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Interior pathways of the North Atlantic meridional
overturning circulation
Amy S. Bower1, M. Susan Lozier2, Stefan F. Gary2 & Claus W. Böning3

To understand how our global climate will change in response to
natural and anthropogenic forcing, it is essential to determine how
quickly and by what pathways climate change signals are transported
throughout the global ocean, a vast reservoir for heat and carbon
dioxide. Labrador Sea Water (LSW), formed by open ocean convec-
tion in the subpolar North Atlantic, is a particularly sensitive indi-
cator of climate change on interannual to decadal timescales1–3.
Hydrographic observations made anywhere along the western
boundary of the North Atlantic reveal a core of LSW at intermediate
depths advected southward within the Deep Western Boundary
Current (DWBC)4–9. These observations have led to the widely held
view that the DWBC is the dominant pathway for the export of LSW
from its formation site in the northern North Atlantic towards the
Equator10,11. Here we show that most of the recently ventilated LSW
entering the subtropics follows interior, not DWBC, pathways. The
interior pathways are revealed by trajectories of subsurface RAFOS
floats released during the period 2003–2005 that recorded once-daily
temperature, pressure and acoustically determined position for two
years, and by model-simulated ‘e-floats’ released in the subpolar
DWBC. The evidence points to a few specific locations around the
Grand Banks where LSW is most often injected into the interior.
These results have implications for deep ocean ventilation and
suggest that the interior subtropical gyre should not be ignored when
considering the Atlantic meridional overturning circulation.

Profiling floats12 released in the Labrador Sea during the 1990s
showed little evidence of southward export of LSW in the
DWBC13–16. This result was surprising because the DWBC is widely
thought to be the dominant LSW export pathway towards the sub-
tropics and tropics. Why did these floats not follow the DWBC into
the subtropics? Were they biased by upper-ocean currents when they
periodically ascended to the sea surface to fix their position, as
recently suggested by numerical model results17? Were they released
mainly in the recirculating waters of the subpolar gyre? Or is the
DWBC in fact not the dominant export pathway for LSW?

To address these questions, 76 acoustically tracked Range and
Fixing of Sound (RAFOS) floats18, which do not need to surface to
fix their position, were sequentially released in the DWBC near 50uN
from 2003 to 2006 at two LSW depths, 700 and 1,500 m, for two-year
drifting missions (see Fig. 1a and Methods for more details). Here we
describe the spreading pathways of LSW revealed by the first 40 high-
resolution RAFOS float trajectories, ten additional float displacement
vectors and simulated trajectories (e-floats) from a high-resolution
numerical ocean circulation model19.

All RAFOS floats initially drifted southward in the DWBC after
release at 50uN (Fig. 1b). But a large fraction of the floats—about
75% (29/40)—escaped from the DWBC before reaching the southern
tip or ‘Tail’ of the Grand Banks (43uN) (Fig. 2a and b) and drifted
into the interior. Many of these followed an eastward path along the

subpolar–subtropical gyre boundary (Fig. 1a and b). Only 8% of all
floats (3/40) followed the DWBC continuously from launch around
the Tail of the Grand Banks. This is more than the number of
profiling floats from the Labrador Sea that rounded the Tail of the
Grand Banks in the DWBC (zero)14, but is still a remarkably low
number in light of the expectation that the DWBC is the dominant
southward pathway for LSW.

A larger percentage of the RAFOS floats—about 23% (9/40)—
reached the subtropics via an interior pathway, indicated by the cluster
of trajectories extending south of 42uN in the longitude band 40u–
60uW (Fig. 1b). The warmer temperatures measured by these floats
indicate that they crossed the Gulf Stream into the subtropical gyre.
The dominance of the interior versus DWBC pathway is further
supported by the larger ensemble of 50 RAFOS float displacement
vectors (Fig. 1b inset)—about 24% (12/50) surfaced south of 42uN
in the interior (east of 60uW). Furthermore, the largest southward
float displacements over two years were made by floats following an
interior, not DWBC path (Fig. 1b inset). Interior pathways for the
southward spreading of LSW into the subtropics have been suggested
previously7,9,17,20,21 but these float tracks offer the first evidence of the
relative dominance of this pathway compared to the DWBC.

The RAFOS float trajectories reveal two primary locations where
LSW escapes from the DWBC and enters the interior ocean—at the
southeastern corner of Flemish Cap (especially for 1,500 m floats)
and just upstream of the Tail of the Grand Banks (Fig. 2a and b). At
these locations, the North Atlantic Current (Fig. 1a) is closest to the
continental slope, supporting a previous conjecture that onshore
excursions of the North Atlantic Current temporarily interrupt the
flow of the DWBC and divert LSW into the interior15.

To complement this analysis of the necessarily limited number of
RAFOS float trajectories, simulated trajectories were generated using
the eddy-resolving (,1/12u) primitive equation Family of Linked
Atlantic Models Experiment (FLAME) model19 (see Methods for details
of trajectory computation). The e-float trajectories were calculated
using the three-dimensional (x, y, z), time-varying model velocity fields
to simulate fluid parcel motion as accurately as possible. The constant-
pressure RAFOS floats drift only with the two-dimensional (x–y) flow
field, but no significant differences were found in the model results
using the two-dimensional or three-dimensional model velocity fields,
in contrast to a previous modelling analysis of LSW pathways which
used time-mean (as opposed to the time-varying fields used here)
model velocity fields17 (see Supplementary Information).

Seventy-two e-floats were initialized in the DWBC near 50uN with
the same spatial and temporal pattern as the RAFOS floats. The
spread of the model and RAFOS float trajectories after two years is
very similar (Fig. 3a). There is little evidence for a continuous DWBC
pathway; rather, e-floats tend to recirculate within the subpolar gyre
and drift southward into the subtropical gyre interior. The loss of
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Figure 1 | Study area and RAFOS float trajectories at the LSW level in the
western North Atlantic. a, Schematic diagram of the intermediate-depth
circulation in the northwestern North Atlantic, with blue and red lines
indicating cold and warm water pathways, respectively. Green concentric
circles show locations of sound sources used to track floats. FC, Flemish Cap;
NAC, North Atlantic Current; NBR, Newfoundland Basin Recirculation
Gyre; NRG, Northern Recirculation Gyre; OK, Orphan Knoll; WG,
Worthington Gyre. b, Two-year trajectories of 40 acoustically tracked

RAFOS floats released at 700 and 1,500 m in the DWBC near 50uN.
Positions are indicated daily with colour-coded dots, where the colour
indicates the normalized temperature anomaly, defined as (T 2 Ti)/dTmax.
Ti is each float’s initial temperature, and dTmax is the maximum temperature
range observed by the floats as a group, 6.4 uC at 700 dbar and 1.8 uC at
1,500 dbar. Dashed lines indicate missing track. The inset shows the two-year
displacement vectors for the same floats plus ten more that have yet to be
processed, colour-coded by depth (red for 700 m and blue for 1,500 m).
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e-floats from the DWBC is also very similar to that observed with the
RAFOS floats (Fig. 2b).

This favourable comparison supports extending the integration to
generate longer simulated trajectories (Fig. 3b and c), beyond the
technical capabilities of the RAFOS floats. After five years, the Tail
of the Grand Banks begins to stand out as a barrier to the westward
spread of e-floats in the DWBC. Only after ten years is a thin collec-
tion of a small number of trajectories evident within the DWBC west

of the Grand Banks, emphasizing the importance of recirculation in
the Newfoundland Basin in slowing the equatorward transport of
recently ventilated LSW in the DWBC7,22.

To quantify the Lagrangian spreading pathways of LSW, 7,280
e-floats were released and integrated for 15 years and a two-dimen-
sional histogram of float position was mapped (Fig. 3d) (see
Supplementary Information for details of map construction). The
sharp drop in e-float concentration around the Grand Banks, and the
southward penetration into the subtropical interior are clearly
revealed. The e-floats are concentrated within an eddy-driven cir-
culation that has previously been postulated to provide interior path-
ways from subpolar to subtropical latitudes20,21.

A further demonstration of the lack of strong connectivity of LSW
pathways around the Grand Banks is given by 15-year back trajectories
for e-floats that arrived at Line W (,69uW), where the properties and
transport of the subtropical DWBC are being monitored (see http://
www.whoi.edu/science/PO/linew) (Fig. 3e). Again, a strong discon-
tinuity appears at the Tail of the Grand Banks. A thin ribbon of
trajectories is traced from the Tail of the Grand Banks upstream to
the western boundary of the Labrador Sea, but represents only a small
fraction of the total at Line W. The model DWBC in the subtropical
basin is mainly transporting waters that are recirculating north of the
Gulf Stream and west of the Grand Banks in the Northern
Recirculation Gyre (Fig. 1a)23.

To quantify the relative importance of the DWBC versus interior
pathways in the model, we mapped the transport associated with
e-floats that drifted from the float release site at 50uN to 32uN within
15 years (Fig. 4; see Supplementary Information for details of map
construction). We kept track of the e-floats that (1) never crossed
offshore of the 4,000 m isobath into the interior (exclusively inshore),
(2) were inshore of the 4,000 m isobath but may have crossed that
isobath at some point (all inshore) and (3) were offshore of the
4,000 m isobath (all offshore). Transport values for each group as a
function of distance along the boundary are tabulated in the
Supplementary Information.

At the release site, all transport is inshore of the 4,000 m isobath.
Moving southward along the path of the DWBC to the Tail of the
Grand Banks, the all-inshore transport drops to about 62%, and the
exclusively-inshore transport drops even more (43%). The transport
located in the interior grows accordingly. A similar result for the all-
inshore transport at the Tail of the Grand Banks was obtained in a
previous modelling study17, from which the authors concluded that the
DWBC was the dominant pathway for the export of LSW. However, as
seen in Fig. 4, the all-inshore and especially the exclusively-inshore
transports drop precipitously moving around the southern tip of the
Grand Banks—at 55uW the all-inshore and exclusively-inshore trans-
ports are only 11.5% and 2.6%, respectively. At Cape Hatteras (36uN),
only 3.1% of the transport being tracked is located inshore and 0.1%
followed the DWBC continuously from the release site. South of 34uN,
the interior transport begins to converge back towards the western
boundary, but clearly the vast majority of the LSW transport tagged
at 50uN in the DWBC that reached 32uN did so via an interior path-
way. This result is consistent with the relatively larger number of
RAFOS floats entering the subtropical gyre interior south of the
Grand Banks (Fig. 1b) and with the observation of relatively young
tracer ages there7.

The directions of LSW spreading presented here are generally con-
sistent with those inferred from hydrographic and tracer studies: east-
ward and northward within the subpolar gyre, into the subtropical
interior and along the DWBC4,7,9,24. However, the new float observa-
tions and simulated float trajectories provide evidence that the south-
ward interior pathway is more important for the transport of LSW
through the subtropics than the DWBC, contrary to previous think-
ing. Though the DWBC is easier to observe—a well-defined, relatively
stationary current close to shore compared to the vast, turbulent and
unconstrained interior—our results suggest that further study of the
interior subtropical gyre and the complex region around the Grand
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Figure 2 | Loss of floats from the DWBC. a, Trajectories of 40 RAFOS floats
(blue, 1,500 m; red, 700 m) between launch position and the position where
they first cross the 4,000 m isobath (coloured dots) illustrate where floats
were most likely to leave the DWBC and drift into the interior. The mean
path of the Gulf Stream and North Atlantic Current is shown with the mean
absolute dynamic topography from Aviso (Archiving, Validation and
Interpretation of Satellite Oceanographic data) for the float sampling time
period. Arrows indicate direction of geostrophic surface flow, and the
gradient is proportional to flow speed. The path of the North Atlantic
Current is similar to that derived from subsurface floats26 and hydrographic
data27. The 700-m isobath is shaded grey. b, Retention of RAFOS floats (solid
lines) and e-floats (dashed lines) in the DWBC as a function of along-
boundary distance from 50uN.
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Figure 3 | Simulated trajectories from FLAME. Trajectories of (a) 2, (b) 5
and (c) 10 years for 72 e-floats at 700 m (red) and 1,500 m (blue), selected
from an ensemble of 7,280 15-year trajectories initiated at the RAFOS float
release sites near 50 uN. The model trajectories were computed using the
three-dimensional model velocity fields, so the virtual particles change their
depth accordingly. The RAFOS trajectories (light grey) are shown in a for
comparison. The endpoint of each e-float trajectory is marked with a black
dot. Isobaths are shown in darker grey for 0, 700, 1,500 and 3,000 m. d and

e, 7,280 forward e-trajectories launched at Orphan Knoll (d) and 7280
backward trajectories launched at Line W (e) in the core of the DWBC,
condensed into float location two-dimensional histogram maps. The float
launch locations are shown in black. The insets to each map show the float
launch locations at each site superposed on the mean velocity (in cm s21)
cross-section from the FLAME model. The RAFOS and e-float launch points
are shown with red and black dots, respectively.
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Banks is needed to understand better the pathways of the deep limb of
the Atlantic Meridional Overturning Circulation.

METHODS SUMMARY
The RAFOS floats used in this study were released (nominally) in groups of six

every three months between July 2003 and April 2005 along a section extending

from Cape Bonavista, Newfoundland to Orphan Knoll. As the floats drifted, their

positions were determined relative to sound sources moored in the eastern and

western North Atlantic. The floats were isobaric (constant pressure) and bal-

lasted to drift at two levels corresponding to the tracer cores of Upper LSW

(700 dbar) and Classical LSW (1500 dbar). The floats internally recorded travel

times from the sound sources, as well as temperature and pressure measurements

once daily for two years, before returning to the surface and transmitting all the

collected data via the Argos satellite-based data retrieval system.

The simulated trajectories presented in this study were generated using the

FLAME model. This model was based on the MOM2.1 code25 and modified as

part of the FLAME project4. Following a ten-year spin-up from rest with cli-

matological forcing, this model was run with interannually varying wind stresses

and heat fluxes for the period 1987–2004. The model output consists of three-

dimensional snapshots of horizontal velocity, temperature and salinity fields
over the domain on a 1/12u resolution Mercator grid.

To calculate the simulated trajectories, model velocity fields from the years

1994, 1996 and 1998 were repeated sequentially for 15 years. These years repres-

ent a variety of forcing states as indicated by the North Atlantic Oscillation index.

Model floats were initialized sequentially over the course of the first three years

and every trajectory was computed for 15 years using 3-day snapshot, three-

dimensional velocity fields. Thus the virtual floats are displaced both horizont-

ally and vertically in accordance with the velocity fields to simulate water parcel

movement as accurately as possible.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
RAFOS floats. The RAFOS floats used in this study were released (nominally) in

groups of six floats every three months between July 2003 and April 2005 along a

section extending from Cape Bonavista, Newfoundland to Orphan Knoll, in

water depths between 1,400 and 2,800 m (see Supplementary Table S1 for

details). As the floats drifted, their positions were determined relative to sound

sources moored in the eastern and western North Atlantic. All but the first float

setting were made from various Canadian research vessels by the Northwest

Atlantic Fisheries Centre in St. John’s, Newfoundland, during spring, summer

and autumn cruises. To release RAFOS floats during winter, six dual-release
floats were deployed during each autumn cruise in addition to the six regular

floats. The dual-release floats each had a heavy length of chain attached that

initially anchored them to the sea floor, creating a ‘float park’28. These floats were

programmed to release the anchor chain on the following February 15th, and

then drift to their ballast depth to begin their two-year mission.

The RAFOS floats used in this study were isobaric and ballasted to drift at two

levels, corresponding to Upper LSW (700 dbar) and Classical LSW (1,500 dbar).

The floats collected position, temperature and pressure information once daily

for two years, then returned to the surface to transmit all the collected data via

Service ARGOS.

Satellite altimetry. In Fig. 2a, the path of the Gulf Stream and North Atlantic

Current were determined using maps of absolute dynamic topography produced

by Ssalto/Duacs at Collecte Localization Satellites, a subsidiary of the French Space

Agency (CNES) and the French Research Institute for Exploration of the Sea

(IFREMER). This product is generated using all available satellite missions since

1992. With support from CNES it is distributed online by Aviso (http://www.

jason.oceanobs.com/html/donnees/produits/hauteurs/global/madt_uk.html).

The maps of absolute dynamic topography combine gridded (1/3u) sea level
anomaly fields with the Combined Mean Dynamic Topography (Rio05)29.

Synthetic float trajectory calculations. The synthetic trajectories used in this

study were generated using the FLAME model, which was based on the MOM2.1

code and modified as part of the FLAME project19. Following a ten-year spin-up

from rest with climatological forcing, this model was run with interannually

varying wind stresses and heat fluxes for the period 1987–2004. Model output

consists of three-dimensional snapshots of horizontal velocity, temperature and

salinity fields over the domain on a 1/12u resolution Mercator grid. In the

vertical, the domain was split into 45 z-coordinate levels. The vertical velocity

was computed from the horizontal velocity by requiring that the local divergence

of the three-dimensional velocity field be zero throughout the model domain.

Velocity fields from FLAME model years 1994, 1996 and 1998, repeated

sequentially, were used for the 15-year trajectories. These years represent a variety

of forcing states as indicated by the North Atlantic Oscillation index. The e-floats

were released sequentially over the course of the first three years and every tra-

jectory was computed for 15 years using 3-day snapshot three-dimensional model

velocity fields. We note that throughout the study, ‘700 m’ and ‘1,500 m’ e-floats

refer to their approximate depths of float initialization. Subsequent e-float

positions are estimated from the three-dimensional model velocity fields, so the

virtual floats are displaced both horizontally and vertically to simulate water

parcel movement as accurately as possible.

Computation of float loss from the DWBC. See Fig. 2b. Because the DWBC

generally flows inshore of the 4,000 m isobath in the study region, a RAFOS or

e-float was considered out of the boundary current if it crossed this isobath into

deeper water. To determine the number of floats that remain within the DWBC

at different points along the coast, ten boxes, each spanning the width of the

continental slope, were defined along the boundary. The number of floats that

passed through each box was counted. In this analysis, floats that left the DWBC

at any point along the boundary were never counted again, even if they happened

to re-enter one of the boxes. Thus, the number of floats remaining within the

DWBC includes only those floats that have remained in the DWBC continuously

since launch (also called exclusively-inshore floats).

Construction of e-float position histograms. See Fig. 3d and e. To present the

Lagrangian pathway information from the thousands of synthetic trajectories

used in this study efficiently, a two-dimensional histogram of float positions,

essentially a map of float concentration, was used. A count was made of the

number of floats that passed through each 1/12u horizontal bin; repetitions of the

same float were counted. The units on the two-dimensional histogram are the

number of floats passing through each bin. Histograms of the 700 and 1,500 m

subsets of the float population are qualitatively similar to the whole population

histograms.

Construction of transport map. See Fig. 4. The e-floats were initialized at the

RAFOS float release site (near 50uN) in the layer spanning 703 to 1,540 m. The

e-floats were launched on a 7-level grid with nodes at: 744, 828, 920, 1,022, 1,140,

1,280 and 1,448 m. Each e-float was assigned a transport computed from the

velocity, layer thickness and cell width at the e-float’s release location. The layer

thicknesses used to compute the transport tag for each float range from 78–

184 m, increasing with increasing layer depth. The three-dimensional traject-

ories were computed using the repeating cycle of 1994, 1996 and 1998 3-day

updated velocity fields for 15-year integrations. At release, the total transport was

12 Sv in the layer (for each of the 36 launch dates) divided between a grand total

of 6,539 floats. Floats were launched every 30 days for the first three years (and

because the velocity field repeated itself after the first three years, no new initi-

alizations were made after that point). Only those e-floats that crossed 32uN

within 15 years were retained, which accounts for the movement of 2 Sv (average

transport per launch initialization) among a total of 1,338 e-floats. Longer inte-

grations gave very similar results.
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