
Data from Three NSF-funded, Ship-based, Ocean Time-series Programs

Bermuda Institute for Ocean Sciences

28-30 November 2012

Cynthia L. Chandler¹, Molly D. Allison², Robert C. Groman², Theresa McKee³, Peter H. Wiebe², and David M. Glover¹

1 ~ Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 2 ~ Biology Department, WHOI 3 ~ Physical Oceanography Department, WHOI

http://bco-dmo.org

BCO-DMO

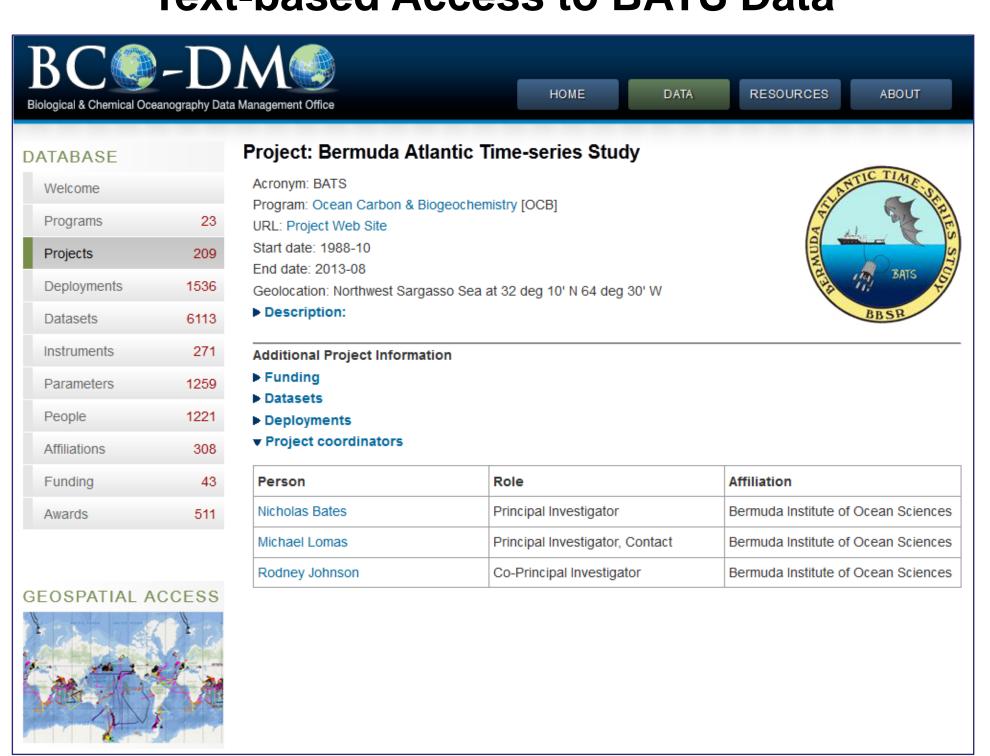
The Biological and Chemical Oceanography Data Management Office (BCO-DMO) is located at Woods Hole Oceanographic Institution and is funded to serve the data management requirements of investigators funded by the U.S. National Science Foundation (NSF) Biological and Chemical Oceanography Sections (OCE) and Office of Polar Programs (OPP) Antarctic Sciences (ANT) Organisms & Ecosystems Program. The office was created in late 2006, by combining the formerly independent data management offices for the U.S. GLOBEC and U.S. JGOFS programs. Data managers at BCO-DMO have worked with investigators from three of the NSF-funded, ship-based, ocean time-series programs to add the data gathered during the monthly cruises to the BCO-DMO data system. All of the CARIACO data are available from BCO-DMO, and recently the Niskin bottle data from HOT and BATS were added to the online database. Work has already been initiated to add other data including: primary production, zooplankton, biogeochemistry and particulate flux.

A variety of interfaces provide access to the online database. All are driven by metadata entered for each data set in the BCO-DMO system. Documentation (metadata) describing the who, what, where, when, how and why of each data set provides essential information used to discover and provide access to the data. Visitors to the online catalog can opt to use either the text-based access system or the map-based system to discover data resources. Once a data set of interest has been identified, tools are available to generate 'quick-view' plots and data listings. Data sets can be combined or sub-selected and then exported for download in a variety of user-selected formats.

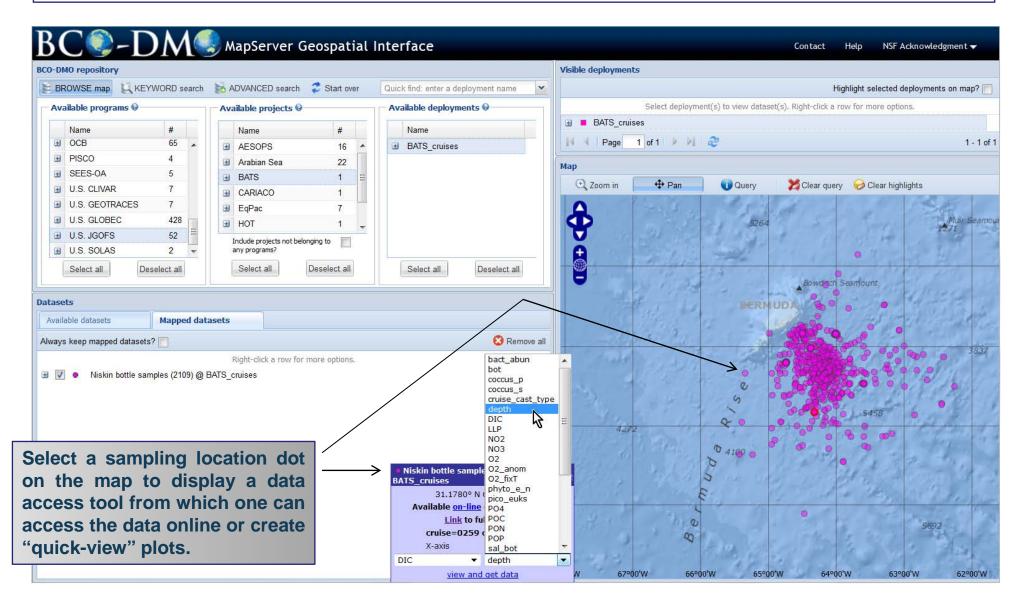
The time-series site data are a valuable addition to the BCO-DMO data system that already includes data from many other NSF-funded coastal, ocean and Great Lakes research projects.

Acknowledgments

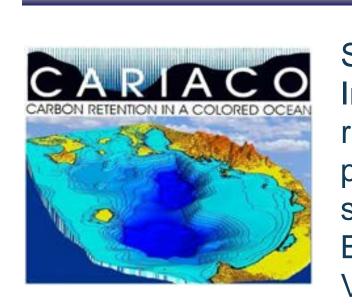
The BCO-DMO is funded by the U.S. National Science Foundation. We acknowledge the work done by the investigators of the ship-based, ocean time-series projects who are listed elsewhere in this poster. The user interfaces to the BCO-DMO data system have been developed in collaboration with Charlton Galvarino (Second Creek Consulting), Julie Allen (Woods Hole Oceanographic Institution) and BCO-DMO programmer, Adam Shepherd.


BATS

The Bermuda Atlantic Time-series Study (BATS, 32° 10'N, 64° 30'W) was established in 1988 to study the ocean carbon cycle by analyzing important hydrographic and biological parameters throughout the water column. BATS complements the other Sargasso Sea time-series, the Ocean Flux Program (OFP) a

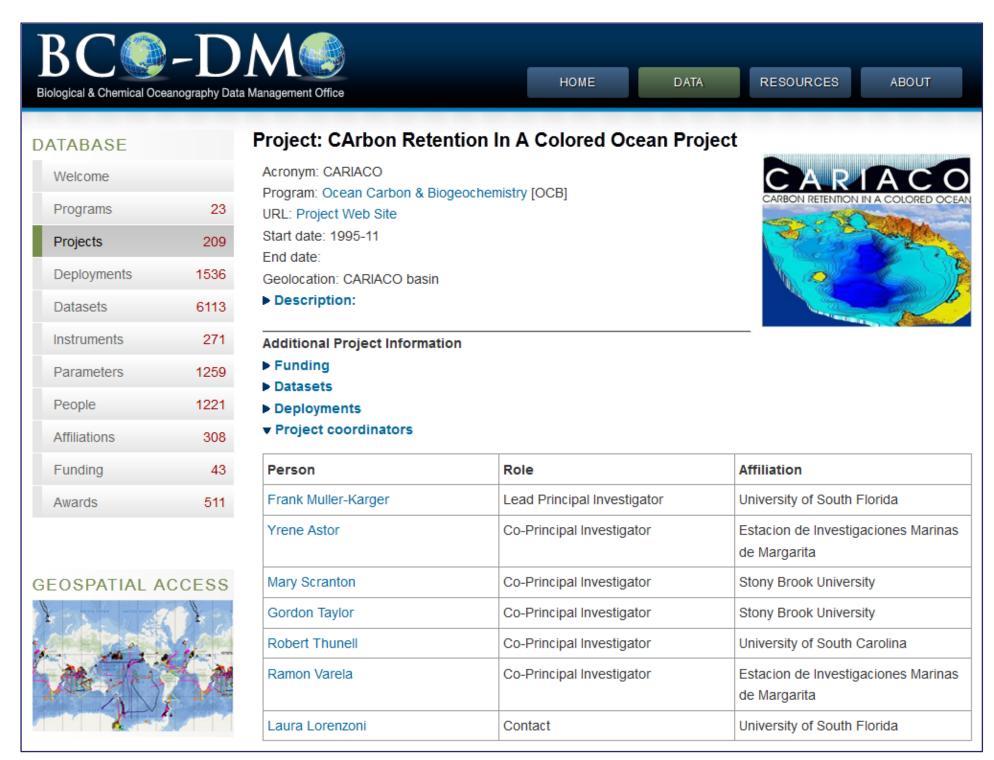

deep sediment trap mooring in place since 1978, and Hydrostation "S" a hydrographic time-series sampled approximately biweekly since 1954. Currently, BATS makes monthly measurements of important hydrographic, biological and chemical parameters throughout the water column at different sites within the Sargasso Sea.

Text-based Access to BATS Data

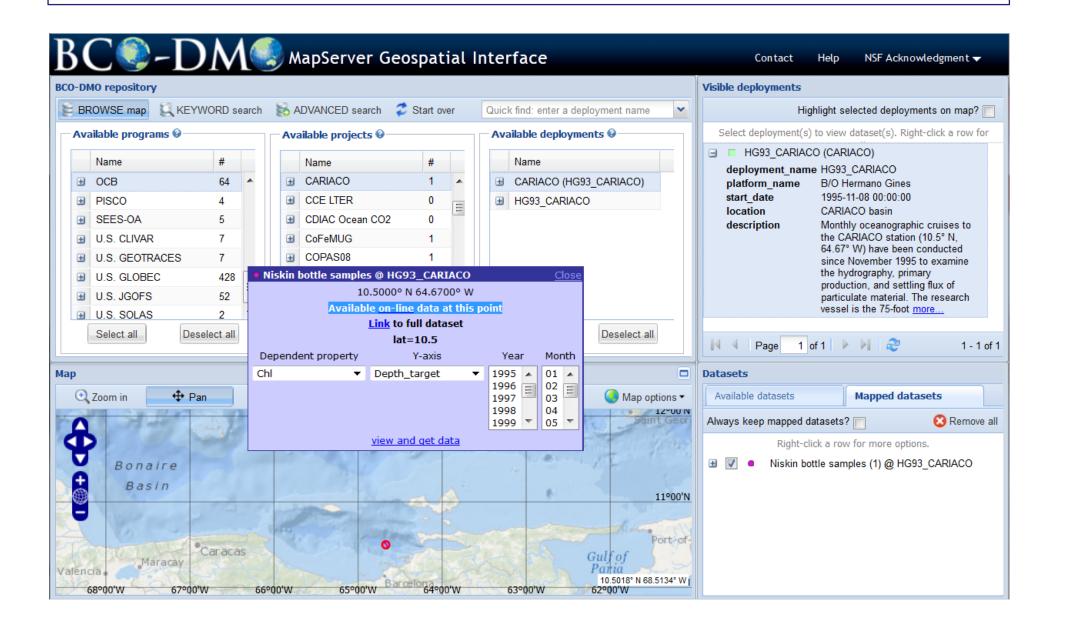


BATS Niskin Bottle Data

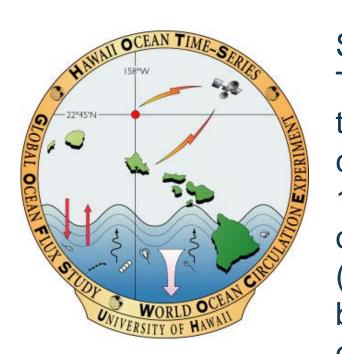
/BCO/BATS/Niskin Level 1 Directory Documentation Download & Other Operations													
												Le	evel 0
# v	ersion:	20 Noveml	ber 2012										
	iskin bo	ttle sam	ple data										
	rom mont	hly crui	ses to the	BATS site									
#													
			cast type	date	year mont	h day	time year	decimal :	lon	lat			
					-	_		•					
1		0138	02	20000314	2000 03	14	1452 2000.	19896 -	-64.134	31.583			
bot	depth	temp	 sal_ctd	sal_bot	sigma-t	02	O2_fixT	O2_anom	DIC	TALK	NO3	NO2	PO4
 01	3.3	19.361	36.646	36.646	26.188	226.1	19.5	0.7	2060.3	2393.5	0.11	0.00	0.00
02	3.4	19.315		nd	26.199	nd	16.8	nd	nd	nd	nd	nd	nd
03	10.2	19.266		36.645	26.212	225.9	19.3	0.2	2062.0	2395.5	0.00	0.00	0.00
04	10.8	19.266		nd	26.213	nd	16.8	nd	nd	nd	nd	nd	nd
05 06	20.4	19.249 19.249	36.647 36.647	36.648 nd	26.219 26.218	226.4 nd	19.2 16.8	0.6 nd	2063.9 nd	nd nd	0.14 nd	nd nd	0.00 nd
07	41.2	19.238	36.646	36.645	26.221	226.2	19.2	0.4	2056.9	2391.5	0.11	0.00	0.00
08	40.9	19.238	36.646	nd	26.221	nd	16.7	nd	nd	nd	nd	nd	nd
09	60.2	19.180	36.640	36.639	26.232	224.3	19.2	-1.8	2064.7	2400.5	0.20	0.00	0.00
10	60.3	19.179	36.640	nd	26.233	nd	16.7	nd	nd	nd	nd	nd	nd
11	80.6	19.090	36.637	36.637	26.255	216.9	19.2	nd	2063.3	2400.5	0.95	0.14	0.04
12	80.1	19.090	36.637	nd	26.255	nd	16.6	nd	nd	nd	nd	nd	nd
13	99.7	19.080	36.637	36.637	26.258	216.6	19.2	nd	2066.5	2395.2	1.02	0.19	0.00
14 15	99.8 120.8	19.080 19.078	36.637 36.637	nd 36.637	26.258 26.259	nd 216.2	16.6 19.2	nd nd.3	nd 2075.8	nd 2401.3	nd 1.06	nd 0.20	nd 0.04
15 16	120.8	19.078	36.637	36.63/ nd	26.259	216.2 nd	16.6	nd.3	20/5.8 nd	2401.3 nd	nd	nd	nd
17	139.3	19.080	36.637	36.637	26.260	215.7	19.1	nd.8	2071.9	2404.0	1.08	0.19	0.00
18	139.9	19.080		nd	26.260	nd	16.6	nd.o	nd	nd	nd	nd	nd


CARIACO

Since 1995, the CARIACO (CArbon Retention In A Colored Ocean) Program has studied the relationship between surface primary production, physical forcing variables like the wind, and the settling flux of particulate carbon in the Cariaco Basin. Located on the continental shelf of Venezuela (10.5° N, 64.67° W), the Cariaco

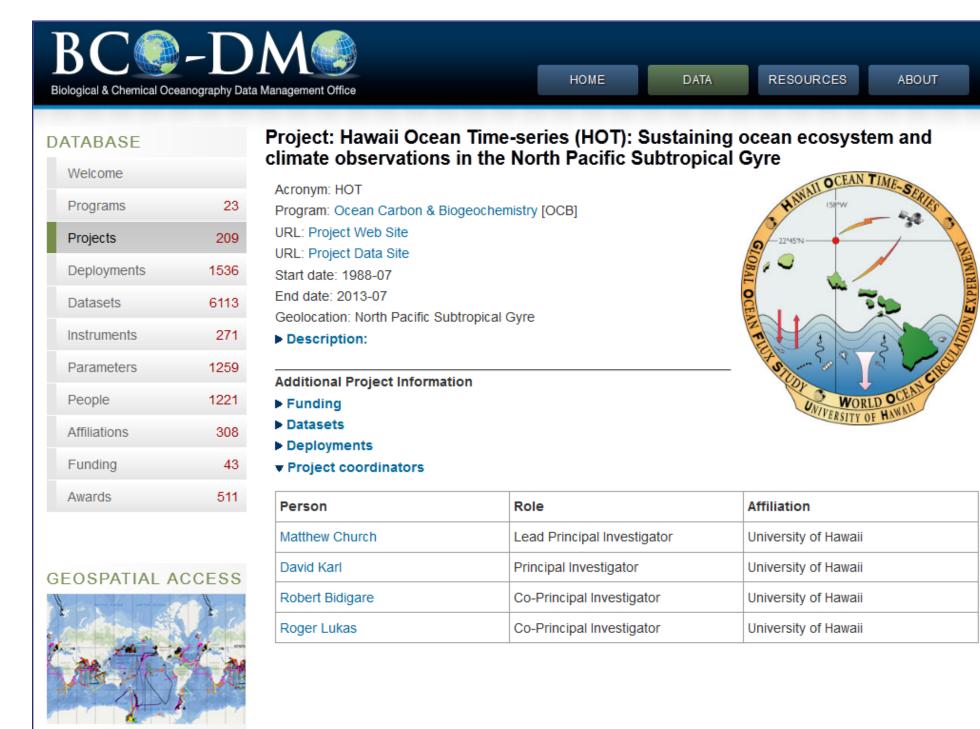

Basin shows marked seasonal and interannual variation in hydrographic properties and primary production. Due to its high rates of sedimentation and excellent preservation, the varved sediments of the Cariaco Basin offer the opportunity to study high resolution paleoclimate and to better understand the role of the tropics in global climate change.

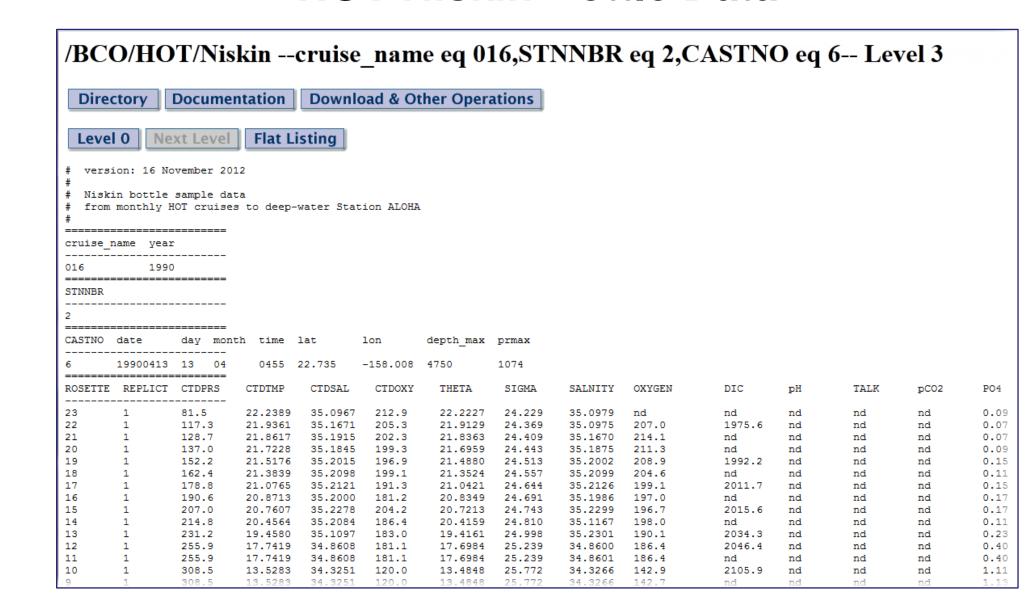
Text-based Access to CARIACO Data

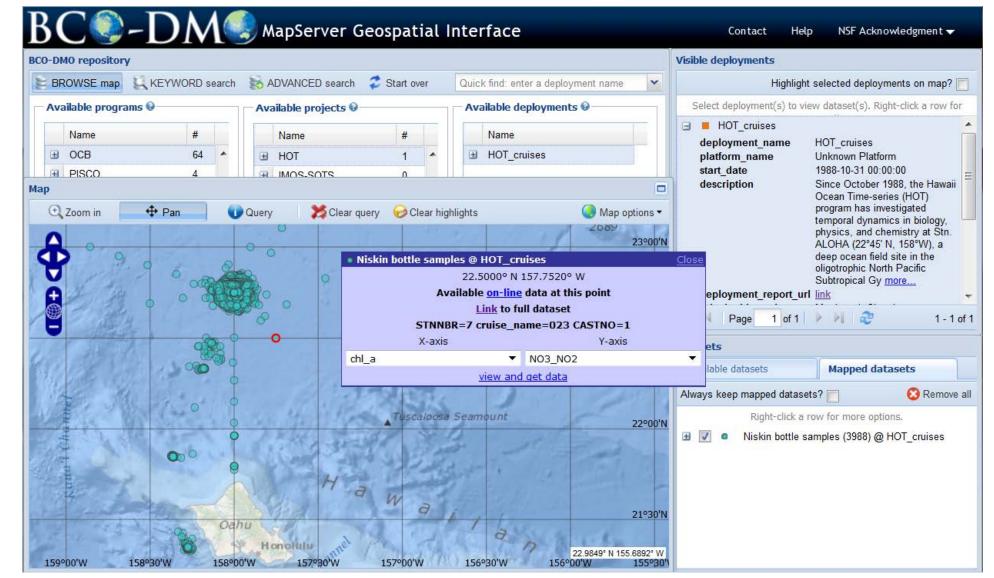


CARIACO Niskin Bottle Data

/OCB/	CARIAC	O/Nis	skin_bo	ttle	- Level 1					
Directo	Docum	entatio	n Plottii	ng and Oth	er Operation	S				
Level 0	Next Leve	Fla	t Listing							
201010	Treate Levi	710								
	05 November 3 CARIACO Master		file							
# BOALCC.	CARTACO INDUCE	DOCCIE								
	Niskin bottle	data								
#										
Cruise_ID	Leg lon	lat	Date 1	ay Month Y	'ear					
		-	10051100		005					
93HG_001	2 -64.67	10.5	19951108 (08 11 1	.995					
	et Depth_real		02 ml I (02 111101 120	. 02 11101 120 0	SiOH4 Cumana	SiOH4_Cumana_Q	DO4 Cumana	PO4 Cumene O	NO3 Cume
Depcin_carg		_ 02_111_1	02_111_1_	2 02_umo1_ku	02_dm01_kg_0	STORT_Camaria	SIONI-Camana_Q	ro1_canana	roi_camana_Q	NO3_cana
1	1.500	nd	9	nd	9	2.40	1	0.00	1	0.18
7	6.500	4.41	0	192.4	0	2.80	1	0.00	1	0.17
15	15.000	4.38	0	191.1	0	2.20	1	0.00	1	0.16
25	25.000	4.37	0	190.6	0	nd	9	0.00	1	0.17
35	35.000	4.27	0	186.2	0	1.90	1	0.01	1	0.85
55	54.500	3.95	0	172.2	0	1.70	1	0.06	1	0.63
75	74.000	3.87	0	168.7	0	2.20	1	0.08	1	1.08
100	97.000	3.63	0	158.2	0	2.40	1	0.20	1	2.52
150	151.500	1.81	0	78.8	0	10.70	1	0.96	1	10.69
200	200.000	0.45	0	19.6	0	22.10	1	1.50	1	10.57
250	251.500	0.00	0	0.00	0	37.00	1	2.42	1	9.29
300	302.500	0.00	0	0.00	0	42.20	1	2.56	1	0.29
350	353.000	0.00	0	0.00	0	44.30	1	2.64	1	0.29
400	409.500	0.00	0	0.00	0	55.40	1	2.81	1	0.19
450	451.000	0.00	0	0.00	0	59.50	1	2.99	1	0.20
500	502.500	0.00	0	0.00	0	74.70	1	3.11	1	0.20
750	752.500	0.00	0	0.00	0	81.70	1	3.32	1	0.20
1000	1005.000	0.00	0	0.00	0	80.30	1	3.45	1	0.07
1200	1210.000	0.00	0	0.00	0	94.10	1	3.57	1	0.08


HOT


Since October 1988, the Hawaii Ocean Time-series (HOT) program has investigated temporal dynamics in biology, physics, and chemistry at Station ALOHA (22° 45' N, 158° W), a deep ocean field site in the oligotrophic North Pacific Subtropical Gyre (NPSG). HOT conducts near monthly shipbased sampling and makes continuous observations from moored instruments to


document and study NPSG climate and ecosystem variability over semi-diurnal to decadal time scales. HOT was founded to understand the processes controlling the time-varying fluxes of carbon and associated biogenic elements in the ocean and to document changes in the physical structure of the water column.

Text-based Access to HOT Data

HOT Niskin Bottle Data

