† Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
† Laboratory de Physique des Océans, CNRS, UFR Sciences, BP909, 29285 Brest, France
‡ Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island 02881, USA
§ Institut für Meereskunde, Christian-Albrechts-Universität, D-24105 Kiel, Germany
© Southampton Oceanography Centre, Empress Dock, Southampton SO14 3ZH, UK
¶ Department of Oceanography, Florida State University, Tallahassee, Florida 32306, USA

The circulation of water masses in the northeastern North Atlantic Ocean has a strong influence on global climate owing to the northward transport of warm subtropical water to high latitudes. But the ocean circulation at depths below the reach of satellite observations is difficult to measure, and only recently have comprehensive, direct observations of whole ocean basins become possible. Here we present quantitative maps of the absolute velocities at two levels in the northeastern North Atlantic as obtained from acoustically tracked floats. We find that most of the mean flow transported northward by the Gulf Stream system at the thermoline level (about 600 m depth) remains within the subpolar region, and only relatively little enters the Rockall trough or the Nordic seas. Contrary to previous work, our data indicate that warm, saline water from the Mediterranean Sea reaches the high latitudes through a combination of narrow slope currents and mixing processes. At both depths of investigation, currents cross the Mid-Atlantic Ridge preferentially over deep gaps in the ridge, demonstrating that sea-floor topography can constrain even upper-ocean circulation patterns.

...
the NAC from the western basin (5.5°C < θ < 6.5°C). Previous work has suggested that some of this warm water enters the Nordic seas (where it is transformed into the cold, dense water masses that fill the deep ocean basins), and that some flows generally anti-clockwise around the subpolar region where it is transformed by wintertime cooling and either leaves southward along the western boundary or recirculates within the subpolar gyre6,10,11.

At the lower level, the large-scale temperature contrast from southeast to northwest illustrates the competing influence of warmer, saline Deep Mediterranean Water (θ > 7°C) and cooler, fresher Labrador Sea Water (LSW) (θ < 3.4°C)13. LSW spreads into the eastern North Atlantic across the Mid-Atlantic Ridge at about 50°N (refs 13, 14). The influence of warmer, saltier Iceland–Scotland Overflow Water, which enters the northern Iceland basin through the Faroe Bank channel, is apparent along the continental slope south of Iceland and on both flanks of the Reykjanes ridge (θ > 3.8°C)13.

We used the float velocity data to construct maps of mean streamfunction (Fig. 3). Whereas historical circulation schemes for the upper level in the subpolar North Atlantic relied heavily on assumptions about the deep flow field16,17, Fig. 3a provides directly measured, quantitative information on the mean currents during the sampling period. The NAC flows northward along the western boundary with typical mean speeds of 15–20 cm s⁻¹, to about 52°N. Here it turns sharply clockwise around the ‘Northwest Corner’, and heads eastward across the North Atlantic18,19. The streamlines fan out substantially owing to the branching of the NAC into several weaker currents18,20–22, and the mean speed drops to about 2 cm s⁻¹, but they converge again where the NAC crosses the Mid-Atlantic Ridge, where the average speed is 3–4 cm s⁻¹ (higher over the Charlie-Gibbs fracture zone (CGFZ) at 52–53°N, 5 cm s⁻¹). All the streamlines that cross the ridge between 50°N and 53°N turn northward into the Iceland basin, where the typical mean speed drops again to 2 cm s⁻¹. Some streamlines turn sharply

Figure 1 Float trajectories. Shown are trajectories of all 223 acoustically tracked, eddy-resolving, subsurface drifting floats launched in the northern North Atlantic in 1993–95 and 1996–2001, representing 328 float years of data. The floats were deployed at two levels: an upper-ocean thermocline density surface that ranges in depth from 1,000 m in the subtropics to near the sea surface in the northwestern North Atlantic (j v 27.5; red tracks; see also Fig. 2a), and an isobaric layer at 1,500–1,750 m depth, the core layer of Labrador Sea Water (LSW, blue tracks). Labelled landmarks include Greenland (G), Iceland (I), Ireland (Ir), Iberian peninsula (IP) and FC, Flemish Cap.

Figure 2 Mean potential temperature (colour shading) on two density surfaces in the subpolar North Atlantic corresponding to the two levels of the float data. a, θ = 27.50, which varies in depth (grey contours) from near the sea surface in the northwestern corner to ~1,000 m near the eastern boundary of the domain. The temperature contour interval is 0.25 °C, and bottom depth contours (m) are 200, 1,000, 2,000 and 3,000 (black contours). b, Same as a but for θ = 27.77, which ranges in depth from 1,100 m in the northwest to 1,800 m in the southeast, and with temperature contour interval of 0.20 °C. Maps are based on historical hydrographic data10. Temperature is shown on a density surface (rather than constant pressure surface) for the deeper float level to more accurately illustrate water mass distributions. Geographic abbreviations are: Labrador Sea (LS), Irminger basin (IrB), Reykjanes ridge (RR), Iceland basin (IcB), Iceland–Faroes ridge (IFR), Rockall plateau (RP), Rockall trough (RT), Porcupine bank (PB), Bay of Biscay (BB), Azores–Biscay rise (ABR), Mid-Atlantic Ridge (MAR), Faraday fracture zone (FFZ), Charlie-Gibbs fracture zone (CGFZ).
anticlockwise, cross back over the ridge and turn abruptly northward along the eastern flank of the Reykjanes ridge to form the Irminger Current, while other streamlines penetrate farther north into the Iceland basin and return southwestward along the eastern flank of the ridge before they too cross into the Irminger basin. Speeds along the eastern and western flanks of the ridge are 4–5 and 5–7 cm s\(^{-1}\), respectively. Much weaker mean speeds are indicated in the southeastern quadrant of the study area.

As well as providing a large-scale quantitative view of the thermocline-level circulation, this map reveals a number of unexpected features. First, near the eastern boundary, the mean streamlines are mostly zonal with embedded recirculations, and there is little evidence of a continuous, broad-scale eastern boundary current advecting Mediterranean Water northward from the Iberian peninsula into the subpolar region, as has been described previously\(^{3,23}\). Other studies have shown that Mediterranean Water is transported northward along the eastern boundary by a narrow (~50 km) slope current (not resolved here) at least as far north as the northern Bay of Biscay\(^{24}\), but Fig. 3a and individual float tracks indicate that water in this slope current is diverted into the ocean interior and recirculated, particularly at capes and other boundary protrusions. Very few of the floats launched near the eastern boundary south of 52\(^\circ\)N drifted northward across that parallel. Mediterranean Water probably penetrates north of 52\(^\circ\)N mainly by mixing with the NAC in the complex area southwest of Porcupine bank\(^{24}\). Second, almost all of the NAC mean flow crossing the ridge turns northward into the Iceland basin, and relatively little passes through Rockall trough. (In fact none of the NAC streamlines passes through Rockall trough, but owing to statistical uncertainties in the mean velocity estimates, we cannot rule out the possibility of about \(2 \times 10^{3}\) m\(^2\) s\(^{-1}\) (transport per unit depth) entering the trough; see Methods). This is consistent with recent hydrographic analysis which suggests that during the low phase of the North Atlantic Oscillation in the late 1990s (characterized by weak westerly winds), the subpolar gyre contracted and the NAC flowed preferentially into the Iceland basin and not the Rockall trough\(^{25,26}\).

Figure 3 Mean streamfunction for the subpolar North Atlantic from subsurface float data at two levels. a, Upper level, thermocline, density \(\sigma_{t} = 27.5\); b, lower level, Labrador Sea Water, depth 1,500–1,750 m. See Methods for data and mapping details. Arrowheads show the direction of flow along the contours. The inset in \(b\) gives speed in cm s\(^{-1}\) as a function of line separation (solid line for \(a\), dashed for \(b\)). The colour bars below \(a\) and \(b\) give volume transport for a one-metre-thick layer. Note that two higher-resolution contours (dashed), 24,000 and 26,000 m\(^2\) s\(^{-1}\), have been added near the eastern boundary. Labelled features are: North Atlantic Current (NAC), ‘Northwest Corner’ (NWC) and Irminger Current (IC).

Figure 4 Floats crossing the Mid-Atlantic Ridge. a, Distribution of latitudes where floats crossed the Mid-Atlantic Ridge. b, Depth of ridge crest as a function of latitude. Floats in the North Atlantic Current at the upper level crossed the ridge eastbound preferentially over the Charlie-Gibbs fracture zone (CGFZ, 31/61), the Faraday fracture zone (FFZ; 11/61), and to a lesser extent, the Maxwell fracture zone (MFZ; 4/61) (red bars; float depths 200–800 m). The distribution of float deployment latitudes, unfilled bars, is significantly different from the distribution of crossing latitudes, suggesting that the floats were funnelled over the various fracture zones. Floats crossed the Reykjanes ridge from east to west north of 53\(^\circ\)N at both levels (blue for upper level, green for lower level) mainly through the Bight fracture zone (BFZ) and two unnamed gaps near 53.5\(^\circ\)N and 55\(^\circ\)N. North of 53\(^\circ\)N, the gaps are not aligned east–west and the distribution of float crossing latitudes is therefore somewhat wider around these gaps.
The third unexpected feature is that none of the streamlines, and none of the floats, from the sub-tropics crosses over the Iceland–Faroes ridge into the Norwegian Sea, even though the \(\sigma_{0} = 27.5 \) potential density surface is continuous over the ridge (again we cannot preclude some flow over the ridge at this level owing to uncertainties in the mean estimates, but it is probably less than 20% of the NAC flow). This indicates that most of the warm inflow into the Norwegian Sea occurs above the level of these floats\(^1\). Most of the flow that enters the Iceland basin from the south must therefore exit into the Irminger basin over the Reykjanes ridge; we find that eight streamlines, or \(14 \times 10^3 \text{m}^2\text{s}^{-1} \), cross the ridge first westward then northward (Fig. 3a). Fourth, we find that the eastward and westward cross-ridge currents flow preferentially over fracture zones (gaps) in the ridge, even at depths up to 1,500 m above the ridge crest. This can be seen in Fig. 3a, but is much clearer in Fig. 4, which shows a histogram of the latitude where upper-level floats crossed the ridge crest (upper panel) relative to the depth of the ridge crest (lower panel). About two-thirds of the eastbound floats (42/61) were ‘funnelled’ over the CGFZ and Faraday fracture zone, and a few over the Maxwell fracture zone. Although it is generally accepted that the northern branch of the NAC is topographically locked to the CGFZ, the southern branches were thought to vary considerably in their crossing latitude\(^9\). Although fewer upper-level floats crossed the ridge westbound (14), they also preferentially passed over the ridge crest near the deeper gaps, including the Bight fracture zone at 57° N. This could have important implications for the response of the NAC branches to climate-related changes in atmospheric forcing: the shape of the ridge may constrain the current branches to cross within a narrow latitudinal band even for a wide range in forcing, which in turn could affect the circulation and sea surface temperature distribution throughout the subpolar region.

The mean streamfunction map for the lower level (Fig. 3b) illustrates the ‘funnelling’ of LSW from west to east over the CGFZ, with speed \(3–4 \text{ cm s}^{-1} \), some of which appears to be recirculating from the northeast. The eastward current splits into two branches at the Rockall plateau, forming a broad, weak southward flow (typical speed \(\sim 0.5 \text{ cm s}^{-1} \)) and a somewhat faster northward flow into the Iceland basin (\(\sim 2 \text{ cm s}^{-1} \)). Higher transport is indicated in the southern branch, consistent with previous hydrographic results\(^8\). The fastest mean currents at this level, which were found at the northern end of the Iceland basin and along the eastern flank of the Reykjanes ridge, reflect the influence of the Iceland–Scotland overflow. Mean speeds range from 6 to 10 cm s\(^{-1}\) along this current. Half of these streamlines cross westward over the Reykjanes ridge and turn northward with speed above \(4 \text{ cm s}^{-1} \), while the other half turn eastward at the latitude of the CGFZ. This mean streamfunction map complements a similar map of directly measured LSW circulation at 700 m west of 25°W (ref. 3), and agrees well where they overlap.

Several unanticipated circulation features also emerge from the lower-level map. Two closed, anticlockwise recirculation cells exist adjacent to the boundary current in the western Iceland basin. Although larger in spatial scale, these cells resemble similar recirculations recently observed in the Labrador and Irminger seas\(^7\). The individual float trajectories reveal that Iceland–Scotland Overflow Water flows westward into the Irminger Sea not only through the northern part of the CGFZ\(^5,27\), but also through deeper gaps in the highly fractured southern one-third of the Reykjanes ridge. Five of the seven deep floats that crossed the ridge westbound did so near the Bight fracture zone at 57° N, while the two others passed westward through a gap just north of the CGFZ.

Similarities in the flow pattern at the two levels include eastward flow over the CGFZ and the clockwise circulation around the Reykjanes ridge. Differences include the vertical structure on opposite sides of the ridge: on the eastern flank, the southwestward flow is significantly faster at the deeper level, while on the western flank the northeastward flow is faster at the upper level (although the vertical shear is of the same sign on both sides). Also, the closed recirculation in the northwestern Iceland basin at the lower level is absent at the upper level.

The similarity of the streamfunction patterns in Fig. 3 to the details of the sea-floor topography is notable. For example, at the upper level, the NAC closely tracks the 4,000-m isobath in the western basin. At the lower level, the southward flow in the eastern basin is clearly steered clockwise around the Azores–Biscay rise, near 45° N, 20° W (ref. 8). This is expected on the basis of the conservation of potential vorticity, \(f / H \), where \(f \) is the Coriolis parameter and \(H \) is the fluid layer thickness. Under this conservation constraint, the Mid-Atlantic Ridge represents a significant barrier to inter-basin exchange, and the results shown here suggest that the currents flow preferentially over deeper gaps to cross the ridge. Such topographic steering may limit the ocean’s response to climate variations, crossing ridge transport of heat and fresh water to a certain latitude band. We believe that the present data set will provide a standard for numerical simulations of the North Atlantic circulation, and a reference point for future studies of climate variability.

Methods

Floats

The float data used in this study were collected as part of the US Atlantic Climate Change Experiment (ACCE—a component of the World Ocean Circulation Experiment), the European EUROFLEET Project, the German Sonderforschungsbereich (SFB) Subpolar Program and the French Actions de Recherche sur la Circulation dans l’Atlantique Nord-Est (ARCANE) during the years 1996–2001. Forty additional floats from the US North Atlantic Current Study (NACS) in 1993–95 were also included\(^2\). The floats were tracked acoustically using an array of 18 moored sound sources that was maintained throughout the North Atlantic by the cooperating groups. Each float recorded at least one position fix and one temperature/pressure observation per day, providing high-resolution trajectories and in situ properties.

Float data set

The data set includes both RAFOS floats, which store all their data internally until the end of their missions, and MARVOR floats, which surface every three months to telemeter their stored data and then resubmerge to their operating depths. The upper level data set consists of (1) 116 RAFOS float tracks between 18 and 24 months in duration from the ACCE; (2) 21 MARVOR float tracks up to 60 months long from ARCANE, and (3) 40 RAFOs floats, mostly 10 months in length, from NACS, providing a total of 243 float years of data. The ACCE and NACS floats were made isopycnal by matching their compressibility to that of sea water, and making their coefficient of thermal expansion an order of magnitude less than that of sea water\(^6\). These floats were ballasted for \(\sigma_{0} = 27.5 \) density surface (neutral surface \(\gamma_{n} = 27.6 \)), which ranges in depth from near the sea surface in the Irminger and Labrador seas, to about 1,000 m adjacent to the European continent (Fig. 2a). Combining these isopycnal floats with the isobaric ARCANE floats, which were ballasted for 1,000 m, is justified because the latter were mainly confined to the southeastern part of the study region, where the 27.5 density surface is nearly 1,000 m deep. The deep floats comprise 25 SFB RAFOS floats at 1,500 m and 21 EUROFLEET MARVOR floats at 1,750 m for a total of 85 float years. Combining the 1,500- and 1,750-m floats into one layer is justified on the basis of the relative lack of vertical shear between these depths.

Data analysis

The mean velocity at the two levels was estimated by grouping all the float velocity observations according to location into bins 110 km square in flat areas, and somewhat skewed along the isobaths over the continental slope and the Mid-Atlantic Ridge because the mean flows are often aligned along the topography\(^1\). The data density \(\bar{N} \) exceeds 100 float days per bin in much of the North Atlantic in the upper layer, and in the eastern North Atlantic in the lower layer. The resulting mean velocity vectors were mapped into a scalar streamfunction field using standard objective analysis (OA) techniques\(^6\). By definition the streamfunction fields produced by the OA are non-divergent: the divergent part of the order of Ro smaller and thus within the noise (Ro is the Rossby number, \(U / f L \), where \(U \) and \(L \) are typical values for horizontal velocity and length scale). The covariance function has the form \(r(t) = [1 + (r / r_{c})^{2}] \exp[−(r / r_{c})^{2}] \), where \(r \) is radial distance and \(r_{c} \) is chosen to be 100 km. To help ensure the robustness of the mean streamfunction fields, only areas where the data density exceeds 10 float days per bin were mapped.

Uncertainties

To approximate the uncertainty in the transport per unit depth entering Rockall trough and crossing over the Iceland–Faroes ridge, we first estimate the standard error in the mean velocity. Using \(\bar{N} = 100 \) d with an average lagrangian integral timescale (\(T \)) of five days\(^2\) and a standard deviation (s.d.) around the mean velocity of \(7 \text{ cm s}^{-1} \) (typical for
A correlation between mid-ocean-ridge basalt chemistry and distance to continents

Eric Humler* & Jean Besse†

* Laboratoire des Geosciences Marines; and † Laboratoire de Géomagnétisme et de Paléomagnétisme, IPGP-Université Denis Diderot, 4, Place Jussieu, 75252 Paris Cedex 05, France

To fully understand the structure and dynamics of the Earth’s convecting mantle, the origins of temperature variations within the mantle need to be resolved. Different hypotheses have been proposed to account for these temperature variations: for example, heat coming from the decay of radioactive elements or heat flowing out of the Earth’s core. In addition, theoretical studies have suggested that the thermal properties of continental masses can affect mantle convection, but quantitative data that could allow us to test these models are scarce. To address this latter problem, we have examined the chemistry of mid-ocean-ridge basalt—which reflects the temperature of the source mantle12—as a function of the distance from the ridge to the closest continental margin. No correlation is observed for oceanic ridges close to subduction zones or hotspots; subduction zones probably inhibit thermal transfer between the mantle beneath continents and ocean, whereas hotspots influence the major-element chemistry of ridge basalt, which makes their interpretation with respect to mantle temperature more difficult. However, we do observe a significant correlation for mid-oceanic basalt from the Atlantic and Indian oceans. From this, we conclude that the location of continental masses relative to active ridges influences the large-scale thermal structure of the mantle and we estimate that the mantle cools by 0.05 to 0.1°C per kilometre from the continental margins.

Major-element data for oceanic basalts are important because they can be quantitatively linked to mantle temperatures, axial depth of oceanic ridges, crustal thickness and seismic tomography6–9. Quantification of potential mantle temperatures based on basalt chemistry, experimental petrology and theories of melt extraction are now available7–12. In particular, Na2O (Na2O content corrected to 8% MgO) can be used as a proxy for the extent of melting, whereas FeO is a proxy for the mean pressure of melting. Using the Langmuir et al.12 formulation for mantle melting, basalts from shallow ridges (Kolbeinsey) with low Na2O and high FeO correspond to a solidus mantle temperature of about 1,460°C. Deep ridges, such as the South West Indian Ridge (SWIR) with high Na2O and low FeO correspond to a solidus mantle temperature of about 1,210°C. The chemical composition of ancient crust can be used to determine paleolabourity of ancient ridge axes3. This approach has recently been applied to oceanic crust older than 80 Myr. The results were previously interpreted to infer that mantle temperatures during the Mesozoic were 50°C hotter than today13. Such a large temperature decrease in such a short time interval cannot be reconciled with models of normal cooling of the Earth.

In the Earth, the thermal conditions at the upper boundary of the convecting mantle are not uniform. This is demonstrated in the most direct manner by the distribution of heat flow at the surface. Continental plates can act as insulating lids14–16 thereby imposing large-scale heterogeneities at the Earth’s surface. These heterogeneities could play an important role in determining the Earth’s overall thermal structure. Theoretical studies17 indicate that the amplitude of the process depends on the area, thickness and width of the continents, and on the duration of time during which they remain above a given area of the mantle before break-up. If continents do influence mantle temperatures, a correlation should exist between

Acknowledgements We thank all the technicians and research assistants who contributed to this project for their help and support. We also thank H. Hunt for help in the preparation of the figures. This work was supported by the US National Science Foundation, the Deutsche Forschungsgemeinschaft, the Institut Français de Recherche pour l‘Exploitation de la Mer, the Centre National de la Recherche Scientifique, and the European Commission EUROFLOT project.

Competing interests statement The authors declare that they have no competing financial interests.

Correspondence and requests for materials should be addressed to A.B. (e-mail: abower@whoi.edu).

NATURE | VOL 419 | 10 OCTOBER 2002 | www.nature.com/nature

© 2002 Nature Publishing Group