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Observed decrease in Deep Western 
Boundary Current transport in subpolar 
North Atlantic

G. Koman    1,2 , A. S. Bower    1, N. P. Holliday    3, H. H. Furey    1, Y. Fu    4 & 
T. C. Biló5,6

The lower limb of the Atlantic Meridional Overturning Circulation is an 
important feature of Earth’s climate system as it returns recently ventilated 
water to the deep ocean and is a major sink for anthropogenic carbon.  
The Deep Western Boundary Current—the primary component of the lower 
limb—flows southwards along the eastern flank of Greenland transporting 
dense water formed in the Nordic seas. Since 2014, the Deep Western 
Boundary Current has been continuously monitored at this location from a 
mooring array to observe the current’s velocity and hydrographic structure 
close to its source. Here we find that the Deep Western Boundary Current 
transport has decreased by 26% over the first six years of observations, 
due to (1) a thinning of the traditionally defined Deep Western Boundary 
Current layer (σθ > 27.8 kg m−3) from a known freshening signal propagating 
through the subpolar region (56%), and (2) weakening velocities (44%). 
Despite this decrease, the Atlantic Meridional Overturning Circulation has 
remained relatively steady over the same period. Ultimately, this difference 
is due to the methods used to define these two circulations. Finding such 
notably different trends for two seemingly dependent circulations raises the 
question of how to best define these transports.

The Atlantic Meridional Overturning Circulation (AMOC) is an impor-
tant component of Earth’s climate system where warm water from the 
North Atlantic Current cools and subducts at high latitudes before 
returning southwards at depth (for example, ref. 1). The primary con-
duit of this return flow is the Deep Western Boundary Current (DWBC), 
although other interior pathways also exist (for example, refs. 2–6). 
Formed from Norwegian Sea overflow water entering the subpolar 
North Atlantic primarily through the Denmark Strait and the Faroe 
Bank Channel, the DWBC flows along the eastern flank of Greenland7–12. 
It is here that the Overturning in the Subpolar North Atlantic Program 
(OSNAP13–15) has monitored the DWBC since 2014 (Fig. 1). With moorings 

located near the southern tip of Greenland at Cape Farewell, OSNAP 
provides the longest continuous record of the DWBC in the Irminger 
Basin so far.

The first transport estimate of the DWBC (traditionally defined 
as flow of water with σθ > 27.8 kg m−3 (refs. 10,16)) near Cape Farewell 
from continuous observations for more than 2 months found a trans-
port of 9.0 Sv from instruments that were deployed from September 
2005 to August 200617. Synoptic realizations from hydrographic sec-
tions in the area have found DWBC transports ranging between 5.5 
and 13.3 Sv (refs. 8,10,16,18–24). The best direct comparison with our 
study comes from Hopkins et al.25, who assessed the OSNAP data from 
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deep water (NEADW; traditionally defined as 27.88 > σθ > 27.8 kg m−3 
(ref. 16)) and Denmark Strait overflow water (DSOW; σθ > 27.88 kg m−3). 
Our 6-year analysis of transports of DSOW yields a mean transport 
of 2.8 ± 0.4 Sv with a standard deviation of 1.5 Sv. The mean from the 
OSNAP objective analysis is 2.4 Sv. For NEADW, our 6-year mean trans-
port is 5.7 ± 0.7 Sv with a standard deviation of 3.6 Sv. The mean from 
the OSNAP objective analysis is 5.8 Sv.

The mean velocity cross-section reveals that the DWBC con-
sists of several separate velocity cores (Fig. 3a). Much of the upper 
NEADW portion of the DWBC appears to be transported by a deep 
extension of the East Greenland–Irminger Current30,31 between 1,400 
and 1,800 m and moorings CF5 and CF7. The deeper portions of the 
DWBC appear as two boundary-intensified flows extending along 
the bottom from mooring M1 down towards M2 and near mooring 
M3. From these locations, velocities decrease eastwards until the 
near-bottom southward velocities are offset by northward veloci-
ties in the shallower portion of the DWBC and the depth-integrated 
mean transport (m2 s−1) for the DWBC (σθ > 27.8 kg m−3) reaches zero 
near mooring FLMB.

the same mooring locations from September 2014 to July 2016. They 
found a mean transport of 10.8 ± 4.9 Sv (mean ± standard deviation) 
for water σθ > 27.8 kg m−3. In this study, we use the same 2014–2016 
mooring data as Hopkins et al.25 extended by four more years to 
2020, although this study uses a different interpolation technique 
to estimate transport (Methods).

Continuous long-term observations of the DWBC will help to 
determine how the AMOC may be changing in a warming climate, 
including concerns about a possible weakening in the twenty-first 
century and potential collapse on longer time scales26,27. This analy-
sis provides results from nearly 6 years (70 months, but henceforth 
referred to as 6 years) of continuous transport observations of the 
DWBC from OSNAP. This study reveals that the DWBC has experienced 
a notable inter-annual weakening since the start of 2017 despite a 
steady AMOC. Furthermore, this study finds that the varying isopycnal 
of the monthly maximum in the overturning streamfunction used to 
define the AMOC has been progressively lightening and that the AMOC 
would be experiencing a statistically significant transport decrease if 
it were evaluated using a constant isopycnal like the DWBC transport 
is evaluated here.

The mean state of the DWBC
Six years of continuous observations of the DWBC reveal a mean trans-
port of 8.5 ± 0.8 Sv (mean ± standard error; positive is southwards) 
with a standard deviation of 3.9 Sv (Fig. 2a). This compares well with 
the DWBC mean transport from the OSNAP objective analysis28,29 of 
8.3 Sv, particularly because we would expect a slightly lower transport 
value near the sea floor due to the more course spatial gridding of the 
OSNAP objective analysis. However, our transport estimate is more 
than 2 Sv less than the 2-year DWBC mean from Hopkins et al.25 of 
10.8 Sv. If we compare our transport over the same period as Hopkins 
et al.25, our mean transport is closer (9.3 Sv), although still 1.5 Sv lower. 
The OSNAP objective analysis for a similar time frame yields a mean 
transport of 8.8 Sv. While these differences may be due to the different 
methods used to calculate transport across the mooring section, we 
have confidence in our transport calculation owing to the multiple 
methods used to account for bottom triangles between moorings 
(Methods) and our expectedly slightly higher transport than the 
OSNAP objective analysis. We can further analyse the DWBC transport 
by separating it into its two primary water masses: Northeast Atlantic 
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Fig. 1 | Deep water pathways in the North Atlantic subpolar region. Schematic 
of the deep water pathways in the North Atlantic subpolar region, adapted from 
Koman et al.43. The blue arrows indicate the pathways of the two primary water 
masses of Norwegian Sea Water origin (ISOW and DSOW), and the purple pathway 
depicts the DWBC (after the two water masses merge). All mooring locations in 
the OSNAP programme are denoted by triangles, with the moorings used in this 
study to determine the DWBC in magenta. Bathymetry colours change with every 
1,000 m in depth. DS, Denmark Strait; ISOW, Iceland Scotland overflow water; 
FBC, Faroe Bank Channel; FSC, Faroe Shetland Channel; BFZ, Bight Fracture 
Zone; CGFZ, Charlie Gibbs Fracture Zone.
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Fig. 2 | Transport and salinity trends of the DWBC. a, A 40-h lowpass-filtered 
time series of the DWBC transport (grey) overlaid with the monthly mean (red), 
the monthly mean from the OSNAP objective analysis (OSNAP OA, yellow) and 
the linear trends for August 2014 to January 2016 and February 2016 to July 2020 
(blue). b, A 1-year lowpass-filtered time series of DWBC transport (blue) and mean 
salinity within the DWBC layer (red).
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Freshening’s role in the decreasing transport  
of the DWBC
The DWBC 6-year transport (Fig. 2a) reveals that a −0.44 ± 0.02 Sv yr−1 
decrease has occurred during the observation period (2014–2020). 
Separating this into the two primary water masses transported 
by the DWBC, the DSOW transport has decreased at a rate of 
−0.20 ± 0.01 Sv yr−1 while the NEADW transport accounts for the 
remaining −0.23 ± 0.02 Sv yr−1 (Supplementary Table 1). This has 
resulted in a 26% decrease in the DWBC transport, a 21% decrease in 

NEADW transport and a 32% decrease in DSOW transport. Some of 
the DWBC transport decrease appears to be due to an unprecedented 
freshening signal that has recently been propagating around the upper 
subpolar gyre32–35 and entraining into the deep ocean36–38. The arrival 
of this fresh anomaly at the DWBC mooring section in 2017 is syn-
chronous with the start of the DWBC’s decreasing transport (Fig. 2b), 
and further analysis shows that the entirety of the DWBC transport 
decrease has occurred since 2017. From September 2014 to January 
2017, the DWBC has virtually no trend (+0.01 ± 0.10 Sv yr−1), but from 
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February 2017 onwards the trend is −0.50 ± 0.05 Sv yr−1. Over the same 
two periods (2014–2017 and 2017–2020), DSOW transport increased 
by 0.20 ± 0.03 Sv yr−1 before decreasing by −0.29 ± 0.02 Sv yr−1, 
while NEADW saw a relatively steady decline over both time periods 
(−0.18 ± 0.07 Sv yr−1 and −0.21 ± 0.04 Sv yr−1, respectively). Continued  
freshening after 2017 corresponds with the continued transport 
decrease of the DWBC. This results in a 0.81 correlation for the 1-year 
lowpass-filtered time series of the mean salinity and transport. A 1-year 
lowpass filter was used to evaluate inter-annual changes, such as the 
freshening signal, by removing variability on seasonal time scales 
and shorter.

The freshening signal is pervasive throughout the entire water 
column as every location in the mooring cross-section has freshened 
since the first year of OSNAP (Fig. 3b). While the DWBC has not fresh-
ened as dramatically as shallower waters, the DWBC has also warmed 
since the start of OSNAP (Fig. 3c) and contributes to decreasing den-
sities in the DWBC (Fig. 3d). This warming is mainly driven by the 
downward isopycnal displacement within the DWBC layer related to 
the freshening event37. The deep isopycnals sink as the DWBC waters 

become lighter and fresher, shrinking the DWBC layer and warming 
the deep Irminger Sea. Indeed, in some instances, the isopycnal used 
to define the top of the DWBC (σθ = 27.8 kg m−3) has deepened by more 
than 160 m during the OSNAP observation period (Fig. 3b–d). Overall, 
the cross-sectional areas of the full DWBC layer (NEADW plus DSOW) 
and the DSOW layer alone across our mooring section have decreased 
by 15.6 ± 0.2% and 29.6 ± 0.3%, respectively (Supplementary Fig. 1). 
While these decreasing cross-sectional areas are the primary reason 
for the decreasing transports (56% for DWBC and 75% for DSOW), the 
remaining decreases (44% and 25%, respectively) are due to the mean 
velocities within each water mass decreasing by 12.4 ± 1.5% in the 
DWBC and 10.0 ± 1.4% in DSOW (Methods and Supplementary Fig. 2). 
This velocity reduction is seen throughout the entire water column 
across most of the mooring section from CF5 to M3, with the great-
est velocity reduction near mooring M1 (Fig. 3e and Supplementary 
Fig. 3). To further consider this velocity decrease, we calculated the 
time-varying transport of the DWBC using the 6-year mean depth of 
the isopycnal (σθ = 27.8 kg m−3; Fig. 3) to evaluate velocities within a 
static layer and found a 14.6 ± 1.4% decrease in the velocities in the 
layer. A notable feature in the velocity trend (Fig. 3e) is the offshore 
alternating velocity reversals at moorings FLMA, FLMB and M4. We 
believe this feature is mostly due to high variability from mesoscale 
activity in the basin interior39. Interestingly, most of the thinning of 
the DWBC occurs before the start of the transport reduction in 2017 
(Supplementary Fig. 1a) because it was offset by velocity increases 
across the section (Supplementary Fig. 2a). The effect of the thinning 
layer only began to reduce transports once the velocities began to 
decrease starting in 2017.

Reconciling a decreasing DWBC with a stable 
AMOC
While our analysis and the OSNAP objective analysis agree that the 
DWBC east of Greenland has seen a notable decrease in transport,  
the OSNAP-calculated AMOC has remained relatively stable despite the 
DWBC being the primary constituent of the lower limb of the AMOC29,40. 
Much of the reason for this is due to the different methods used in 
each calculation. Our study calculates the DWBC using the traditional 
method of estimating the transport of all water denser than a constant 
isopycnal (σθ = 27.8 kg m−3). The AMOC, however, is calculated using a 
time-varying isopycnal based on the monthly maximum in the transport 
overturning streamfunction in density space28. In 6 years of OSNAP 
data, this isopycnal has varied widely for OSNAP East (Greenland–
Scotland OSNAP section), from 27.36 to 27.8 kg m−3 (Fig. 4a), and has 
a statistically insignificant transport decrease of −0.09 ± 0.21 Sv yr−1. If 
instead a constant isopycnal is used—the mean isopycnal of the monthly 
OSNAP overturning streamfunction maxima (σθ = 27.56 kg m−3)—and 
seasonality is removed29, we find the AMOC has decreased over the 
6-year record at a rate of −0.35 ± 0.17 Sv yr−1, which is statistically sig-
nificant at a 95% confidence threshold with a P value of 0.04 (Fig. 4b). 
Most of this change is due to the constant isopycnal (69%), although 
removing seasonality also plays an important role (31%). The method 
of calculating the AMOC using a constant isopycnal has also recently 
revealed a greater contribution to the AMOC from the Labrador Basin41. 
One trend that has emerged from the method used by OSNAP to evalu-
ate the AMOC is a lightening of the isopycnal of maximum overturning 
streamfunction during the 6-year record by 0.006 ± 0.007 kg m−3 yr−1 
(Fig. 4a), although this trend only has a P value of 0.35.

The lightening of the isopycnal of maximum overturning relates 
to the decreasing transport of the DWBC in that the entire lower limb 
of the AMOC is becoming less dense. As the deepest layers thin, lighter 
water becomes a new component of the upper portion of the lower 
limb, and as the AMOC evolves in a changing climate, how we define 
these water masses becomes more critical. In fact, if we use a different 
definition for NEADW (practical salinity >34.92 and σθ > 27.74 kg m−3 
(ref. 42)), we find that the water mass virtually disappears during the 
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OSNAP record owing to the low-salinity anomaly. Moving forward, new 
methods for evaluating the AMOC that better resolve the water mass 
changes that occur within the AMOC should be considered; likewise, 
the DWBC would be better evaluated using definitions beyond a single 
isopycnal that give greater consideration to the sources of its water 
masses, and we hope this Article serves as a catalyst for future inves-
tigations into this topic. Further observations in the subpolar region 
will help determine the new methods and examine the impact of the 
density changes found in this study on a warming climate.
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Methods
OSNAP has maintained mooring observations of transport, heat flux 
and freshwater flux across the entire subpolar North Atlantic from 
Labrador to Scotland since 2014. To evaluate the DWBC, this study 
uses seven OSNAP moorings (CF5, CF6, CF7, M1, M2, M3 and M4) and 
two moorings from the National Science Foundation Ocean Observa-
tories Initiative’s Global Irminger Sea Array (FLMA and FLMB) located 
across the continental slope east of Greenland near Cape Farewell. 
These moorings provide continuous observations using temperature– 
salinity sensors, current meters and downward-facing ADCPs near the 
bottom (for the first four years of deployment; Fig. 3a). The observa-
tions used in this study extend for nearly 70 months, from 16 September 
2014 to 8 July 2020. For simplicity, this study refers to this time frame 
as ‘6 years’. More information about OSNAP moorings and instrumen-
tation can be found at www.o-snap.org. More information about the 
National Science Foundation Ocean Observatories Initiative’s Global 
Irminger Sea Array can be found at https://oceanobservatories.org/
array/global-irminger-sea-array.

Temperature, salinity and velocity data are collected at 30 min 
intervals, then a 40 h lowpass filter is applied. The data are then inter-
polated into 6 h intervals in time. Shape-preserving (pchip) splines 
are used to grid the data into 2-m-depth intervals, and linear inter-
polation is used to grid the data in ~2 km intervals along the mooring 
line. Missing instrument data are filled using the linear relationship 
of non-missing observations from adjacent depths. When necessary, 
velocity data are extended as a constant to shallower depths at moor-
ings FLMA, FLMB and M4 for transport calculations. Velocity vectors 
are rotated to be normal to the mooring line as calculated from the two 
outermost moorings used in this study (CF5 and M4). This results in a 
vector rotation angle of 190.1°. Transports in the full DWBC layer are 
calculated by integrating velocities (in x and z) that have σθ > 27.8 kg m−3. 
This method is different from the one used by Hopkins et al.25 as they 
used variance ellipses of the data that incorporate decorrelation length 
scales between instruments (in both the horizontal and vertical) in an 
iterative objective analysis to interpolate temperature, salinity and 
velocity measurements from fixed sensors. Transports in the two 
constituent layers of the DWBC, NEADW and DSOW are calculated by 
integrating velocities (in x and z) that have 27.88 kg m−3 > σθ > 27.8 kg m−3 
and σθ > 27.88 kg m−3, respectively. DWBC and DSOW cross-sectional 
areas are calculated using the same method as the transport calcula-
tion, but all velocities within the evaluation regions (σθ > 27.8 kg m−3 
and σθ > 27.88 kg m-3, respectively) are changed to 1 and all velocities 
outside the region are set to zero.

Due to the bottom-intensified nature of the DWBC, properly esti-
mating transport from fixed instruments over a sloping bottom in the 
unsampled bottom triangles between moorings is of utmost impor-
tance. Therefore, this study calculated the DWBC and DSOW transports 
using four different methods to estimate the bottom triangles and then 
used the mean of the four methods to determine our final transport 
calculation. Three of the methods extend the velocity measured at 
the deepest instrument of the shallower mooring downward (below 
the sea floor) to a depth that matches the deepest instrument on the 
deeper mooring, followed by linear interpolation between the moor-
ings. The three methods used to extend the velocity measured at the 
deepest instrument on the shallower mooring were (1) extending the 
deepest velocity of the shallower mooring as a constant, (2) using the 
velocity shear between the deepest instruments of the shallower and 
deeper mooring (as used in ref. 2) and (3) applying the velocity shear at 
the bottom of the deeper mooring to the deepest velocity of the shal-
lower mooring. The fourth method calculated transport using height 
above bottom as the vertical coordinate, which effectively shifts the 
moorings as if they were along a flat bottom (and shifts the unsampled 
triangles to the top of the water column where we are not calculating 
transports in this study). These four methods yielded mean DWBC 
transport values of 8.3–8.7 Sv, which resulted in a mean of 8.5 Sv, and we 

included 0.2 Sv of error in the standard error to account for this range. 
We chose to use the mean since we cannot determine which estimate is 
best among four viable options. A bottom boundary layer that linearly 
decreases velocities to zero in the bottom 30 m is also applied to all 
transport calculations.

For simplicity, the text presents velocity decreases as a percent-
age, although the linear trend of the DWBC is −1.174 × 10−3 ± 1.039 ×  
10−3 m s−1 yr−1 (trend ± standard error). For the DSOW transport, the 
trend is −1.114 × 10−3 ± 1.261 × 10−3 m s−1 yr−1. In these estimates, we 
incorporate the integral time scales of the data (6.7 days for DWBC 
and 7.2 days for DSOW) to estimate degrees of freedom and standard 
errors. The DWBC, NEADW and DSOW transport trends (Supplemen-
tary Table 1) were calculated in a similar manner.

The OSNAP objective analysis product, which is used in this 
Article to compare DWBC results and analyse changes to the AMOC, 
is a monthly integrated analysis of all OSNAP observations across 
the trans-basin array13,28. In addition to OSNAP observations, the 
objective analysis incorporates other observations, including Argo 
floats and satellite altimetry, and applies a mass balance to deter-
mine fluxes of mass, heat and freshwater across the subpolar gyre. 
Details of this method can be found in Li et al.28. For this Article, 
we use OSNAP objective analysis data for OSNAP east, which is the 
region between Greenland and Scotland. When the OSNAP objective 
analysis is compared with Hopkins et al.25, the period of October 2015 
to June 2017 is used.

Data availability
The 2014–2020 OSNAP MOC and gridded velocity products are avail-
able in SMARTech Repository (https://doi.org/10.35090/gatech/70342) 
and are freely available at www.o-snap.org.

Code availability
Code will be made available upon request to the corresponding author.
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