The thermohaline circulation in the Los Alamos global ice-ocean model

Elizabeth Hunke Los Alamos National Laboratory

AOMIP workshop, Woods Hole MA, 8–9 May 2003 LA-UR-03-3178

POP:

Bryan-Cox z-coordinate ocean model

hydrostatic, Boussinesq primitive equations for ocean temperature, salinity, momentum implicit free surface

implicit barotropic fast gravity wave mode; else explicit 3D

KPP vertical mixing parameterization

adiabatic along-isopycnal mixing (Gent-McWilliams) OR biharmonic horiz mixing (on tracers) biharmonic horizontal friction (on momentum)

CICE:

energy conserving thermodynamics energy-based ridging and ice strength elastic-viscous-plastic dynamics incremental remapping advection 5 thickness categories, 4 layers of ice + 1 layer of snow variables/tracers (for each thickness category):

> ice area fraction ice/snow volume ice/snow energy in each vertical layer surface temperature

3°: 100x116x25

THC sensitivities:

horizontal mixing parameterization restoring/timescales T restoring too atmo mixed layer atmo bulk formulae P-E balance no ice-ocn freshwater/salinity feedback heat flux formulation to ice ice reference salinity

Forcing: T62, 1979-1988 atmo NCEP T, Q, U, ρ ISCCP SW, cloud MSU-Xie-Arkin precip monthly river runoff

Horizontal	Surface salinity	Length
mixing	restoring	(years)
GM	none	67
GM	180-day	110
biharmonic	none	28
	Horizontal mixing GM GM biharmonic	Horizontal mixingSurface salinity restoringGMnoneGM180-daybiharmonicnone

Maximum North Atlantic MOC, Sv

Average Mixed Layer Depth

3° control Year 25

 0.4° Year 25

Ice Area Fraction

Gx3 control

Gx3 restoring

0.4

0.0

0.0

Salinity Change Year 25 - Year 1

Surface

Contour interval: 1 psu

Full depth

Contour interval: 0.1 psu

Net Fresh Water Flux

Contour interval: 7 m/yr

Ice Freeze/Melt

Contour interval: 7 m/yr

Arctic Ocean Oceanic fresh water transport, Sv

in

GIN Seas Oceanic fresh water transport, Sv

26

29

Year 28 Max Mixed Layer Depth

Contours 0, 1200, 1800, 2400 m

Year 21 Max Mixed Layer Depth

112-m Velocity

Ice Concentration

SSM/I

0.4

Summary

Meridional overturning circulation in the North Atlantic appears to be robust in the 0.4° simulation. It gradually weakens in the 3° simulations, which overturn excessively in the Southern Ocean.

Northern hemisphere transport and circulation are reasonable in the 0.4° . CAVEAT: 25 years isn't enough.

Critical model ingredients

- Resolution of melting and freezing
- Mixing parameterizations in the ocean model
- Surface salinity restoring obscures modeling issues

Future work

Convection and the fresh water budget warrant a closer look in the 0.4° .

Interaction of sea ice physical processes with the ocean circulation needs more study.

Special thanks to Mat Maltrud, Matthew Hecht, Rainer Bleck