Time-series methods overview: why results
must be comparable from site to site
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Ocean Time-Series Advisory Committee

OCB SSC member Ken Johnson is the chair of the Ocean Time-Series Advisory Committee (OTSAC), which is charged
with reviewing existing ocean biogeochemical time-series (e.g., HOT, BATS, CARIACO - see 2007 summary of parameters
being measured atthese sites), developing recommendations to improve the effectiveness and inter-comparability of
these time-series, and interfacing with the OCB research community to identify and communicate the needs for existing
and future time-series sites.
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US-OCB Time Series — HOT/BATS/CARIACO
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OCB time series success is a reflection of open
data access policy

Publ. Interval Number

HOT 1990-2012 549
BATS 1988-2012 480
CARIACO 1996-2012 89*
Total 1118

*Publications by CARIACO PI’s only.



Time Series Represented at this Workshop
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Why time series?

Abstract

Time-series observations form a critical element of oceanography. New in-
terdisciplinary efforts launched in the past two decades complement the few
earlier, longer-running time series to build a better, though still poorly re-
solved, picture of lower-frequency ocean variability, the climate processes
that drive variability, and the implications for food web dynamics, carbon
storage, and climate feedbacks. Time series also enlarge our understanding
of ecological processes and are integral for improving models of physical-
biogeochemical-ecological ocean dynamics. The major time-series observa-

Contributions of Long-"Term
Research and Time-Series
Observations to Marine

Ecology and Biogeochemistry

Hugh W. Ducklow,! Scott C. Doney,’
and Deborah K. Steinberg’



The use of time-series data to generate
testable hypotheses demands that the

measurement program be properly

designed and that the observations are

analytically consistent, accurate, and

relevant. A hallmark of most oceanic
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Detecting the time varying component in an
unambiguous manner requires comparisons
across time series! Rare for more than 2 time
series (e.g., HOT vs. BATS).

* Temporal Trends
e Temporal Patterns
* Absolute values
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Factors affecting the detection of trends: Statistical
considerations and applications to environmental data
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Biogeosciences. 7, 621-640, 2010

www.biogeosciences.net/7/621/2010/ ‘GG’ Bio geoscC iences

© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Detection of anthropogenic climate change in satellite records of
ocean chlorophyll and productivity

S. A. Henson!", J. L. Sarmientol, J. P Dunnez, L. Bopp3, L Lima"‘, S. C. Doney"‘, J. Johnz, and C. Beaulieu!



Table 1. Length of time series in years needed to detect a global warming trend in chlorophyll conce
above the natural variability, reported for each model as the average within the biomes (see Fig.

deviation of the spatial average 1s shown 1n brackets.

1on and primary production (bold)
for\biome locations). One standard

Biome GFDL IPSL NCAR Biome fnean
1. High latitude North Pacific 41 (15) 41 (11) 41 (10) 41
40 (12) 43 (11) 41 (12) 41
2. Oligotrophic North Pacific 36 (10) 37 (11) 44 (12) 39
38 (11) 30 (13) 36 (11) 35
3. Equatornial Pacific 34 (8) 32 (11) 49 (8) 35
31 (10) 29 (8) 38 (12) 33
4. Oligotrophic South Pacific 41 (13) 36 (10) 48 (12) 42
43 (14) 35(14) 50 (14) 43
5. Southern Ocean — Pacific 37 (13) 48 (17) 45 (12) 43
42 (15) 49 (18) 40 (13) 44
6. High latitude North Atlantic 40 (12) 31 (9) 37 (10) 36
41 (11) 33(8) 43 (11) 39
7. Oligotrophic North Atlantic 42 (13) 34(11) 35(16) 37
44 (14) 31(12) 38 (13) 38
8. Equatorial Atlantic 45 (9) 26 (7) 24 (8) 32
45 (10) 15(2) 32 (6) 31
9. Oligotrophic South Atlantic 40 (12) 35(12) 33 (13) 36
40 (13) 23 (13) 38 (14) 34
10. Southern Ocean — Atlantic 37 (11) 43 (10) 36 (11) 39
39 (18) 43 (13) 35(12) 39
11. Arabian Sea 37 (6) 33 (6) 29 (8) 33
37(7) 20 (5) 35 (9) 31



Trend detection requires comparison
across multiple time series.

Ocean Deoxygenation
in a Warming World

Ralph F. Keeling,! Arne Kortzinger,?

and Nicolas Gruber?



Biogeosciences, 7, 2283-2296, 2010 A

ww biogecsciantes 2et] 228320101 @ Biogeosciences
doi:10.5194/bg-7-2283-2010 A

© Aushor(s) 2010. CC Atmibation 3.0 Licenss.

Evidence for greater oxyvgen decline rates in the coastal ocean
than in the open ocean

D. Gilbert', N.N. Rabalaiz*, R J. Diaz’, and J. Zhang*
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SABA ET AL.: MODELING MARINE PRIMARY PRODUCTIVITY

(a) BATS

GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 24, GB3020, doi:10.1029/2009GB003655, 2010

(b) HOT
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Marine Primary Production ,
’ Annu. Rev. Mar. Sci. 2011. 3:227-60

in Relation to Climate
Variability and Change

Francisco P. Chavez, Monique Messié,
and J. Timothy Pennington

Monterey Bay Aquarium Research Institute, Moss Landing, California 95039;
email: chfr@mbari.org
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a Integrated chlorophyll b Integrated primary production
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Ocean Carbon Dioxide Levels and Acidity, 1983-2005
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Data source: Bindoff, N.L., J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Guley, K. Hanawa, C. Le Quéré, S. Levitus, Y.
Nojiri, C.K. Shum, L.D. Talley, and A. Unnikrishnan. 2007. Observations: Oceanic climate change and sea level. In: Climate
change 2007: The physical science basis (Fourth Assessment Report). Cambridge, United Kingdom: Cambridge
University Press.

For more information, visit U.S. EPA's “Climate Change Indicators in the United States” at
www.epa.gov/climatechange/science/indicators.



Detecting the time varying component in an
unambiguous manner requires comparisons
across time series! Rare for more than 2 time
series (e.g., HOT vs. BATS).

* Temporal Trends
e Temporal Patterns
* Absolute values



Comparison of absolute values between sites.

Phosphate Depletion in the
Western North Atlantic Ocean

Jingfeng Wu,’ William Sunda,? Edward A. Boyle,’

David M. Karl3

J Wu et al. Science 2000;289:759-762

Published by AAAS
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HOT Methods Manual

Samples for the determination of dissolved inorganic nutrient
concentrations (soluble reactive phosphorus, [nitrate+nitrite], and silicate)
were collected as described in Tupas et al. (1993). Up until February 2000,
analyses were conducted at room temperature on a four-channel
Technicon Autoanalyzer Il continuous flow system at the University of
Hawaii Analytical Facility. Starting March 2000, samples have been run
using a six-channel Bran Luebbe Autoanalyzer Ill. The average precisions
during 2010 from duplicate analyses are given in the Table below.

Figure 20, Figure 21, & Figure 22 show the mean and 95% confidence limits
of nutrient concentrations measured at three potential density horizons for
the past 22 years of the program. In addition to standard automated
nutrient analyses, specialized methods are used to determine
concentration of nutrients that are normally below the detection limits of
autoanalyzer methods.




The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines

IOCCP Report No. 14, ICPO Publication Series No. 134, Version 1, 2010

DETERMINATION OF DISSOLVED NUTRIENTS (N, P, SI) IN SEAWATER WITH
HIGH PRECISION AND INTER-COMPARABILITY USING GAS-SEGMENTED
CONTINUOUS FLOW ANALYSERS

D.]. H}fdesl, M. Aoyama?‘, A. Aminot’, K. Bakker®, S. Becker’, S. Coverl_v6, A. Daniel’, A. G.
Dickson’, O. Grosso’, R. Kerouel’, J. van Ooi]'en4, K. Sato®, T. Tanhua’, E. M. S. Woodward”,
J. Z. Zhang"



Nitrate concentration differences
depending on handling linearity
o8
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Figure 4. Plot of difference between nitrate concentration values reported by individual laboratories and the
reference laboratory. The reference laboratory measured five standards and applied a quadratic fit. Group 1,

laboratories measured 5 standards and applied a linear fit, Group 2 laboratories measured two standards and
applied linear fit.



P3_P14_crossing stations in 1985, 1993,
2005 and 2007 (24N, 180E , r=250km)
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Figure 5. Profiles of nitrate concentration in the North Pacific Ocean at the crossing of P3 line and P14 line
carried out in 1985 (P3), 1993 (P14), 2005 (P3) and P14(2007).



Earth System
Science

Data

Earth Syst. Sci. Data, 2, 99-104, 2010
www.earth-syst-sci-data.net/2/99/2010/

© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Open Access

The Irminger Sea and the Iceland Sea time series
measurements of sea water carbon and nutrient
chemistry 1983-2008

J. Olafsson!2, S. R. Olafsdottir!, A. Benoit-Cattin!, and T. Takahashi’



Samples from all collection depths have been taken for
salinity. dissolved oxygen and inorganic nutrients. From
1983 to 1991 only surface samples for pCO> and TCO; were
collected. Water column sampling for TCO, started in 1991
and for pCO; i 1993.

3 Methods and quality control procedures

3.1 Hydrography

From 1983 to the end of 1989 the station water sampling
was conducted with TPN-Nansen water bottles. from
HYDROBIOS GmbH. on a hydrowire. They were
fitted with reversing mercury thermometers. From the
beginning of 1990 the station work has been conducted
using SEA-BIRD Conductivity-Temperature-Depth (CTD)
profiling instruments and water bottles on a rosette. Sample
salinity measurements were carried out using Guildline
Autosal Model 8400 salinometers.

3.3.1 Nutrient analysis quality control

To assess the accuracy of the nutrient methods and
procedures we have participated in. and subscribed to. the
QUASIMEME laboratory QC programme and received since
1993 test materials for analysis twice a year (Wells et
al.. 1997). In QUASIMEME the laboratory performance
1s expressed with a z-score where |z| <2 1s considered as
acceptable results and where z 1s the difference between
the laboratory result and the assigned value divided by the
total error (Cofino and Wells. 1994). The test material
concentrations have been variable over the years. sometimes
been well above the range observed at the time series
locations. We therefore prefer to express the MRI long term
nutrient analyses performance on the basis of the differences
between reported and assigned concentrations rather than
z-scores as these differences are directly comparable to the
analytical uncertainty (Fig. 2). The average difference of
MRI reported values for nitrate (Fig. 2a) from 1993-2008
1s —0.12 umol/1 (standard deviation=0.16 pmol/l. 7= 28).
for phosphate (Fig. 2b) it is —0.02 umol/l (standard
deviation = 0.02 pmol/l. 7 = 28). From 1996 silicate has been
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SAMPLING AND ANALYSIS OF Fe: THE SAFE IRON INTERCOMPARISON
CRUISE
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We (you) need to implement these lessons across time
series.



