the desired output, unless

the rank is N , when tf = N , and the system is controllable. The test can therefore be restricted

to this last case.

This concept of controllability can be described in a number of interesting and useful ways35

and generalized to vector controls and time-dependent models. To the extent that a model is

found to be uncontrollable, it shows that some elements of the state vector are not connected to

the controls, and one might ask why this is so and whether the model cannot then be usefully

simplified.

35(e.g., Franklin et al., 1990; Stengel, 1986)
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The concept of observability is connected to the question of whether given N perfect obser-

vations, it is possible to infer all of the initial conditions. Suppose that the same model 6.1 is

used, and that we have (for simplicity only) a scalar observation sequence

y(t) = E(t)x(t) + n(t) , 0 ≤ t ≤ tf . (6.3)

Can we find x(0)? The sequence of observations can be written, with u(t) ≡ 0, as

y(1) = E(1)x(1) = E(1)Ax(0)

...

y(tf ) = E(tf )A
tfx(0) ,

which is,

Ox(0) =



y(1)
...

y(tf )




O =




E(1)A
...

E(tf )A
tf




.

(6.4)

If the observability matrix O is square–that is, tf = N and is full rank–there is a unique

solution for x(0), and the system is said to be observable. Should it fail to be observable, it

suggests that at least some of the initial conditions are not determinable by an observation

sequence and are irrelevant. Determining why that should be would surely shed light on the

model one was using. As with controllability, the test (6.4) can be rewritten in a number

of ways, and the concept can be extended to more complicated systems. The concepts of

stabilizability, reachability, reconstructability, and detectability are closely related.36, and there is

a close connection between observability and controllability and the existence of a steady-state

solution for the algebraic Riccati equations.

In practice, with real data and models, one must distinguish between mathematical observ-

ability and controllability and practical limitations imposed by the realities of observational

systems. It is characteristic of fluids that changes occurring in some region at a particular time

are ultimately communicated to all locations, no matter how remote, at later times, although

the delay may be considerable, and the magnitudes of the signal may be much reduced by dissi-

pation and geometrical spreading. Nonetheless, one anticipates that there is almost no possible

element of a fluid flow, no matter how distant from a particular observation, that is not in

principle observable.

36Goodwin and Sin (1984) or Stengel (1986)
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7. Nonlinear Models

Fluid flows are nonlinear by nature, and one must address the data/model combination

problem where the model is nonlinear. (There are also, as noted above, instances in which the

data are nonlinear combinations of the state vector elements.) Nonetheless, the focus here on

linear models is hardly wasted effort. As with more conventional systems, there are not many

general methods for solving nonlinear estimation or control problems; rather, as with forward

modeling, each situation has to be analyzed as a special case. Much insight is derived from

a thorough understanding of the linear case, and indeed it is difficult to imagine tackling any

nonlinear situation without a thorough grasp of the linear one. Not unexpectedly, the most

general approaches to nonlinear estimation/control are based upon linearizations.

A complicating factor in the use of nonlinear models is that the objective functions need no

longer have unique minima. There can be many nearby, or distant, minima, and the one chosen

by the usual algorithms may depend upon exactly where one starts in the parameter space and

how the search for the minimum is conducted. Indeed, the structure of the cost function may

come to resemble a chaotic function, filled with hills, plateaus, and valleys into which one may

stumble, never to get out again.37 The combinatorial methods described in Chapter 3 are a

partial solution.

7.1. The Linearized and Extended Kalman Filter. If one employs a nonlinear model,

x(t+ 1) = L
(
x(t), Bq(t), Γ(t)u(t)

)
, (7.1)

then reference to the Kalman filter recursion shows that the forecast step can be taken as before,

x̃(t+ 1,−) = L
(
x̃(t), Bq(t), 0

)
, (7.2)

but it is far from clear how to propagate the uncertainty from P(t) to P(t+1,−), the previous

derivation being based upon the assumption that the error propagates linearly, independent of

the true value of x(t) (or equivalently, that if the initial error is Gaussian in character, then

so is the propagated error). A number of approaches exist to finding approximate solutions

to this problem, but they can no longer be regarded as strictly optimal, representing different

linearizations.

Suppose that we write

x(t) = xo(t) +∆x(t) , q = q0(t) +∆q(t) , (7.3)

37Miller, Ghil, and Gauthiez (1994) discuss some of the practical difficulties.
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L
(
x(t), Bq(t), Γu(t), t

)
≈ Lo

(
xo(t), qo(t), 0, t

)

+ Lx
(
xo(t), 0

)
T
∆x(t)

+Lq

(
xo(t), qo(t)

)T
∆q(t)

+ Lu

(
xo(t), qo(t)

)T
u(t)

where

Lx

(
xo(t), qo(t)

)
=

∂L

∂x(t)
,

Lq

(
xo(t), qo(t)

)
=

∂L

∂q(t)
,

Lu

(
xo(t), qo(t)

)
=

∂L

∂u(t)
.

(7.4)

Then

xo(t+ 1) = Lo

(
xo(t), Bqo(t), 0, t

)
(7.5)

defines a nominal solution, or trajectory, xo(t). The model is assumed to be differentiable in this

manner; all discrete models are so differentiable, numerically, barring a division by zero some-

where. Note that discrete models are, by definition, discontinuous, and discrete differentiation

automatically accomodates that.

We have an equation for the solution perturbation:

∆x(t+ 1) = Lx

(
xo(t), qo(t)

)T
∆x(t) +LT

q ∆q(t) +L
T
uu(t) , (7.6)

which is linear and of the form already used for the Kalman filter, but with redefinitions of

the governing matrices. The full solution would be the sum of the nominal solution xo(t) and

the perturbation ∆x(t). This form of estimate is sometimes known as the linearized Kalman

filter, or the neighboring optimal estimator. Its usage depends upon the existence of a nominal

solution, differentiability of the model, and the presumption that the controls ∆q, u do not

drive the system too far from the nominal trajectory.

The so-called extended Kalman filter is nearly identical except that the linearization is taken

not about a nominal solution but about the most recent estimate x̃(t); that is, the partial

derivatives in (7.4) are evaluated using not xo(t) but x̃(t). This latter form is more prone to

instabilities, but if the system drifts very far from the nominal trajectory, it could well be more

accurate than the linearized filter. The references go into these questions in great detail. Prob-

lems owing to multiple minima in the cost function38 can always be overcome by having enough

observations to keep the estimates close to the true state. Linearized smoothing algorithms can

be developed in analogous ways, and the inability to track strong model nonlinearities is much

less serious with a smoother than with a filter. The usual posterior checks of model and data

38(e.g., Miller et al., 1994)
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residuals are also a very powerful precaution against a model failing to track the true state

adequately.

7.2. Parameter Estimation (Adaptive Estimation). An important application of mod-

els used with data is to the estimation of empirical parameters used to describe the circulation.

An example would be an attempt to improve estimates of eddy coefficients in the model by

successively correcting them as more data appeared. Even with a linear dynamical model, such

estimation generates a nonlinear estimation problem.

Suppose that the system is indeed linear and that the model contains a vector of parameters

whose nominal values 0 we wish to improve upon while also estimating the state vector. Write

the model as

x(t+ 1) = A
(
p(t)

)
x(t) +Bq(t) + Γu(t) (7.7)

where the time dependence in the parameters refers to the changing estimate of their value

rather than a true physical time dependence. A general approach to solving this problem is to

augment the state vector. That is,

xA(t) =

[
x(t)

p(t)

]
. (7.8)

Then write a model for this augmented state as

xA(t+ 1) = LA
(
xA(t), q(t), u(t)

)
(7.9)

where

LA =

{
A
(
p(t)

)
0

0 I

}
xA +Bq(t) + Γu(t) . (7.10)

The observation equation is augmented simply as

yA(t) = EA(t)xA(t) + nA(t) ,

EA(t) = {E(t) 0} , nA(t) = n(t) ,

assuming that there are no direct measurements of the parameters. The evolution equation for

the parameters can be made more complex than indicated here. A solution can be found by

using the linearized Kalman filter, for example, linearizing about the nominal parameter values.

Parameter estimation is a very large subject.39

A major point of concern in estimation procedures based upon Gauss-Markov type methods

lies in specification of the various covariance matrices, especially those describing the model

error [here lumped into Q(t)]. The reader will probably have concluded that there is, however,

nothing precluding deduction of the covariance matrices from the model and observations, given

that adequate numbers of observations are available. For example, it is straightforward to show

39(e.g., Anderson & Moore, 1979; Goodwin & Sin, 1984; Haykin, 1986)
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that if a Kalman filter is operating properly, then the so-called innovation, y(t) − Ex̃(t,−),

should be uncorrelated with all previous measurements:

〈y(t′)
(
y(t)−Ex̃(t,−)

)
〉 = 0 , t′ < t (7.11)

[recall Ch. 2, [3.7.16]]. To the extent that (7.11) is not satisfied, the covariances need to be

modified, and algorithms can be formulated for driving the system toward this condition. The

possibilities for such procedures have been known for a long time and have an extended literature

under the title adaptive estimation.40

7.3. Nonlinear Adjoint Equations; Searching for Solutions. Consider now a nonlin-

ear model in the context of the Lagrange multipliers approach. Let the model be nonlinear so

that a typical objective function is,

J =
(
x(0)− x̃(0)

)
T
P(0)−1

(
x(0)− x̃(0)

)

+

tf∑
t=1

(
E(t)x(t)− y(t)

)T
R(t)−1

(
E(t)x(t)− y(t)

)

+

tf−1∑
t=0

u(t)TQ(t)−1u(t)

− 2

tf∑
t=1

µ(t)T
(
x(t)−L

(
x(t− 1), Bq(t− 1), Γu(t− 1)

))
.

(7.12)

The normal equations are:

1

2

∂J

∂u(t)
= Q−1u(t) +

(
∂L

∂u (t)

)T

ΓTµ(t+ 1) = 0 , 0 ≤ t ≤ tf − 1 (7.13)

1

2

∂J

∂µ(t)
= x(t)−L

(
x(t− 1), Bq(t− 1), Γu(t− 1)

)
= 0 , 1 ≤ t ≤ tf (7.14)

1

2

∂J

∂x(0)
= P(0)−1

(
x(0)− x̃(0)

)
+

(
∂L

∂x(0)

)T

µ(1) = 0 , (7.15)

1

2

∂J

∂x(t)
= E(t)TR(t)−1

(
E(t)x(t)− y(t)

)
−µ(t) (7.16)

+

(
∂L

∂x(t)

)T

µ(t+ 1) = 0 , 1 ≤ t ≤ tf − 1 (7.17)

1

2

∂J

∂x(tf )
= E(tf )

TR(tf )
−1
(
E(tf )x(tf )− y(tf )

)
−µ(tf ) = 0 . (7.18)

40Among textbooks that discuss this subject are those of Haykin (1986), Goodwin and Sin (1984), and

Ljung (1987).
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These are nonlinear because of the nonlinear model (7.15)–although the adjoint model (7.16)

remains linear in µ(t)–and the linear methods described above are no longer directly useful.

As in the linearized Kalman filter, the operators,

(
∂L (x (t) ,Bq (t) ,Γu (t) , t)

∂u (t)

)
,

(
∂L (x (t) ,Bq (t) ,Γu (t) , t)

∂x(t)

)
, (7.19)

appearing in the above equations (or their transposes), are the derivatives of the model with

respect to the control and statevectors. Assuming they exist, they represent a linearization of

the model about the state and control vectors. They are sometimes called the “tangent linear

model”. Their transposes are, in this context, the adjoint model. There is some ambiguity about

the terminology: the form of (7.19) or the transposes are definable independent of the form of J.

Otherwise, Eq. (7.16) and its boundary condition (7.18) depend upon the actual observations

and the details of J ; we will call this pair the “adjoint evolution” equation to distinguish it from

the adjoint model.

One might anticipate that if the nonlinearity is not too great, perturbation methods might

work. This notion leads to what is usually called neighboring optimal control41. Where the

nonlinearity is too great, the approach to solution is an iterative one. Consider what one is

trying to do. At the optimum, if we can find it, J will reach a stationary value in which the

terms multiplying the µ(t+1) will vanish identically. Essentially, one uses search methods that

are able to find a solution (there may well be multiple such solutions, each corresponding to a

local minimum of J).

There are many known ways to seek approximate solutions to a set of simultaneous equations,

linear or nonlinear, using various search procedures. Most such methods are based upon what

are usually denoted as Newton or quasi-Newton methods, or variations on steepest descent. The

most popular approach to tackling the set (7.13)—(7.18) has been a form of conjugate gradient or

modified steepest descent algorithm. The iteration cycles are commonly carried out by making a

first estimate of the initial conditions and the boundary conditions—for example, setting u = 0.

One integrates (7.14) forward in time to produce a first guess for x(t). A first guess set of

Lagrange multipliers is obtained by integrating (7.16) backward in time. Normally, (7.13) is

not then satisfied, but because the values obtained provide information on the gradient of the

objective function with respect to the controls, one knows the sign of the changes to make

in the controls to reduce J . Perturbing the original guess for u(t) in this manner, one does

another forward integration of the model and backward integration of the adjoint. In practice,

the perturbations are determined by the conjugate gradient or other algorithm, continuing the

iterations until convergence is obtained.

41(e.g., see Stengel, Chapter 5)
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In this type of approximate solution, the adjoint solution, µ̃(t), is really playing two distinct

roles. On the one hand, it is a mathematical device to impose the model constraints; on the

other, it is being used as a numerical convenience for determining the direction and step size to

best reduce the objective function. The two roles are obviously intimately related, but as we

have seen for the linear models, the first role is the primary one. The problem of possibly falling

into the wrong minimum of the objective function remains here, too.

In practice, the AD tools already alluded to are often used to find the various model deriv-

atives.

7.4. Sensitivity Analysis. Our employment so far of the adjoint model and the adjoint

evolution equation, has been in the context of minimizing an objective function–and to some

degree, the adjoint has been nothing but a numerical convenience for algorithms which find

minima. As we have seen repeatedly however, Lagrange multipliers have a straightforward in-

terpretation as the sensitivity of an objective function J, to perturbations in problem parameters.

This use of the multipliers can be developed independently of the state estimation problem.

In many cases, one cares primarily about some quantity, H (x̃ (tf )) , e.g. the heat flux or

surface elevation, in ocean models, as given by the statevector at the end time x (tf ) of a model

computation. Suppose42 one seeks the sensitivity of that quantity to perturbations in the initial

conditions (any other control variable could be considered), x0. Let L continue to be the operator

defining the time-stepping of the model. Define Ψn = L (xn,q (n) , t = n∆t) . Then,

H = H
(
Ψtf

[
Ψtf−1

[...Ψ1 [x0]]
])
,

that is, the function of the final state of interest is a nested set of operators working on the

control vector x0. Then the derivative of H with respect to x0 is obtained from the chainrule,

∂H

∂x0
= H ′

(
Ψ′

tf

[
Ψ′

tf−1

[
...Ψ′

1 [x0]
]])

(7.20)

where the prime denotes the derivative with respect to the argument of the operator L evaluated

at that time,
∂Ψn (p)

∂p
.

Notice that these derivatives, are the Jacobians (matrices) of dimension N×N at each time-step,

and are the same derivatives that appear in the operators in (7.19). The nested operator (7.20)

can be written as a matrix product,

∂H

∂x0
= ∇h

T
∂Ψtf

(p)

∂p

∂Ψtf−1
(p)

∂p
...
∂Ψ1 (p)

∂p
. (7.21)

∇h is the vector of derivatives of function H (the gradient) and so (7.21) is a column vector of

dimension N × 1. p represents the statevector at the prior timestep for each Ψn. The adjoint

42We follow here, primarily, Marotzke et al. (1999).
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compilers described above compute ∂H/∂x0 in what is called the “forward mode”, producing an

operator which runs from right to left, multiplying tf -N×N matrices starting with ∂Ψ1 (p) /∂p.

If however, Eq. (7.21) is transposed,

(
∂H

∂x0

)
T

=

(
∂Ψ1 (p)

∂p

)
T
(
∂Ψ2 (p)

∂p

)
T

...

(
∂Ψtf

(p)

∂p

)T

∇h, (7.22)

the first multiplication on the right involves multiplying the column vector ∇h by an N × N

matrix, thus producing another N×1 vector. More generally, the set of products in (7.22), again

taken from right to left, involves only multiplying a vector by a matrix, rather than a matrix

by a matrix as in (7.21), with a potentially enormous computational saving. Such evaluation

is the so-called reverse mode adjoint calculation (the transposes generate the required adjoint

operators) and has only recently has become available in the automatic differential compilers. In

comparing the computation in the forward and reverse modes, one must be aware that there is a

storage penalty in (7.22) not incurred in (7.21).43 In practice, the various operators ∂Ψi (p) /∂p

are not obtained explicitly, but are computed. Going much beyond these simple statements

takes us too far into the technical details.

7.5. Adaptive Methods. All of the inverse problems we have discussed were reduced

ultimately to finding the minimum of an objective function, either in unconstrained form or

constrained by exact relationships (e.g., models). Once the model is formulated, the objective

function agreed on, and the data obtained in appropriate form (often the most difficult step), the

formal solution is reduced to finding the constrained or unconstrained minimum. Optimization

theory is a very large, very sophisticated subject directed at finding such minima, and the

methods we have described here–sequential estimation and adjoint/Pontryagin principles–are

only two of a number of possibilities.

As we have seen, some of the methods stop at the point of finding a minimum and do not

readily produce an estimate of the uncertainty of the solution. One can distinguish inverse

methods from optimization methods by the requirement of the former for the requisite uncer-

tainty estimates. Nonetheless, as noted before in some problems, mere knowledge that there is

at least one solution may be of intense interest, irrespective of whether it is unique or whether

its stability to perturbations in the data or model is well understood.

The reader interested in optimization methods generally is referred to the literature on that

subject.44 The oceanographic general circulation problem falls into the category of extremely

large, nonlinear optimization, a category which tends to preclude the general use of many meth-

ods that are attractive for problems of more modest size.

43Restrepo et al. (1995) discuss some of the considerations.
44e.g., Gill et al., 1981; Luenberger, 1984; Scales, 1985
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In the context of the more conventional methods, the continued exploration of ways to re-

duce the computational load without significantly degrading either the proximity to the true

minimum or the information content (the uncertainties of the results) is a very high priority.

Several approaches are known. We have already described the use of steady-state filters and

smoothers where they exist. Textbooks discuss a variety of possibilities for simplifying various

elements of the solutions. In addition to the steady-state assumption, methods include: (1)

“state reduction”–attempting to remove from the model (and thus from the uncertainty calcu-

lation) elements of the state vector that are either of no interest or comparatively unchanging45;

(2) “reduced-order observers”,46 in which some components of the model are so well observed

that they do not need to be calculated; (3) proving or assuming that the uncertainty matrices

(or the corresponding information matrices) are block diagonal or banded, permitting use of a

variety of sparse algorithms. This list is not exhaustive.

8. Forward Models

The focus we have had on the solution of inverse problems has perhaps given the impression

that there is some fundamental distinction between forward and inverse modeling. The point

was made at the beginning of this book that inverse methods are important in solving forward

as well as inverse problems. Almost all the inverse problems discussed here involved the use of

an objective function, and such objective functions do not normally appear in forward modeling.

The presence or absence of such functions thus might be considered a fundamental difference

between the problem types.

But numerical models do not produce universal, uniformly accurate solutions to the fluid

equations. Any modeler makes a series of decisions about which aspects of the flow are most

important for accurate depiction–the energy flux, the large-scale velocities, the nonlinear cas-

cades, etc.–and which cannot normally be achieved simultaneously with equal fidelity. It is rare

that these goals are written explicitly, but they could be, and the modeler could choose the grid

and differencing scheme, etc., to minimize a specific objective function. The use of such explicit

objective functions would prove beneficial because it would quantify the purpose of the model.

One can also consider the solution of ill-posed forward problems. In view of the discussion

throughout this book, the remedy is straightforward: One must introduce an explicit objective

function of the now-familiar type, involving state vectors, observations, control, etc., and this

approach is precisely that recommended by them. If a Lagrange multiplier method is adopted,

then the relations Ch. 2 Eqs. (3.5.22,3.5.23) show that an over- or underspecified forward model

produces a complementary under- or overspecified adjoint model, and it is difficult to sustain a

45Gelb, 1974
46Luenberger, 1964; O’Reilly, 1983
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F����� 16. (Top) Solutions x1 (t) to the discretized version of Eq. (8.1) for two

slightly different initial conditions. The solid line shows the solution when the

initial conditions are carefully chosen to avoid exciting the exponentially growing

mode (x (1) = [0.800, 1.00]T ). The dashed line shows the eventual emergence of

the growing mode out of the background after sufficient time has passed, when

the initial conditions were modified slightly to x (1) = [0.805, 1.00]T . (Middle)

Solution to Eq. (8.1) when the growing mode is excited by the initial conditions,

but a terminal constraint is provided–one which simultaneously overspecifies

the system and stabilizes it through the objective function. (Lower) The two

elements of the adjoint solution (Lagrange multipliers), µ (t) , used to constrain

the objective function. Note the largest values are at the origin: the solution is

most sensitive to specification of the initial conditions.

claim that modeling in the forward direction is fundamentally distinct from that in the inverse

sense.

Example: Consider the ordinary differential equation

d2ξ(t)

dt2
− k2ξ(t) = 0 . (8.1)

Formulated as an initial value problem, it is properly posed with Cauchy conditions ξ(0) = ξ0,

ξ′(0) = ξ′

0. The solution is

ξ(t) = A exp(kt) +B exp(−kt) , (8.2)

with A, B determined by the initial conditions. If we add another condition–for example,

at the end of the interval of interest, ξ(tf ) = ξtf–the problem is ill-posed because it is now

overspecified. To analyze and solve such a problem using the methods of this book, discretize it
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as

ξ(t+ 1)− (2 + k2)ξ(t) + ξ(t− 1) = 0 , (8.3)

taking ∆t = 1, with corresponding redefinition of k2. A canonical form is,

x (t+ 1) = Ax (t) , x (t) = [ξ (t) , ξ (t− 1)] , A =

{
2 + k2 −1

1 0

}

These equations are easily solved by a backward sweep of the adjoint model to obtain µ(1),

which produces x̂(1) in terms of x(tf )− xd(tf ). A forward sweep of the model, to tf , produces

the numerical value of x̂(tf ); the backward sweep of the adjoint model gives the corresponding

numerical value of x̂(1), and a final forward sweep of the model completes the solution. The

subproblem forward and backward sweeps are always well posed. This recipe was run for

k2 = 0.05, ∆t = 1, xd(1) = [0.805, 1.0]T , P(1) = 10−2I ,

x(tf = 50) = 1.427× 10−5, P(50) =

{
10−4 0

0 104

}
,

with results in Figure 16b,c. [The large subelement uncertainty in P(50), corresponding to scalar

element x(49), is present because we sought only to specify scalar element x(50), in x(50).] If

xd(1) = [0.800, 1.0]T instead of the value actually used, the unstable mode would not have been

excited. Notice that the original ill-posedness in both overspecification and instability of the

initial value problem have been dealt with. For a full GCM, the technical details are much more

intricate, but the principle is not in doubt.

We are ending as we began–this result can be thought of as the solution to a forward

problem, albeit ill-posed, or as the solution to a more or less conventional inverse one. The

distinction between forward and inverse problems has nearly vanished.

Any forward model that is driven by observed conditions–for example, of the windstress

or the buoyancy flux–is ill-posed in the sense that there can again be no unique solution, only

a most probable one, smoothest one, etc. As with an inverse solution, forward calculations no

more produce unique solutions in these circumstances than do inverse ones.
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• A. Köhl and J. Willebrand: An adjoint method for the assimilation of statistical
characteristics into eddy-resolving ocean models. Tellus, 54A, pp. 406–425, 2002.
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The context of this state estimation system

• The ongoing MITgcm model development,
http://mitgcm.org/sealion/

• The ongoing Estimating the Circulation and Climate of the Ocean
(ECCO) project of global WOCE data–model synthesis,

http://www.ecco-group.org

• The newly developed sea ice model by Menemenlis & Zhang

• A wealth of little-explored high-latitude ocean and sea ice data
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Adjoint applications (I): Ocean State Estimation
� Given:

– a set of (possibly different types of) observations

– a numerical model & set of initial / boundary conditions

� Question: (estimation / optimal control problem)
Find “optimal” model trajectory consistent with available observations
within given prior errors

� Iterative approach:
Minimize least square function J (~u) measuring model vs. data misfit

−→ seek ~∇uJ (~u) to infer update ∆~u from variation of controls ~u

~un+1 = ~un + ∆~u

� Results:

– optimal/consistent ocean state estimate

– corrected initial/boundary value estimates
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Adjoint applications (II): Sensitivity analysis
� Finite difference approach:

• Take a “guessed” anomaly

(SST) and determine its im-
pact on model output (MOC)

• Perturb each input element
(SST(i, j)) to determine its im-

pact on output (MOC).

� Reverse/adjoint approach:

• Calculates “full” sensitivity field
∂ MOC

∂ SST(x,y,t)

• Approach:

Let J = MOC, ~u = SST(i, j)

−→ ~∇uJ (~u) = ∂ MOC
∂ SST(x,y,t)

PSfrag replacements

finite difference approach adjoint approach
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Adjoint applications (III): SVD / Optimal Perturbations
� For dynamical system ~v(t) = M~v(0), with ~v0 = ~u,

find initial conditions ~u, such that model state ~v(t) maximizes a
chosen norm 〈 . , . 〉v(t) = Xt with norm X0 unity at time t = 0:

max
~u �

(M~u)T ·Xt ·M~u − λ

�

~uT ·X0 · ~u − 1

�

�

Leads to generalized eigenvalue problem:

MT ·Xt ·M · δ~u = λX0 · δ~u

Thus, in terms of the tangent linear and adjoint operator, this reads

ADM · Xt · TLM · δu = λ X0 · δu

−→ iterative solution for optimum δ~u0
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Iterative optimization via gradient descent
PSfrag replacements

J [~v(~u)]

~u(n) ~u(2) ~u(1) ~u

~v(t) = M(~u)

~v(~u(n), t)

~v(~u(2), t)

~v(~u(1), t)
J [~v(~u(n))]

J [~v(~u(2))]

J [~v(~u(1))]

control space

state space

� i
( modeli − datai )2
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Some definitions

~u independent / control variables

(e.g. initial T , S, surface forcing, background diffusivites)

~v model state (at time t): T, S, U, V, W

M (nonlinear) model operatorM(~u, t) = ~v(t)

J objective / cost function (e.g. least-square misfit)

δ~u perturbation of independent /control variable

δ~v perturbed model state due to control perturbation

M tangent linear operator of model operator, M = ( ∂Mi / ∂uj )

δJ cost function variation as result of control perturbation
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Some algebra (i)

model M: control space → model state space

tangent linear M : δ(control space) → δ(model state space)

Consider cost function J

J : U −→ V −→ IR

~u 7−→ ~v =M(~u) 7−→ J (~u) = J (M(~u))

TLM : δ~u 7−→ δ~v = M · δ~u 7−→ δJ = ~∇uJ
T · δ~u

with tangent linear model

M =
∂Mi

∂uj
�

�
� ~u0

Minimize cost J : Seek control variables ~u such that gradient vanishes:

~∇uJ (~u) = 0
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Some algebra (ii)

Expansion of J in terms of δ~u or δ~v:

J = J0 + δJ = J |~u0
+

�

∇uJ
T , δ~u

�

+ O(δ~u2)

= J |~v0
+

�

∇vJ
T , δ~v

�

+ O(δ~v2)

Then, evaluate δJ :

δJ =

�

∇vJ
T , δ~v

�

=
�

∇vJ
T , M δ~u

�

=

�

MT ∇vJ
T , δ~u

�

The full gradient can be inferred via the adjoint model (ADM)

∇uJ
T |~u = MT · ∇vJ

T |~v

= MT · δ~v∗

= δ~u∗

with MT the adjoint (transpose) of the tangent linear operator M
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Some algebra (iii)

Application of the chain rule:

~v = M(~u) = MΛ(MΛ−1( . . . (Mλ( . . . (M1(M0(~u)))))))

δ~v = M · δ~u = MΛ ·MΛ−1 · . . . ·Mλ · . . . ·M1 ·M0 · δ~u

Reveals the reverse nature of the adjoint calculation:

δJ = 〈 ∇vJ
T , δ~v 〉

= 〈 ∇vJ
T , MΛ · . . . ·M0 · δ~u 〉

= 〈 MT
0 · . . . ·MT

Λ · ∇vJ
T , δ~u 〉

= 〈 ∇uJ
T , δ~u 〉
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The Adjoint method

Need ~∇uJ |u0
of J (~u0) ∈ IR1 w.r.t. control variable ~u ∈ IRm

J : ~u �→ ~v =M(~u) �→ J (M(~u))

TLM : δ~u �→ δ~v = M · δ~u �→ δJ = ~∇uJ · δ~u

ADM : δ~u∗ = ~∇uJ T ←� δ~v∗ ←� δJ

• ~v = M(~u) nonlinear model

• M , MT tangent linear (TLM ) / adjoint (ADM )

• δ~u , δ~u∗ perturbation / dual (or sensitivity)

~∇uJ
T |~u = MT |~v · ~∇vJ |~v

TLM : m (∼ nxnynz ) integrations @ 1 · (#forward)

ADM : 1 integration @ γ · (#forward)
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Automatic differentiation (AD)
� Model code � Adjoint code

~v = MΛ (MΛ−1 (. . . . . . (M0 (~u)))) δ~u∗ = MT
0 ·M

T
1 · . . . . . . ·M

T
Λ · δ~v

∗

� Automatic differentiation:

each line of code is elementary operatorMλ

−→ rules for differentiating elementary operations

−→ yield elementary Jacobians Mλ

−→ composition of Mλ’s according to chain rule

yield full tangent linear / adjoint model

� TAMC/TAF source-to-source tool (Giering & Kaminski, 1998)

• modelM

• independent ~u

• dependent J

�
�

�
�

�
�

�

TAMC/TAF
−−−−−−−−−−−−−→

�
�

�
�

�
�

�

TLM M, or

ADM MT , or

gradient δ~u∗ = ~∇uJ
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Example: Eli’s 3-box model of THC

DO t = 1, nTimeSteps

• calculate density

ρ = −αT + βS

• calculate thermohaline transport

U = U(ρ(T, S))

• calculate tracer advection

d

dt
Tr = f(Tr, U)

calculate timestepping and update tracer
fields Tr = {T, S}

END DO

PSfrag replacements

T1, S1

T2,

S2T3, S3

equator pole
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Focus on advection equation for T3 (i)

dT3

dt
= U(T3 − T2), for U ≥ 0

diffT3 = u ∗ (T3− T2)

derivative δdiffT3:

δdiffT3 =
∂diffT3

∂U
δU +

∂diffT3

∂T2
δT2 +

∂diffT3

∂T3
δT3

in matrix form:

�
�

�
�

�
�

�

δdiffT3

δT3

δT2

δU

�
�

�
�

�
�

�

λ

=

�
�

�
�

�
�

�

0 −U U T3− T1

0 1 0 0

0 0 1 0

0 0 0 1
�

�
�

�
�

�
�

·

�
�

�
�

�
�

�

δdiffT3

δT3

δT2

δU

�
�

�
�

�
�

�

λ−1
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Focus on advection equation for T3 (ii)

Transposed relationship yields:
�

�
�

�
�

�
�

δ∗diffT3

δ∗T3

δ∗T2

δ∗U

�
�

�
�

�
�

�

λ−1

=

�
�

�
�

�
�

�

0 0 0 0

−U 1 0 0

U 0 1 0

T3− T1 0 0 1

�
�

�
�

�
�

�

·

�
�

�
�

�
�

�

δ∗diffT3

δ∗T3

δ∗T2

δ∗U

�
�

�
�

�
�

�

λ

and thus adjoint code:

adT3 = adT3 - u*addiffT3

adT2 = adT2 + u*addiffT3

adU = adu + (T3-T2)*addiffT3

addiffT3 = 0

Note: state T2, T3, U are required to evaluate derivative
at each time step, in reverse order!
−→ TANGENT linearity
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Reverse order integration (i)

DO istep = 1, nTimeSteps

• call density(ρ)

• call transport(U)

• call timestep(T,S)

• call update(T,S)

END DO

DO istep = nTimeSteps, 1, -1

C recompute required variables

• DO iaux = 1, istep

– call density(ρ)

– call transport(U)

– call timestep(T,S)

– call update(T,S)

END DO

C perform adjoint timestep

• call adupdate(T,S)

• call adtimestep(T,S)

• call adtransport(U)

• call addensity(ρ)

END DO

heimbach@mit.edu • http://mitgcm.org Short Course on Data Assimilation • WHOI • May 2003



Reverse order integration (ii)
� Adjoint = transpose of TLM

→ evaluated in reverse order

→ model state at every time step

required in reverse

→ all state stored or recomputed

� Solution: Checkpointing
(e.g. Griewank, 1992)

balances storing vs. recomputation

PSfrag replacements

vklev3

0

vklev3

1

vklev3

n−1

vklev3
n

vklev2

1

vklev2

n−1

vklev2
n

vklev1

1

vklev1
n

advklev3

0

advklev3

1

advklev3

2

advklev3

n−1
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Reverse order integration (iii)

DO iOuter = 1, nOuter

• CADJ STORE T, S → disk

• DO iInner = 1, nInner

– call density(ρ)

– call transport(U)

– call timestep(T, S)

– call update(T, S)

END DO

END DO

DO iOuter = nOuter, 1, -1

• CADJ RESTORE T, S ← disk

• DO iInner = 1, nInner

– call density(ρ)

– call transport(U)

–
CADJ STORE T, S, U → common

– call timestep(T, S)

– call update(T, S)

END DO

• DO iInner = nInner, 1, -1

– call adupdate(adT, adS)

– call adtimestep(adT, adS)

–
CADJ RESTORE T, S, U ← common

– call adtransport(adU)

– call addensity(adρ)

END DO

END DO
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Reverse order integration (iv)

I e.g. 3-level checkpointing:

nTimeSteps = n1 · n2 · n3

→ Storing: reduced from n1 · n2 · n3 to

• disk: n2 + n3,
• memory: n1

→ CPU: 3 · forward + 1 · adjoint ≈ 5.5 · forward

I Closely related to adjoint dump & restart problem.
Available queue sizes at HPC Centres may be limited

I Insertion of store directive requires detailed knowledge
of code and AD tool behaviour
−→ not straightforward (“semi-automatic” differentiation only)
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Input/output – active file handling

I/O of active variables is common and needs to be accounted for in derivative

READ assigning a value to a variable

WRITE referencing a variable

code hypothetical code adjoint hypothetical code adjoint code

OPEN(8) ADXD = 0. OPEN(9)

...
...

...
...

WRITE(8) X XD = X ADXD = ADXD + ADZ WRITE(9) ADZ

ADZ = 0. ADZ = 0.

...
...

...
...

READ(8) Z Z = XD ADX = ADX + ADXD READ(9) ADXD

ADXD = 0. ADX = ADX + ADXD

ADXD = 0.

...
...

...
...

CLOSE(8) CLOSE(9)

(from Giering & Kaminski (1998))
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Test / assure correctness of adjoint-derived gradient

Procedure to check that automatically derived gradient Gad
i is correct;

consider perturbation of i-th control vector element ui and ∆ui = δij

finite difference vs. adjoint tangent linear vs. adjoint

G
fd
i =

J (ui+ε)−J (ui−ε)
2ε Gtl

i = ~∇uJ · ∆~u =
(

~∇uJ

)

i

R
fd
i = 1 −

Gfd

i

Gad
i

Rtl
i = 1 −

Gtl
i

Gad
i

→ can test ’correctness’ of adjoint gradient Gad
i

→ can test ’time horizon’ of linearity assumption
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Extension to vector-valued “cost”

For ~J (M(~u)) ∈ IRm previous expression for gradient is generalized to

MT · dv
~J T · δ ~J = du

~J T · δ ~J

Thus, with δ~u ∈ IRn and δ ~J ∈ IRm,

m adjoint

n tangent linear

�
�

�

runs for each perturbation

�
�

�

(δ ~J )j = δij , j = 1, . . . , m

(δ~u)j = δij , j = 1, . . . , n

to recover full derivative du
~J T .

−→
ADM

TLM

�
�

�

is preferable, for
�

�
�

n > m

n < m
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Examples
� Least-square model-vs.-data misfit: J = 〈H(~v)−~d , H(~v)− ~d 〉

e.g. for state estimation / data assimilation

with
~d: data vector,

H: projector of model state space onto data space

∇vJ
T = 2 H ·

�

H(~v)− ~d

�

�

∇vJ
T

� j
= 2

k

∂Hk

∂vj

(Hk(~v)− dk)

� Final state: ~J = ~v

e.g. for SVD calculation, source-sink estimation

dv
~J T = Id

du
~J T = MT · dv

~J T = MT

heimbach@mit.edu • http://mitgcm.org Short Course on Data Assimilation • WHOI • May 2003



AD challenges: (II) Scalability

• domain decomposition (tiles) & overlaps (halos)
• split into extensive on-processor and global phase

Global communication/arithmetic op.’s supported by MITgcm’s
intermediate layer (WRAPPER) which need hand-written adjoint forms

operation/primitive forward reverse

• communication (MPI,...): send ←→ receive

• arithmetic (global sum,...): gather ←→ scatter

• active parallel I/O: read ←→ write
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AD challenges: (III) Parameterization schemes
� Parameterization schemes required for

– turbulence closure for nonlinear Navier-Stokes equations

– subgrid-scale processes

� Main issues:

– nonlinear expressions
(momentum advection, nonlinear equation of state, ...)

– State-dependent conditional statements (thresholds and jumps)

– small numbers (SQRT(.), 1/x, ...); non-differentiable points

– combinations thereof

� e.g.: many forms of mixing processes
(shear instability, convection, diffusion, ...)

� Require significant attention to obtain stable adjoint solution!

N.B.: Currently, common method to circumvene these problems is to
exclude exact adjoint of parameterization schemes
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Example: Limits on boundary layer depth in KPP

• for neutral stratification: Hbl should be smaller than both he and L

• generally: Hbl should be larger than some minimal value

CADJ STORE hbl, bfsfc TO TAPE

do i = 1, Nx ∗ Ny

if (bfsfc(i).gt.0.0) then

hekman = cekman ∗ ustar(i) / max(abs(Coriol(i)), eps) he = 0.7u∗/f

hmonob = cmonob ∗ ustar(i) ∗ ustar(i) ∗ ustar(i) L = u∗ 3/(κBf )

& / vonk / bfsfc(i)

hlimit = hbl limit for:

& stable(i) ∗ min(hekman, hmonob) – stable case

& + (stable(i)− 1.) ∗ zgrid(Nr) – unstable case

hbl(i) = min(hbl(i), hlimit) apply upper limit

end if

hbl(i) = max(hbl(i), minKPPhbl) apply lower limit

end do
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Example: Limits on boundary layer depth in KPP (cont’d)

CADJ RESTORE hbl_1 FROM TAPE

CADJ RESTORE bfsfc FROM TAPE

do i = 1, Nx*Ny

adhbl(i) = adhbl(i)*(0.5+sign(0.5d0,hbl_2(i)-minkpphbl))

if (bfsfc(i) .gt. 0.) then

! recompute hekman, hmonob, hlimit

adhlimit = adhlimit+adhbl(i)*(0.5-sign(0.5d0,hlimit-hbl_1(i)))

adhbl(i) = adhbl(i)*(0.5+sign(0.5d0,hlimit-hbl_1(i)))

adhekman = adhekman+adhlimit*stable(i)*(0.5+sign(0.5d0,hmonob-hekman))

adhmonob = adhmonob+adhlimit*stable(i)*(0.5-sign(0.5d0,hmonob-hekman))

adstable(i) = adstable(i)+adhlimit*(zgrid(nr)+min(hekman,hmonob))

adhlimit = 0.d0

...

endif

end do
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ECCO state estimation: Control variables
� Initial values (temperature, salinity, passive tracer)

� time-dependent surface forcing

(either air-sea fluxes or atmospheric fields plus bulk formulae)

– heat flux (or surface air temperature)

– freshwater flux (or atmos. humidity )

– zonal/meridional windstresses (or surface wind speeds)

� time-dependent open-boundary values

� background mixing coefficient

� Eliassen-Palm fluxes

� bottom topography (in progress)

� ...
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ECCO state estimation: observational elements

J = (η̄ − η̄TP )t
Wgeoid (η̄ − η̄TP ) TOPEX absolute SSH

+

�

η − η′

TP �

t
WTP

�

η − η′

TP �

TOPEX SSH anomalies

+

�

η − η′

ERS �

t
WERS

�

η − η′

ERS �

ERS SSH anomalies

+
�

T̄surf − T̄Reyn

�

t
WSST

�

T̄surf − T̄Reyn

�

Reynolds SST

+

�

T̄ − T̄Lev

�

t
WTLev �

T̄ − T̄Lev

�

Levitus clim.

+

�

S̄ − S̄Lev
�

t
WSLev �

S̄ − S̄Lev

�

Levitus clim.

+

�

τx − τx,NCEP

�

t
Wτx �

τx − τx,NCEP

�

zonal wind stress

+

�

τy − τy,NCEP
�

t
Wτy �

τy − τy,NCEP

�

merid. wind stress

+

�

HQ −HQ,NCEP
�

t
WHQ �

HQ −HQ,NCEP

�

NCEP heat flux

+

�

HF −HF,NCEP

�

t
WHF �

HF −HF,NCEP

�

NCEP freshwater flux

Currently added:
• Jason-1 altimetry (sea surface height)

•WOCE hydrography, XBT, TAO buoys

• PALACE/ARGO tracer profiles and drift velocities

• surface drifter velocities

• NSCAT/QuickScat surface wind stress fields

• TRMM/TMI tropical surface temperature fields
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ECCO state estimation: problem size
� Dimensionality:

• grid @ 1◦×1◦ resolution: nx · ny · nz = 360 · 160 · 23 1, 324, 800

• model state: 17 3D + 2 2D fields ∼ 2 · 107

• timesteps: 10 years @ 1-hour time step 87, 600

• control vector ∼ 1 · 108

– initial temperature (T), salinity (S)

– time-dependent surface forcing (every 2 days)
• cost function: observational elements: ∼ 1 · 108

� Computational size:

– 60 processors (15 nodes) @ 512MB per proc.

– I/O: 10 GB input, 35GB output

– time: 59 hours per iteration @ 60 processors

� What we would ideally want:

– 1/10◦×1/10◦ resol., 1000 years, full model error covariance ...
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Sea-ice model description
� Sea-ice model based on Hibler (1979,1980) has been added to MIT/ECCO

adjoint-model estimation infrastructure.

� Snow is simulated as per Zhang et al. (1998).

� Dynamics are governed by viscous-plastic rheology and solved with numerical
method of Zhang and Rothrock (2000).

� Relatively simple 2-category sea-ice model is chosen to to simplify
adjoint-model development and to reduce computational cost.

� References:

– W. D. Hibler, III, 1979. A dynamic thermodynamic sea ice model. J. Phys.
Oceanogr., 9:815.

– W. D. Hibler, III, 1980. Modeling a variable thickness sea ice cover. Mon.
Wea. Rev., 1:1943.

– J. Zhang, W. D. Hibler, III, M. Steele, and D. A. Rothrock, 1998. Arctic
ice-ocean modeling with and without climate restoring. J. Phys. Oceanogr.,
28:191.

– J. Zhang and D. A. Rothrock, 2000. Modeling arctic sea ice with an
efficient plastic solution. J. Geophys. Res., 105:3325.
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Coupled ocean-sea-ice model: adjoint sensitivity experiment
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• Preliminary test of the coupled model (sea-ice thermodynamics only).

• Sensitivity of sea-ice volume in the Labrador Sea to surface atmospheric temperature
perturbations over a 4 hour integration period in units of m3/◦C.

• Left panel: adjoint-derived gradient,
right panel: perturbation of surface atmospheric temperature at each location.

• The small difference between the two panels, less than one part in 105, demonstrates the
accuracy of the adjoint-model solution.
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Coupled ocean-sea-ice model: work in progress

� The coupled ocean-sea-ice adjoint model provides accurate results in
the small test domain only for up to 10-day integrations.

For longer integrations the forward-model gradient is ill-defined.
Therefore it cannot be computed using the adjoint method.

Work is underway to simplify the sea-ice adjoint model in order to
permit longer integrations.

� Accuracy of dynamic solver needs to be increased and computational
cost decreased for adjoint-model computations.

� Projection operators for sea ice data need to be written, and

corresponding a priori errors determined.
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Other issues
� impact of nonlinearities, discontinuities need further analyses

What are limits of applicability for high-resolution, long-term

integrations?

� cost regularization, gradient preconditioning, and model error analysis
−→ compute 2nd derivative (Hessian)

� bulk formulae: flux controls vs. atmospheric state controls

� atmospheric setup:

– dynamic setup (Held-Suarez like) is adjointed

– cubed-sphere needs update of adjoint components of WRAPPER

– adjoint of physics packages will require (quite) some work

– coupling

� ESMF / PRISMA: adjoint correspondents of coupler primitives
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Conclusions & Outlook – Science aspects

• Global ocean state estimation via adjoint method is feasible,

– yields a dynamical consistent model trajectory and parameter estimates

– uses data in an ’optimal’ way

– yields a quantitative measure of model vs. data misfit

• State estimation at the eddy-resolving scale remains subject to
research/discussion

• Incorporation of different data sets can reveil new insights into model vs. data
incompatibility/inconsistency (and its causes)

• Careful analysis of ’adjoint state’ yields complementary info on model
behaviour (assertions on which can be tested)

• Inclusion of model error remains untackled problem

• Sea ice state estimation has just started; despite remaining problems with
parameterizations, first results look promising; is expected to greatly enhance
current state estimation system.
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Conclusions & Outlook – Adjoint code generation

• Exact scalable adjoint code generation is feasible

• AD tools are indispensable for evolving code environment

• Nevertheless, challenges remain despite AD

efficient adjoint code generation is semi-automatic so far

• Code development should have AD “in mind”

• Libraries/couplers need derivative forms

• Room for AD tool improvement has led to

NSF Information Technology Research (ITR) project:
Adjoint Compiler Technology & Standard (ACTS)

common platform that should facilitate AD tool

development/improvement by larger community
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