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ABSTRACT—Stephanie C. Herring, Nikolaos Christidi, Andrew Hoell, James P. Kossin, Carl J. Schreck III, and Peter A. Stott

This sixth edition of explaining extreme events of the 
previous year (2016) from a climate perspective is the 
first of these reports to find that some extreme events 
were not possible in a preindustrial climate. The events 
were the 2016 record global heat, the heat across Asia, 
as well as a marine heat wave off the coast of Alaska. 
While these results are novel, they were not unexpected. 
Climate attribution scientists have been predicting that 
eventually the influence of human-caused climate change 
would become sufficiently strong as to push events 
beyond the bounds of natural variability alone. It was also 
predicted that we would first observe this phenomenon 
for heat events where the climate change influence is most 
pronounced. Additional retrospective analysis will reveal 
if, in fact, these are the first events of their kind or were 
simply some of the first to be discovered.

Last year, the editors emphasized the need for ad-
ditional papers in the area of “impacts attribution” that 
investigate whether climate change’s influence on the 
extreme event can subsequently be directly tied to a 
change in risk of the socio-economic or environmental 
impacts. Several papers in this year’s report address this 
challenge, including Great Barrier Reef bleaching, living 
marine resources in the Pacific, and ecosystem productiv-
ity on the Iberian Peninsula. This is an increase over the 
number of impact attribution papers than in the past, and 
are hopefully a sign that research in this area will continue 
to expand in the future.

Other extreme weather event types in this year’s 
edition include ocean heat waves, forest fires, snow 
storms, and frost, as well as heavy precipitation, drought, 
and extreme heat and cold events over land. There were 

a number of marine heat waves examined in this year’s 
report, and all but one found a role for climate change 
in increasing the severity of the events. While human-
caused climate change caused China’s cold winter to be 
less likely, it did not influence U.S. storm Jonas which hit 
the mid-Atlantic in winter 2016.

As in past years, the papers submitted to this report 
are selected prior to knowing the f inal results of 
whether human-caused climate change influenced the 
event. The editors have and will continue to support the 
publication of papers that find no role for human-caused 
climate change because of their scientific value in both 
assessing attribution methodologies and in enhancing 
our understanding of how climate change is, and is not, 
impacting extremes. In this report, twenty-one of the 
twenty-seven papers in this edition identified climate 
change as a significant driver of an event, while six did 
not. Of the 131 papers now examined in this report over 
the last six years, approximately 65% have identified a 
role for climate change, while about 35% have not found 
an appreciable effect.  

Looking ahead, we hope to continue to see improve-
ments in how we assess the influence of human-induced 
climate change on extremes and the continued inclusion 
of stakeholder needs to inform the growth of the field and 
how the results can be applied in decision making. While 
it represents a considerable challenge to provide robust 
results that are clearly communicated for stakeholders 
to use as part of their decision-making processes, these 
annual reports are increasingly showing their potential 
to help meet such growing needs.



S21JANUARY 2018AMERICAN METEOROLOGICAL SOCIETY |

5. ECOLOGICAL IMPACTS OF THE 2015/16 EL NIÑO IN THE 
CENTRAL EQUATORIAL PACIFIC

Russell e. BRainaRd, Thomas oliveR, michael J. mcPhaden, anne cohen, RoBeRTo venegas, 
adel heenan, BeRnaRdo vaRgas-Ángel, Randi RoTJan, sangeeTa manguBhai,  

elizaBeTh FlinT, and susan a. hunTeR

Coral reef and seabird communities in the central equatorial Pacific were disrupted by record-setting sea 
surface temperatures, linked to an anthropogenically forced trend, during the 2015/16 El Niño.

Introduction. In the equatorial Pacific Ocean, the 
El Niño–Southern Oscillation substantially affects 
atmospheric and oceanic conditions on interannual 
time scales. The central and eastern equatorial 
Pacific f luctuates between anomalously warm and 
nutrient-poor El Niño and anomalously cool and 
nutrient-rich La Niña conditions (Chavez et al. 1999; 
McPhaden et al. 2006; Gierach et al. 2012). El Niño 
events are characterized by an eastward expansion of 
the Indo-Pacific warm pool (IPWP) and deepening 
of the thermocline and nutricline in response 
to weakening trade winds (Strutton and Chavez 
2000; Turk et al. 2001). El Niño events are typically 
associated with significant decreases in primary 
productivity in the eastern and central tropical Pacific 
and corresponding increases in productivity in the 
western tropical Pacific (Boyce et al. 2010).

The IPWP has warmed and expanded in recent 
decades (Weller et al. 2016). The eastern Pacific cold 
tongue, on the other hand, has exhibited signs of 
a cooling trend over the past century (Deser et al. 
2010). Newman and Wittenberg (2018) found that 
anomalously warm sea surface temperatures (SST) 
in the Niño-4 region (5°N–5°S, 150°E–150°W) of the 
central equatorial Pacific (CEP) during the 2015/16 

El Niño were likely unprecedented and unlikely to 
have occurred naturally, thereby reflecting an anthro-
pogenically forced trend. Lee and McPhaden (2010) 
earlier reported increasing amplitudes of El Niño 
events in Niño-4 that is also evident in our study 
region (Figs. 5.1b,c). 

Remote islands in the CEP (Fig. 5.1a), including Jar-
vis Island (0°22′S, 160°01′W), Howland Island (0°48′N, 
176°37′W), Baker Island (0°12′N, 176°29′W), and 
Kanton Island (2°50′S, 171°40′W), support healthy, 
resilient coral reef ecosystems characterized by excep-
tionally high biomass of planktivorous and piscivorous 
reef fishes due to the combined effects of equatorial 
and topographic upwelling (Gove et al. 2006; Williams 
et al. 2015). Coral reef communities at these islands are 
exposed to extended periods of thermal stress during 
El Niño events. Mass coral bleaching and mortal-
ity were reported in the Phoenix Islands during the 
moderate 2002/03 El Niño (Obura and Mangubhai 
2011), and coral bleaching with limited mortality was 
reported at Howland and Baker Islands during the 
moderate 2009/10 El Niño (Vargas-Ángel et al. 2011). 
There were no observations of coral bleaching or mor-
tality at these uninhabited islands during the major 
El Niño events of 1982/83 or 1997/98. Corals in the 
eastern equatorial Pacific (>7600 km to the east) did 
experience mass bleaching and mortality during those 
major El Niño events (Glynn 1984; Glynn et al. 2001).

We describe variations in SST and biological 
productivity to characterize the 2015/16 El Niño 
(McPhaden 2015) in relation to previous El Niño 
events in the CEP (Fig. 5.1a) and in the context of 
climate trends. We then describe some of the ecologi-
cal responses, which were catastrophic at Jarvis and 
modest at Howland, Baker, and Kanton Islands.

Data and methods. The duration and magnitude of 
El Niño events for the period 1981–2017 for our region 
of interest (ROI; 5°N–5°S, 150°W–180°) were identified 

AFFILIATIONS: BRainaRd—NOAA Pacific Islands Fisheries 
Science Center, Ecosystem Sciences Division, Honolulu, Hawaii; 
oliveR, venegas, heenan, and vaRgas-Ángel—University of 
Hawaii, Joint Institute for Marine and Atmospheric Research, 
Honolulu, and NOAA Pacific Islands Fisheries Science Center, 
Ecosystem Sciences Division, Honolulu, Hawaii; mcPhaden—
NOAA Pacific Marine Environmental Laboratory, Seattle, 
Washington; cohen—Woods Hole Oceanographic Institution, 
Woods Hole, Massachusetts; RoTJan—Boston University, Boston, 
Massachusetts; manguBhai—Wildlife Conservation Society, Suva, 
Fiji; FlinT and hunTeR—U.S. Fish and Wildlife Service, Marine 
National Monuments of the Pacific, Honolulu, Hawaii

DOI:10.1175/BAMS-D-17-0128.1

A supplement to this article is available online (10.1175 
/BAMS-D-17-0128.2)
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Fig. 5.1. (a) NOAA Coral Reef Watch 5-km degree heating weeks for the Pacific Ocean for 1 Jan 2016 (https://
coralreefwatch.noaa.gov/satellite/bleaching5km/images_archive/b05kmnn_dhw_20160101_pacific_930x580 
.gif) overlaid with ROI boundaries and locations of Jarvis, Howland, Baker, and Kanton Islands. (b) ROI SST 
anomalies (°C) for El Niño events since 1981 based on OISST data. Thick black line is average of all events since 
1981 excluding the 2015/16 event. Thick red line is Jul 2014–Jan 2017, encompassing the 2015/16 El Niño. (c) Time 
series of monthly OISST anomaly (°C) for ROI; El Niño and La Niña periods are shown as vertical red and blue 
bands, respectively. Trends for El Niño, neutral, and La Niña conditions are shown as red, gray, and blue lines. 
(d) Map of mean Chl-a (mg m−3) for all Dec from 2002–16 for ROI using MODIS data showing strong equato-
rial upwelling; (e) mean Chl-a (mg m−3) for Nov–Dec 2015 for ROI using MODIS data showing ‘desertification’ 
conditions; (f) frequency of occurrences of Chl-a (mg m−3) concentrations over the ROI for Dec mean over 
2003–17 (green) and Nov–Dec 2015 (tan); (g) time series of Chl-a (mg m−3) anomalies at Jarvis Island (2° × 2°; 
0.63°N–1.37°S, 159°–161°W) from SeaWiFS (1997–2010) and MODIS (2003–17) datasets https://coastwatch 
.pfeg.noaa.gov/erddap, (h) time series of Chl-a anomalies (mg m−3) at Howland/Baker Islands (2° × 2°; 1.5°N–
0.5°S, 175.5°–177.5°W) from SeaWiFS and MODIS datasets.
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using the NOAA 1/4° daily optimum interpolation 
SST (OISST; online supplement material). El Niño or 
La Niña events were defined following the convention 
for the ONI index, that is, when the 3-month running 
mean SST anomaly in Niño-3.4 exceeded ±0.5°C. We 
computed trends during El Niño, La Niña, and neutral 
conditions during the El Niño events. We examined 
long-term trends of SST anomaly and cumulative heat 
stress in the ROI and at Jarvis Island using OISST, the 
NOAA extended reconstructed SST (ERSSTv4; Huang 
et al. 2014), and Hadley Centre sea ice and SST data-
set (HadISST; online supplement material). To iden-
tify the location and variations in primary biological 
productivity, estimates of chlorophyll concentration 
(Chl-a) were obtained from SeaWiFS (9-km) from 
1997–2010 and MODIS (4-km) from 2002–17 (NASA 
2014; online supplement material).

From 2000–17, coral reef benthic and fish com-
munities were surveyed during 11 research cruises 
by NOAA’s Pacific Reef Assessment and Monitoring 
Program. The cruise monitoring data were used to 
examine the ecological responses to recent El Niño 
events. Surveys included visual estimates of coral 
cover (%) collected during towed-diver surveys at 
mid-depths (~15 m) from 2001–17 (Kenyon et al. 
2006) and visual estimates from stratified random 
benthic surveys since 2010. Fish assemblages were 
surveyed since 2008 using a stationary point count 
method under a random depth-stratified sampling 
design (Ayotte et al. 2015). Changes in seabird popu-
lations were based on visual surveys conducted im-
mediately before and after the 1982/83 and 2015/16 
El Niño events and using fixed cameras that captured 
images every 30 minutes from April 2015 to May 2016.

Results and discussion: Oceanographic patterns. Ex-
ceptionally warm SST anomalies for the ROI (Figs. 
5.1b,c) and Jarvis Island (Figs. ES5.1b,c) show that 
the 2015/16 El Niño was the strongest in magnitude 
and longest on record in the satellite era. Though 
SST was also anomalously warm in the CEP for ex-
tended durations during other major El Niño events 
in 1982/83, 1997/98, 2009/10, the warming at Jarvis 
Island during the 2015/16 El Niño was exceptional. 
Observed daily SST anomalies exceeded the 1982/83, 
1997/98, and 2009/10 events by +0.51°, +0.52°, and 
+0.71°C, respectively (difference among events of 95% 
quantiles of daily SST; Figs. ES5.1b,c). At Howland 
and Baker Islands, ~1830 km west of Jarvis Island, the 
2015/16 El Niño showed SST maxima on par with the 
2009/10 event, but exceeded levels observed in 1982/83 
and 1997/98 by +0.61° and +0.68°C, respectively (Fig. 

ES5.1d). SST anomalies were substantially smaller at 
Howland and Baker Island than at Jarvis Island for 
all events, by 0.42° to 1.28°C, respectively.

Time series of daily OISST anomalies during El 
Niño events show statistically significant warming 
trends of +0.596° (0.166°C decade−1) and +0.352° 

(0.098°C decade−1) over 36 years in the ROI and at 
Jarvis Island, respectively (Figs. 5.1c and ES5.1b). This 
trend is robust to the exclusion of 2015/16 El Niño 
across the ROI, but not at Jarvis Island alone (Table 
ES5.1). Combining magnitude and duration of SST 
anomalies using the ERRSTv4 and HadISST recon-
structions since 1950, cumulative heat stress during El 
Niño periods demonstrates warming trends of +0.43° 
(0.064°C decade−1) and +0.50° (0.074°C decade−1) over 
the past 67 years in the ROI and at Jarvis Island, re-
spectively (Figs. ES5.4a,b; Table ES5.2), though again, 
the significance of this warming trend depends on the 
inclusion of the 2015/16 El Niño. With the observed 
warming trend in the IPWP (Weller et al. 2016), it 
appears that the significant warming across the CEP, 
including Jarvis Island, during El Niño events may 
be due to eastward advection of these increasingly 
warmer waters.

During strong El Niño events, a cessation of up-
welling can lead to extended periods of anomalously 
low Chl-a, as occurred at Jarvis Island during only 
the strongest El Nino events in 1997/98 and 2015/16 
(Fig. 5.1g). At Howland and Baker Islands, low Chl-a 
events were more frequent, occurring during these 
major El Niño events and the moderate El Niño 
events of 2002/03 and 2009/10 (Fig. 5.1h). The strong 
El Niño events of 1982/83 and 1997/98 were followed 
by strong La Niña events, but this did not occur 
following the 2015/16 El Niño. La Niña events that 
followed the 1997/98 and 2009/10 El Niño events 
were characterized by robust Chl-a phytoplankton 
blooms that lasted ~6 months at Jarvis, Howland, and 
Baker Islands. Without a strong La Niña following the 
2015/16 El Niño, no such Chl-a bloom was observed 
in 2016–17. In summary, primary productivity fluc-
tuated between ‘desertification’ conditions during 
strong El Niño events and robust phytoplankton 
blooms during strong La Niña events (Figs. 5.1e–h).

Ecological responses. The 2015/16 El Niño was a major 
driver of the longest, most widespread, and most 
damaging global coral bleaching event on record 
(NOAA 2017). In the CEP, impacts to corals were 
catastrophic at Jarvis, but only moderate or modest 
at Howland, Baker, and Kanton Islands. Specifically, 
NOAA reported severe coral mortality at Jarvis Island 
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with island-wide coral cover declining from 17.8% 
in April 2015 (pre-bleaching) to 0.3% in May 2016 
(post-bleaching), representing a devastating decline 
of >95% (Fig. 5.2g; Table ES5.3; Boyle et al. 2017; 
Vargas-Ángel et al. 2017, manuscript submitted to 
Coral Reefs). Corals at Jarvis Island experienced ther-
mal stress of 35.8 degree heating weeks and exceeded 
the bleaching threshold (28.7°C) for 43 consecutive 
weeks between 2015 and 2016 (Boyle et al. 2017). 
Extensive mass bleaching observed visually during 
the peak of the El Niño in November 2015 (Cohen 
2016, personal communication) caused mass mor-
tality across all coral taxa, reef habitats, and depths 

by May 2016 (Figs. 5.2c,g; Table ES5.3). Only a few 
hardy and resilient corals survived, including some 
massive Porites colonies that had survived previous El 
Niño events over many decades and a few colonies of 
Acropora, Pocillopora, and Hydnophora (Boyle et al. 
2017; Vargas-Ángel et al. 2017, manuscript submitted 
to Coral Reefs).

In contrast, Howland, Baker, and Kanton Islands 
experienced substantially less thermal stress. At 
Howland and Baker Islands, we observed 23%–31% 
reductions in coral cover from 2015 to 2017, though 
there were no observations to confirm bleaching 
during the 2015/16 El Niño (Fig. 5.2g; Table ES5.3). 

Fig. 5.2. (a)–(f) Jarvis Island. (a) Mean fish biomass (g m−2) and standard error (SE) computed from stratified 
random reef fish surveys of abundance and size; (b) 6-mo running mean SST anomalies (°C) and SE for 6-mo 
prior to NOAA fish and coral surveys using OISST; (c) mean coral cover (%) and SE from NOAA towed-diver 
surveys (2008 only) and stratified random stationary point count (SPC) surveys (2010–17): (d) mean biomass 
(g m−2) of coral associate Paracirrhites arcatus. (e) 6-mo running mean Chl-a anomalies (mg m−3) for 6-mo 
prior to NOAA fish and coral surveys using MODIS. (f) Island-wide mean plantivorous fish biomass (g m−2) 
and SE computed from stratified random SPC reef fish surveys of abundance and size. (g) Mean coral cover 
(%) and SE (2001–08 from NOAA towed-diver surveys at mean 15-m depth (solid lines) ; 2010–17 from NOAA 
stratified random SPC surveys ). (h) Change of Jarvis Island seabird counts (%) before and after 1982–83 (blue) 
and 2015–16 (red) El Niño events. [Data were normalized using census data from 19 island surveys from 1973 
to 2016 (x-min. count)/(max.-min.).]; RTTR = Phaethon rubricauda; MABO, BRBO, & RFBO = Sula dactylatra, 
S. leucogaster, & S. sula; GRFR & LEFR = Fregata minor & F. ariel; GRAT & SOTE = Onychoprion lunatus and 
O. fuscatus; WHTE = Gygis alba.
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The reduction in coral cover between 2015 and 2017 
is smaller than the reduction in coral cover from 
2012 to 2015, which was an ENSO neutral period. At 
Kanton Island, 5%–25% of the corals were observed 
to be bleached during the peak of the 2015/16 El Niño, 
but little discernable coral mortality was observed in 
2016, dramatically lower than the mortality observed 
following the 2002/03 El Niño (Mangubhai and 
Rotjan 2017, personal commmunication; Obura and 
Mangubhai 2011).

A preliminary assessment of reef fish survey data 
at Jarvis Island revealed decreased total fish biomass 
in 2016 relative to other years (Fig. 5.2a; Table ES5.4), 
consistent with previous findings from the Phoenix 
Islands following the 2002/03 bleaching (Mangubhai 
et al. 2014). In addition, biomass of planktivores was 
lower during both the moderate and strong El Niño 
events of 2009/10 and 2015/16 (Fig. 5.2f). With the 
island-wide reduction in coral cover observed since 
2008, a concomitant reduction in the biomass of Par-
racirrhites arcatus, a fish species dependent on live 
coral for habitat, was observed (Figs. 5.2c,d). These 
combined data suggest that the 2015/16 El Niño 
caused reduced food availability (Fig. 5.2e) that de-
pleted planktivore populations (Fig. 5.2f) and reduced 
coral cover (Fig. 5.2c) which in turn reduced live-coral 
dependent fish species (Fig. 5.2d).

Seabird counts at Jarvis Island showed a decrease 
in total individuals and a scarcity of older nestlings, 
indicating a lack of reproduction, after the 2015/16 El 
Niño (Fig. 5.2h). Wildlife cameras recorded a decrease 
in birds flying to and from the sea and loss of colonies 
from flooding events.  Nineteen seabird counts from 
1973–2016 showed a negative relationship between the 
abundance of most species and the Niño-3.4 index.

Conclusions. The long-term warming trend in the 
IPWP has coincided with a corresponding warming 
trend across the CEP during major El Niño events, 
culminating in record high SST and Chl-a anoma-
lies across the CEP in association with the extreme 
2015/16 El Niño that disrupted coral reef and seabird 
communities, especially at Jarvis Island, where cata-
strophic coral bleaching and mortality were observed.
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Table 1.1. SUMMARY of RESULTS
ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED

Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Ch. 3: Global

Ch. 7: Arctic

Ch. 15: France

Ch. 19: Asia 

 Heat

Ch. 3: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 7: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 15: Flow analogues conditional on circulation types

Ch. 19: MIROC-AGCM atmosphere only model conditioned on SST patterns

Cold
Ch. 23: China

Ch. 24: China
Cold

Ch. 23: HadGEM3-A (GA6) atmosphere only model conditioned on SST and SIC for 2016 and data fitted to  
GEV distribution

Ch. 24: CMIP5 multimodel coupled model assessment

Heat & 
Dryness Ch. 25: Thailand Heat & Dryness Ch. 25: HadGEM3-A N216 Atmosphere only model conditioned on SST patterns

Marine Heat

Ch. 4: Central Equatorial Pacific

Ch. 5: Central Equatorial Pacific

Ch. 6: Pacific Northwest

Ch. 8: North Pacific Ocean/Alaska

Ch. 9: North Pacific Ocean/Alaska

Ch. 9: Australia

Ch. 4: Eastern Equatorial Pacific Marine Heat

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 5: Observational extrapolation (OISST, HadISST, ERSST v4)

Ch. 6: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 8: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 9: Observational extrapolation; CMIP5 multimodel coupled model assessment

Heavy 
Precipitation

Ch. 20: South China

Ch. 21: China (Wuhan)

Ch. 22: China (Yangtze River)

Ch. 10:  California (failed rains)

Ch. 26: Australia

Ch. 27: Australia

Heavy 
Precipitation

Ch. 10: CAM5 AMIP atmosphere only model conditioned on SST patterns and CESM1 CMIP single coupled  
model assessment

Ch. 20: Observational extrapolation; CMIP5 and CESM multimodel coupled model assessment; auto-regres-
sive models

Ch. 21: Observational extrapolation; HadGEM3-A atmosphere only model conditioned on SST patterns; 
CMIP5 multimodel coupled model assessment with ROF

Ch. 22: Observational extrapolation, CMIP5 multimodel coupled model assessment 

Ch. 26: BoM seasonal forecast attribution system and seasonal forecasts

Ch. 27: CMIP5 multimodel coupled model assessment

Frost Ch. 29: Australia Frost Ch. 29: weather@home multimodel atmosphere only models conditioned on SST patterns; BoM seasonal 
forecast attribution system

Winter Storm Ch. 11: Mid-Atlantic U.S. Storm "Jonas" Winter Storm Ch. 11: ECHAM5 atmosphere only model conditioned on SST patterns

Drought
Ch. 17: Southern Africa

Ch. 18: Southern Africa
Ch. 13: Brazil Drought

Ch. 13: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on  
SST patterns; HadGEM3-A and CMIP5 multimodel coupled model assessent; hydrological modeling 

Ch. 17: Observational extrapolation; CMIP5 multimodel coupled model assessment; VIC land surface  
hdyrological model, optimal fingerprint method 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

Atmospheric 
Circulation Ch. 15: Europe

Atmospheric

Circulation
Ch. 15: Flow analogues distances analysis conditioned on circulation types

Stagnant Air Ch. 14: Western Europe Stagnant Air Ch. 14: Observational extrapolation; Multimodel atmosphere only models conditioned on SST patterns 
including: HadGEM3-A model; EURO-CORDEX ensemble; EC-EARTH+RACMO ensemble

Wildfires Ch. 12: Canada & Australia (Vapor  
Pressure Deficits)

Wildfires Ch. 12: HadAM3 atmospere only model conditioned on SSTs and SIC for 2015/16

Coral 

Bleaching

Ch. 5:  Central Equatorial Pacific

Ch. 28: Great Barrier Reef
Coral  

Bleaching

Ch. 5: Observations from NOAA Pacific Reef Assessment and Monitoring Program surveys

Ch. 28: CMIP5 multimodel coupled model assessment; Observations of climatic and environmental conditions 
(NASA GES DISC, HadCRUT4, NOAA OISSTV2)

Ecosystem 
Function

Ch. 5: Central Equatorial Pacific (Chl-a 
and primary production, sea bird abun-
dance, reef fish abundance)

Ch. 18: Southern Africa (Crop Yields)

Ecosystem 

Function

Ch. 5: Observations of reef fish from NOAA Pacific Reef Assessment and Monitoring Program surveys; visual  
observations of seabirds from USFWS surveys. 

Ch. 18: Empirical yield/rainfall model

El Niño Ch. 18: Southern Africa Ch. 4: Equatorial Pacific (Amplitude)                    El Niño

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

total 18 3 9 30



S5JANUARY 2018AMERICAN METEOROLOGICAL SOCIETY |

Table 1.1. SUMMARY of RESULTS
ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED

Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Ch. 3: Global

Ch. 7: Arctic

Ch. 15: France

Ch. 19: Asia 

Heat

Ch. 3: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 7: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 15: Flow analogues conditional on circulation types

Ch. 19: MIROC-AGCM atmosphere only model conditioned on SST patterns

Cold
Ch. 23: China

Ch. 24: China
Cold

Ch. 23: HadGEM3-A (GA6) atmosphere only model conditioned on SST and SIC for 2016 and data fitted to 
GEV distribution

Ch. 24: CMIP5 multimodel coupled model assessment

Heat & 
Dryness Ch. 25: Thailand Heat & Dryness Ch. 25: HadGEM3-A N216 Atmosphere only model conditioned on SST patterns

Marine Heat

Ch. 4: Central Equatorial Pacific

Ch. 5: Central Equatorial Pacific

Ch. 6: Pacific Northwest

Ch. 8: North Pacific Ocean/Alaska

Ch. 9: North Pacific Ocean/Alaska

Ch. 9: Australia

Ch. 4: Eastern Equatorial Pacific Marine Heat

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 5: Observational extrapolation (OISST, HadISST, ERSST v4)

Ch. 6: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 8: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 9: Observational extrapolation; CMIP5 multimodel coupled model assessment

Heavy
Precipitation

Ch. 20: South China

Ch. 21: China (Wuhan)

Ch. 22: China (Yangtze River)

Ch. 10:  California (failed rains)

Ch. 26: Australia

Ch. 27: Australia

Heavy 
Precipitation

Ch. 10: CAM5 AMIP atmosphere only model conditioned on SST patterns and CESM1 CMIP single coupled 
model assessment

Ch. 20: Observational extrapolation; CMIP5 and CESM multimodel coupled model assessment; auto-regres-
sive models

Ch. 21: Observational extrapolation; HadGEM3-A atmosphere only model conditioned on SST patterns; 
CMIP5 multimodel coupled model assessment with ROF

Ch. 22: Observational extrapolation, CMIP5 multimodel coupled model assessment 

Ch. 26: BoM seasonal forecast attribution system and seasonal forecasts

Ch. 27: CMIP5 multimodel coupled model assessment

Frost Ch. 29: Australia Frost Ch. 29: weather@home multimodel atmosphere only models conditioned on SST patterns; BoM seasonal 
forecast attribution system

Winter Storm Ch. 11: Mid-Atlantic U.S. Storm "Jonas" Winter Storm Ch. 11: ECHAM5 atmosphere only model conditioned on SST patterns

Drought
Ch. 17: Southern Africa

Ch. 18: Southern Africa
Ch. 13: Brazil Drought

Ch. 13: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SST patterns; HadGEM3-A and CMIP5 multimodel coupled model assessent; hydrological modeling 

Ch. 17: Observational extrapolation; CMIP5 multimodel coupled model assessment; VIC land surface 
hdyrological model, optimal fingerprint method 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

Atmospheric
Circulation Ch. 15: Europe

Atmospheric

Circulation
Ch. 15: Flow analogues distances analysis conditioned on circulation types

Stagnant Air Ch. 14: Western Europe Stagnant Air Ch. 14: Observational extrapolation; Multimodel atmosphere only models conditioned on SST patterns 
including: HadGEM3-A model; EURO-CORDEX ensemble; EC-EARTH+RACMO ensemble

Wildfires Ch. 12: Canada & Australia (Vapor 
Pressure Deficits)

Wildfires Ch. 12: HadAM3 atmospere only model conditioned on SSTs and SIC for 2015/16

Coral 

Bleaching

Ch. 5:  Central Equatorial Pacific

Ch. 28: Great Barrier Reef
Coral 

Bleaching

Ch. 5: Observations from NOAA Pacific Reef Assessment and Monitoring Program surveys

Ch. 28: CMIP5 multimodel coupled model assessment; Observations of climatic and environmental conditions 
(NASA GES DISC, HadCRUT4, NOAA OISSTV2)

Ecosystem
Function

Ch. 5: Central Equatorial Pacific (Chl-a 
and primary production, sea bird abun-
dance, reef fish abundance)

Ch. 18: Southern Africa (Crop Yields)

Ecosystem 

Function

Ch. 5: Observations of reef fish from NOAA Pacific Reef Assessment and Monitoring Program surveys; visual 
observations of seabirds from USFWS surveys. 

Ch. 18: Empirical yield/rainfall model

El Niño Ch. 18: Southern Africa Ch. 4: Equatorial Pacific (Amplitude) El Niño

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

total 18 3 9 30




