
REV I EW

Impacts of climate change on avian populations
STEPHANIE J ENOUVR IER * †

*Biology Department, MS-50, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA, †Centre d’Etudes

Biologiques de Chiz�e, Centre National de la Recherche Scientifique, Villiers en Bois, F-79360, France

Abstract

This review focuses on the impacts of climate change on population dynamics. I introduce the MUP (Measuring,

Understanding, and Predicting) approach, which provides a general framework where an enhanced understanding

of climate-population processes, along with improved long-term data, are merged into coherent projections of future

population responses to climate change. This approach can be applied to any species, but this review illustrates its

benefit using birds as examples.

Birds are one of the best-studied groups and a large number of studies have detected climate impacts on vital rates

(i.e., life history traits, such as survival, maturation, or breeding, affecting changes in population size and composi-

tion) and population abundance. These studies reveal multifaceted effects of climate with direct, indirect, time-

lagged, and nonlinear effects. However, few studies integrate these effects into a climate-dependent population

model to understand the respective role of climate variables and their components (mean state, variability, extreme)

on population dynamics. To quantify how populations cope with climate change impacts, I introduce a new universal

variable: the ‘population robustness to climate change.’ The comparison of such robustness, along with prospective

and retrospective analysis may help to identify the major climate threats and characteristics of threatened avian

species.

Finally, studies projecting avian population responses to future climate change predicted by IPCC-class climate

models are rare. Population projections hinge on selecting a multiclimate model ensemble at the appropriate tempo-

ral and spatial scales and integrating both radiative forcing and internal variability in climate with fully specified

uncertainties in both demographic and climate processes.
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Introduction

Large changes in the Earth’s climate are already appar-

ent and changes are expected to continue into the next

century (Solomon et al., 2007). There is now ample

evidence that individual plants and animals respond to

climate change affecting population dynamics and

resulting in changes of distribution and species persis-

tence (e.g., reviews Walther et al., 2002; Parmesan, 2006;

Hoegh-Guldberg & Bruno, 2010). Birds are one of the

most well-studied groups, and have been shown to be

very sensitive to climate change at various levels: indi-

vidual (phenology, life history traits), population, spe-

cies (distribution and persistence), and community

(Møller et al., 2004, 2010; Wormworth & S�ekercio�glu,
2011). Changes in phenology such as an advancement

of laying date, or poleward and upward shifts in bird

ranges have been very well documented, but relatively

less documented is the effect of climate change on pop-

ulations (Crick, 2004).

Climate change poses a major threat for bird

populations (Møller et al., 2004, 2010; Wormworth &

S�ekercio�glu, 2011). There is a pressing demand for

population predictions to future climate conditions to

understand the possible impacts of climate change on

avian populations and to aid implementation of neces-

sary conservation strategies. Information about actual

and potential climate change impacts can be of consider-

able benefit for managers to refine decisions on species

conservation status (e.g., listing, delisting and jeopardy;

Intersecretarial Commission on Climate Change, 2007).

The criteria for a species to be listed on the Red List of

the International Union for the Conservation of Nature

(IUCN) now includes projections of future risk to species

from climate change (IUCN, 2008). IUCN found that 35%

of birds (among 9856 bird species assessed) have traits

that render them particularly susceptible to climate

change impacts (Foden et al., 2008), with the most vul-

nerable families being seabirds [e.g., penguins (sphenisci-

dae), albatross (diomedeidae), procellariidae (petrels and

shearwater); see review of Croxall et al., 2002; Boersma,

2008; Forcada & Trathan, 2009; Ainley et al., 2010;
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Barbraud et al., 2012; Sydeman et al., 2012]. BirdLife

International found that extreme climate events account

for the largest threat to birds (Wormworth & S�eker-
cio�glu, 2011), urging for better understanding of such

effects on bird populations.

Projecting the impact of future climate change on

population persistence hinges on good measurements

and thorough understanding of species’ susceptibility

to climate change, which are critical to both the quality

of science and its application to public policy (Berteaux

et al., 2006). The goal of this review is to illustrate a gen-

eral and comprehensive three-step approach to (i) Mea-

sure; (ii) Understand; and (iii) Project the impacts of

climate change on populations (MUP approach) using

bird studies as examples.

A large number of avian studies have measured the

effect of climate on population and life history traits,

providing a rich understanding of the multifaceted

effect of climate (Step 1). Surprisingly, relatively few

studies have integrated these effects into climate-

dependent population models to understand the mech-

anisms underlying these relationships and how climate

mean state and variability influence population dynam-

ics by affecting vital rates (i.e., life history traits, such as

survival, maturation or breeding, that affect changes in

the size and composition of a population) (Step 2). Such

understanding of the processes is critical to develop

process-oriented models and to advance predictive

ecology (Evans, 2012). Only a handful of studies project

population responses under future climate change,

especially using projections from climate models

contributing to the Assessment Report (AR) of the

Intergovernmental Panel on Climate Change (IPCC)

(Step 3). The difference in the number of publications

between these three steps reflects a major gap already

identified in the IPCC fourth AR (AR4) (Parry et al.,

2007): a lack of studies predicting the ecological impact

of future climate change. Ecology needs to become

more predictive (Evans et al., 2012), and this review

emphasizes important recommendations to project

population persistence under future climate change

using the three-step MUP framework.

The IPCC defines climate as the ‘statistical descrip-

tion in terms of the mean and variability in relevant

quantities (i.e., weather variables) over a period of time

ranging from months to thousands or millions of years.

The classical period is 30 years, as defined by the

World Meteorological Organization’. Thus, here, cli-

mate refers to long-term interannual variations of

weather. Climate change refers to ‘a statistically signifi-

cant variation in either the mean state of the climate or

in its variability, persisting for an extended period

(typically decades or longer)’ (Solomon et al., 2007).

These two definitions have two important

consequences: the need to use long-term data (see Step

1: Measuring section) and to consider both the effect of

the mean state and variability in climate on bird popu-

lations, and their respective roles (see Step 2: Under-

standing section).

The third step of the MUP approach focuses on pro-

jecting population responses (see Step 3: Projection sec-

tion), which is defined as making a well-informed

inference on any future state variable such as popula-

tion size or persistence based on facts, statistical

evidence, or causal relationships with fully specified

uncertainties and contingent upon explicit scenarios for

climate, land use, human population, technologies, and

economic activity (Clark, 2001; Berteaux et al., 2006).

The focus of projecting climate, population size or

persistence using various models is not to project

whether individual weather events will occur at a par-

ticular time or whether a population will go extinct a

particular year, which are unpredictable on long time

scales, but on the statistics of these state variables in

terms of mean, trend, probability of occurrence, or vari-

ability over a given time period. The acknowledgement

and quantifications of uncertainties and decision risks

in any attempt to project the future is vital for inform-

ing management decisions and for setting policy. This

is important for maintaining public confidence and an

increasing number of studies recommend embracing

uncertainty to make robust predictions (Beale &

Lennon, 2012). Finally, the last section outlines some

important challenges and prospects for understanding

and predicting avian population responses to climate

change.

Step 1: Measuring the effects of climate change on

avian populations

Climate impacts size and composition of a population

by its effects on vital rates (such as survival, recruit-

ment, or breeding success). Vital rates are influenced by

food acquisition and energy allocation processes in

response to changes in habitat or food availability dri-

ven by climate fluctuations (Fig. 1). Thus, climate influ-

ences populations via multiple pathways, involving

both direct effects on vital rates and indirect effects

mediated through climatic influences on habitat and

prey, resulting in complex and lagged responses. Orni-

thology has an established history of measuring the

effects of weather and climate on avian demography

(Seavy et al., 2008); partly due to the great efforts by

dedicated ornithologists who have collected excep-

tional long-term data sets over many years (Clutton-

Brock & Sheldon, 2010a; Møller & Fiedler, 2010a).

Effects of climate change on population abundances

and vital rates have been detected for many bird
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species, including passerine birds, waders, seabirds,

waterfowl, and raptors (Sæther & Engen, 2010; Worm-

worth & S�ekercio�glu, 2011).

Needs for longitudinal data

To measure the effect of climate change on avian popu-

lations, long-term data are needed (Clutton-Brock &

Sheldon, 2010a,b; Møller & Fiedler, 2010a). Longitudi-

nal censuses provide insights on the effect of climate on

avian population size (Lack, 1966; Perrins et al., 1991;

Newton, 1998) and a time series analysis is a robust

approach to describe population trends and variability

in response to climate change (Clutton-Brock &

Sheldon, 2010b; Lindstr€om & Forchhammer, 2010).

However, such studies have some limitations in identi-

fying the causes of population fluctuations because it is

difficult to disentangle the respective roles of changes

in breeding success, survival, emigration, and immigra-

tion (Clutton-Brock & Sheldon, 2010b).

Longitudinal individual-based studies enable the

measurement and understanding of how climate

influences the various vital rates of birds’ life history.

Individual-based studies over a decade are not rare

for birds (especially passerines such as tits and fly-

catchers), and a handful of studies have even been

going on for more than 50 years [e.g., Great Tits

(Parus major) in the Netherlands: Reed et al., 2013;

Visser et al., 2004; seabirds in the Southern Ocean:

Barbraud et al., 2012; and Swiss Barn Owls (Tyto alba):

Altwegg et al., 2006].

Effects of climate change on population abundances

First, numerous studies have shown that avian popula-

tions are affected by local climate variables (e.g., tempera-

ture, rainfall, and wind) and large-scale atmospheric

indices [e.g., North Atlantic Oscillation: NAO; El Ni~no

(EN) tied to the atmospheric phenomenon Southern

Oscillation (SO): ENSO; Stenseth et al., 2002, 2003]. For

example, species less tolerant to warm climates showed

the sharpest declines between 1980 and 2005 among 110

common birds breeding across Europe (Jiguet et al., 2010).

Second, the variability of climate has strong conse-

quence on avian population dynamics. Oscillations in

local climate or atmospheric indices may drive popula-

tion cycles. Jenouvrier et al. (2005c) showed that popu-

lations and demographic parameters of three Antarctic

seabirds fluctuate with a periodicity of 3–5 years that

was also detected in sea-ice extent and the SO index.

Extreme weather events are a special case of variabil-

ity and can have tremendous effects on avian popula-

tions. Extreme events are rare and according to the

IPCC: ‘an extreme weather event would normally be as

rare as or rarer than the 10th or 90th percentile’. In an

ecological context, extreme events can be characterized

by statistical extremity, timing, and abruptness (a func-

tion of magnitude over duration) relative to the life

cycle of the species affected (Jentsch et al., 2007). Detect-

ing the effects of extreme events on avian populations

is extremely difficult due to the lack of long-term data

on the appropriate time scale. Most evidence comes

from particular events such as hurricane, droughts, and

floods. For example, Hurricane Hugo destroyed 70% of

the nesting trees of the largest population of the endan-

gered Red-cockaded Woodpecker (Picoides borealis) (see

review of Moreno & Møller, 2011).

Climate regime shifts, that is, an abrupt change from

a stationary climate state to another (Hare & Mantua,

Fig. 1 Description of the processes by which climate affects

population. Population size, growth and structure is driven by

change in vital rates (e.g., reproduction, growth and survivor-

ship; orange box), as well as immigration and emigration (not

shown). Birds’ vital rates can be affected by changing climate

conditions directly or indirectly through impact on their breed-

ing habitat (green box) or through changes in their food sup-

ply/food availability (grey boxes). The amount of food obtained

by a bird depends on its foraging behaviors. These acquisition

processes are represented in purple and affect the individual’s

vital rates (orange boxes). Allocation processes (red) describe

how the energy is allocated according to tradeoffs between

reproduction, growth and survivorship. Finally, population

density may affect the food supply/food availability and qual-

ity/availability of breeding habitat through intra- specific com-

petition. Among many other factors, these density dependence

effects may thus interact with climate impact. Individual hetero-

geneity in life history traits caused by, e.g., age, sex or experi-

ence, is not shown, but also plays an important role in shaping

acquisition and allocation processes, hence vital rates and popu-

lation responses to climate.
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2000) also impact avian populations. Both Arctic spe-

cies, Thick-billed Murre (Uria lomvia) and temperate

species, Common Murre (Uria aalge) declined during

large sea surface temperature (SST) shifts that were

linked to two climate regime shifts in 1977 and in 1989

(Irons et al., 2008). The mid-1970s regime shift was the

largest recorded in the Northern Hemisphere because

both the NAO and the North Pacific Oscillation shifted

from a negative to a positive regime.

Third, population responses to climatemay vary across

season and some bird species may be more sensitive to a

particular season. For migrant species, population

responses to climate are constrained by different climate

conditions during the breeding and nonbreeding season

(Small-Lorenz et al., 2013). Species breeding in Europe

but wintering in Africa experience larger population

declines than those that are more sedentary, suggesting a

stronger effect of climate conditions at the wintering

grounds for some long-distance migrant bird species

(Peach et al., 1991; Thaxter et al., 2010). Studies have also

examined the respective effects of climate variations

during the breeding season and nonbreeding season on

populations in the context of the ‘tub-hypothesis’ and

‘tap-hypothesis’ (Lack, 1966; Sæther et al., 2004; Sæther &

Engen, 2010). The ‘tub-hypothesis’ proposes that climate

variations during the nonbreeding season influence

fluctuations in population size because climate conditions

determine the number of birds surviving over winter in

combination with density dependence. The ‘tap-hypothe-

sis’ proposes that climate variations during the breeding

season influence fluctuations in population size because

climate variations will influence the inflow of new

recruits into the population the following year. Although

the population fluctuations of altricial birds are most

affected by factors occurring during the nonbreeding sea-

son (‘tap-hypothesis’) and nidifuguous birds by factors

occurring during the reproductive season (‘tub’ hypothe-

sis) (Sæther et al., 2004), Sæther&Engen (2010) concluded

that drawing a general pattern among birds is impossible

due to the interplay of climate effects on vital rates, lagged

responses, and covariation among vital rates.

Fourth, avian population responses to climate can lag

due to climatic, ecological or demographic processes.

For example, ecological lags may occur through food

web effects such as in polar sea ice ecosystems (Thomas

& Dieckmann, 2003; Smetacek & Nicol, 2005). Antarctic

Sea ice during winter affects the recruitment of Antarc-

tic Krill (Euphausia superba) the following summer

(Atkinson et al., 2004), resulting in higher abundance of

prey for Antarctic seabirds breeding the next summer

(Fraser & Hofmann, 2003; Trivelpiece et al., 2011).

Recruitment processes may also drive lagged effects

of climate (Thompson & Ollason, 2001). A general

analysis of 29 seabird species suggested that the North

Atlantic Oscillation (NAO) had negative effects on pop-

ulation size through adult survival, but positive effects

through lagged effects on offspring recruitment (Sand-

vik et al., 2012). The NAO effects on populations are

stronger through recruitment, and the long time lags

involved for long-lived seabirds make their detection

difficult, suggesting that its magnitude may still be

underestimated (Sandvik et al., 2012).

On the other hand, birds may respond to a predict-

able climatic event well in advance. For example, popu-

lations of Sooty Terns (Onychoprion fuscatus) and

Common Noddies (Anous stolidus) declined when the

20 °C thermocline deepened, which is a signal of an

up-coming El Ni~no event (Devney et al., 2009). During

El Ni~no years, unfavorable warm waters block the

nutrient-rich upwelling, disrupting the entire ecosys-

tem from the abundance and distribution of phyto-

plankton, zooplankton, and fishes to seabirds. The

mechanism underpinning this population decline is

likely that seabirds skip breeding during El Ni~no years

rather than compromising their survival and future

opportunity to reproduce.

Effects of climate change on vital rates

The previous section highlighted several examples of

population response to climate. However, it is impor-

tant to measure climate effects on vital rates to under-

stand the processes that determine population response

to climate change (Fig. 1).

First, there are numerous studies documenting strong

effects of climate on various vital rates. The majority of

studies focus on the effect of local and/or large-scale

atmospheric indices on reproduction and/or survival of

adult birds. For example, Frederiksen et al. (2007)

showed a negative effect of SST on the breeding produc-

tivity of Black-legged Kittiwake (Rissa tridactyla). Gros-

bois et al. (2006) detected effects of local temperature

and precipitation as well as a large-scale tropical index

(rainfall in the Sahel) on adult survival of Blue Tits

(Parus caeruleus). The most studied climatic variables are

temperature and precipitation, but the choice of vari-

ables depends on the environment of the species, its life

history and available meteorological measurements. For

example, sea ice is an important driver of vital rate vari-

ations in polar ecosystems and adult survival of

Emperor and Ad�elie penguins is related to sea ice (Barb-

raud & Weimerskirch, 2001; Ballerini et al., 2009; Emm-

erson & Southwell, 2011). Westerly wind in the

Southern Ocean is an important driver of breeding suc-

cess of Wandering Albatross (Diomedea exulans) because

wind influences their foraging efficiency and in turn

their body condition and breeding performance

(Weimerskirch et al., 2012).

© 2013 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12195
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Several studies have investigated multiple vital rates

across the entire life cycle showing the complex inter-

play between season, climate variables and vital rates.

Sillett et al. (2000) measured the effect of El Ni~no South-

ern Oscillation on the survival, fecundity, and recruit-

ment of Black-throated Blue warblers (Dendroica

caerulescens). They showed that El Ni~no Southern Oscil-

lation has a twofold effect on warblers, affecting both

their survival in the tropics as well as their reproduc-

tive performance in the north.

Although a large number of studies focus on adult

survival and fecundity parameters, juvenile survival,

recruitment, breeding propensity, and dispersal are

equally important to understand population responses

to climate, but are less well documented. Juvenile sur-

vival and probability of recruitment have been less

studied because it is difficult to obtain estimates for

long-lived species with delayed maturity when they are

not observable on breeding grounds, such as seabirds

(Jenouvrier et al., 2008a), and when a large proportion

of individuals never return to the study population,

such as Lesser Kestrel (Falco naumanni) (Mihoub et al.,

2010). Interestingly, recruitment and juvenile survival

are likely to be more affected by climate variations than

adult survival, because adult survival variations are

buffered against environmental variations for long-

lived species [e.g., Blue-footed Booby (Sula nebouxii),

Oro et al., 2010]. For seabirds, another critical parameter

is the probability of skipping breeding during years

when the climate is unfavorable (Jenouvrier et al.,

2005b) and Cubaynes et al. (2011) found that

Red-footed Boobies (Sula sula) are more likely to skip

breeding in El Ni~no years. Dispersal remains the most

difficult parameter to estimate, and studies detecting an

effect of climate change on dispersal are rare. Dugger

et al. (2010) estimated a low dispersal of breeding

Ad�elie Penguins (<1%) and showed an increase by

more than threefold during years of difficult sea ice

conditions.

Second, most studies of the effects of climate on vital

rates documented indirect effects through availability

of habitat or food resources (Fig. 1). For example,

breeding performance of the Rhinoceros Auklet

(Cerorhinca monocerata) declines in warmer spring SST

years because recruitment of the Auklet’s prey, the

sand lance, is temperature-dependent. As spring SSTs

increased, the occurrence of sand lance in chicks’ diet

decreased as well as chicks’ growth rate (Hedd et al.,

2006).

However, adverse weather conditions and extreme

events can also directly impact birds’ vital rates. High

temperature can cause heat stress and low tempera-

ture hypothermia, both of which can reduce birds’

breeding success and adult survival. Droughts, storms,

and cyclones can kill birds, while heavy rainfall can

flood nests and burrows killing chicks (Bolger et al.

2005, Demongin et al., 2010; Chambers et al., 2011;

Moreno & Møller, 2011). For example, an extreme

large flood of the Lower Mississippi River in 1993

destroyed all eggs, chicks, and fledglings of the least

tern (Sterna antillarum) (Dugger et al., 2002). More

importantly, adverse weather conditions and extreme

events can simultaneously affect several vital rates

with dramatic consequence for the population. For

example, Altwegg et al. (2006) showed that two

extreme harsh winters simultaneously reduced juve-

nile and adult survival rates for the Swiss Barn Owl

(Tyto alba) (Fig. 2). During harsh winters, the snow

cover duration is longer, making small mammals

unavailable for Barn Owls to hunt.

Third, many studies documented nonlinear rela-

tionships between climate and vital rates [e.g.,

Fig. 2 Impact of extreme harsh winters on the vital rates (sur-

vival and brood size) and stochastic population growth rate of

the Barn Owl (Tyto alba). Survival and brood size times series

are from Altwegg et al. (2006), and red arrows indicate two

extreme winters with the longest snow cover. These extreme

events correspond to very rare events (3.5th percentile of the

distribution). Appendix S1 describes the population model

dependent of extreme harsh winters used to predict the impact

of an increase frequency of extreme events on Barn Owl stochas-

tic growth rate.
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Cassin’s Auklets (Ptychoramphus aleuticus): Lee et al.,

2007]. Because climate conditions tolerated by a spe-

cies are limited due to physiological and ecological

constraints most studies have detected a bell-shaped

relationship [e.g., Ad�elie Penguin (Pygoscelis adeliae):

Ballerini et al., 2009; Emmerson & Southwell, 2011;

White Stork (Ciconia ciconia): Schaub et al., 2005; Nev-

oux et al., 2008].

Fourth, a climate variable can have opposite effects

on different vital rates [e.g., Eurasian Oystercatcher

(Haematopus ostralegus): van de Pol et al., 2010]. For

example, sea ice extent impacts survival and fecundity

of Emperor Penguins (Aptenodytes forsteri) in opposite

ways (Barbraud & Weimerskirch, 2001). During years

with extensive winter sea ice, food is likely more abun-

dant the following summer, increasing adult survival.

However, foraging trips are longer in extensive sea ice

years resulting in fewer hatched eggs.

Finally, the effect of climate varies among seasons

and various phases of the life cycle as well as

between individuals. Several studies have shown that

vital rate responses to climate change may vary

between individuals, for example, according to their

age (Oro et al., 2010; Pardo et al., 2013), sex (Barbraud

& Weimerskirch, 2001; Grosbois & Thompson, 2005),

breeding experience (Nevoux et al., 2008), and habitat

quality (Dugger et al., 2005; van de Pol et al., 2010). For

example, Nevoux et al. (2008) showed that the survival

and breeding success of inexperienced Black-browed

Albatross (Thalassarche melanophrys) breeders is affected

by climatic conditions, while the survival of experienced

breeders is not impacted.

One of the most striking examples of seasonal climate

effects over different phases of the annual life cycle is

the effect of climate on vital rates of Great Tits breeding

in the Netherlands. Vital rates are affected by summer

caterpillar abundance and the autumnal beech (Fagus

sylvatica) crop, both of which are driven by climate fluc-

tuation. Beech crops are an important winter food

source affecting the overwinter survival of juvenile and

adult Great Tits (Grotan et al., 2009). Caterpillar abun-

dance during summer has an indirect effect on breed-

ing vital rates through a phenological mismatch effect

(Visser et al., 1998, 2004). In the Netherlands, advance-

ments in laying dates in response to warmer springs

have been insufficient to keep pace with stronger

advancements in caterpillar phenology resulting in a

population that now breeds much later relative to the

seasonal peak in caterpillar abundance (Visser et al.,

2003; Visser & Both, 2005). Such a mismatch (i.e., late

breeding relative to the caterpillar food peak date)

affects Great Tit probability of double-brooding, fledg-

ling success, offspring recruitment, and the number of

recruits (Reed et al., 2013).

Summary of step 1

To summarize this first step, there is a huge number of

avian studies detecting an effect of climate on popula-

tions and vital rates, especially adult survival and

reproduction. It reveals multifaceted effects of climate

with direct, indirect, lagged, and nonlinear effects. Cli-

mate can act in opposite directions on different vital

rates, and its effects vary across different seasons and

phases of the life cycle, as well as between individuals

due to their differences, for example, in age, sex, and

experience.

Most of the effects of climate on vital rates are indi-

rect and future effort entails measuring the factors gov-

erning these relationships (e.g., determining the impact

of food abundance and foraging strategies on vital

rates). An increasing effort should also be devoted to

measuring the effect of climate on juvenile survival,

recruitment, breeding propensity, and dispersal, espe-

cially since tremendous improvements in statistical

analyses allows for addressing issues of low sample

size and detectability (e.g., capture-recapture frequen-

tists or Bayesian approaches with unobservable and

multistates models: Williams et al., 2002; Thomson

et al., 2009). Further research is critically needed on dis-

persal processes because they may eventually drive

extinctions and colonizations of local populations and

species persistence in the face of future climate change.

Each population response to climate effects reflect

the unique combination of meaningful climate factors

and species life history across different spatial and tem-

poral scales. Several studies have proposed some gen-

eral biological traits or characteristics inherent to

species particularly vulnerable to climate change: those

with small populations and range size, specialists, poor

dispersers, and migratory species (see Foden et al.,

2008), but a quantitative framework is crucially needed.

Thoughtful comparison requires the development and

application of common dimensionless variables quanti-

fying how populations can cope with climate impacts

(e.g., ‘population robustness to climate change’ see

Step 2).

Step 2: Understanding the effect of climate change

on avian populations

The next step of the MUP approach is to understand

the net effects of a specific change in climate on popula-

tion dynamics, which are not predicted by simply mea-

suring the effect of individual climate variables on

individual vital rates (�Adahl et al., 2006; Zeigler, 2013).

This requires to integrate the measured effects of cli-

mate on populations and vital rates into a population

model. The relationship between the population

© 2013 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12195
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growth rate and climate provides critical information

on a species’ ability to cope with climate change, and

here I introduce the concept of ‘population robustness

to climate change’. Furthermore, comparing the respec-

tive role of climate factors and their statistical compo-

nents (mean vs. variability) may provide thoughtful

insight for our understanding of the effects of climate

change on population dynamics. Finally, it is important

to integrate the effects of climate on vital rates in a pop-

ulation model to better understand the mechanisms.

The population growth rate may be relatively insensi-

tive to some vital rates strongly affected by climate

variations, or there might be counteracting influences

of climate on the population growth rate due to

changes in vital rates responding to the same climate

variable in opposite directions.

Climate-dependent population models

Understanding the processes by which climate influences

avian populations requires developing climate-depen-

dent population models. There are various approaches

ranging from nonstructured population models (Lande

et al., 2003) and structured population models (Caswell,

2001) to individual-based modeling (Grimm& Railsback,

2005).

First, it is important to consider the assumptions

behind climate-dependent population models. Deter-

ministic models assume that population and vital rates

follow a determined path, which may or may not be

driven by climate time series. Stochastic models inte-

grate random variations caused by demographic sto-

chasticity, environmental stochasticity, or by sampling

and uncertainties about parameter estimates (see Step

3). Demographic stochasticity is an individual’s chance

of surviving or dying, reproducing or not reproducing,

whereas environmental stochasticity is temporal varia-

tions of the probability to survive and reproduce

(Caswell, 2001; Lande et al., 2003; Boyce et al., 2006).

Environmental stochasticity can be caused by random

climate variations or other environmental factors. Thus,

a model could be stochastic by including demographic

stochasticity or environmental stochasticity without

incorporating random variability in climate itself.

Another important assumption is the stationarity of

the environment, that is, the environment fluctuates but

its statistical properties (mean, variance, autocorrela-

tion) do not change over time. Most deterministic and

stochastic population models assume that the environ-

ment is stationary; however, climate is not. To include

the nonstationarity of the climate, a time series of the

nonstationary environment could be used to project

vital rates and population trajectories (e.g., Gotelli &

Ellison, 2006).

Second, it is important to include in climate-depen-

dent population models appropriate processes which

may interact with climate and influence population

dynamics: density dependence, migration, environ-

mental stochasticity generated by processes other than

climate, and demographic stochasticity for small pop-

ulations (Caswell, 2001; Lande et al., 2003; see compre-

hensive review in Sæther & Engen, 2010). For

example, Grotan et al. (2009) showed that the popula-

tion size of Great Tits was strongly affected by the

combined effect of the temporal variation in the num-

ber of recruits produced locally as well as the number

of immigrants, which are both affected by food abun-

dance (beech crop), temperature, density dependence,

and environmental stochasticity. Recruitment contrib-

uted more to population fluctuation than immigration,

and variations in recruitment were more influenced

by beech crop and temperature than density-

dependence effects.

Last but not least, it is crucial to integrate the effects

of climate across the entire life cycle because they can

differ among seasons (Altwegg & Anderson, 2009),

phase, and stages of the life cycle (Jenouvrier et al.,

2010) and can impact vital rates in a variety of ways

(van de Pol et al., 2010). Although studies quantifying

the effect of individual climate variables on individual

vital rates from Step 1 are critical to understand the

effect of climate on the species life cycle and are nec-

essary to parametrize population models of Step 2,

they do not provide a complete understanding of the

population’s responses to climate change. Examining

only one or few vital rates can lead to erroneous pre-

dictions of population responses to climate change

(Zeigler, 2013), such as for migratory birds (Small-

Lorenz et al., 2013). �Adahl et al. (2006) demonstrated

that an increase in survival and/or reproduction due

to climatically induced increases in the resources do

not necessarily lead to an increase in population size

owing to the combined effects of demography, density

dependence, and behavioral mechanisms filtering the

information about the resources (e.g., possible use of

environmental cues).

Population growth as function of climate

To understand how a species may cope with climate

change and establish comparisons among species,

studying the population growth as a function of cli-

mate is a powerful approach (Fig. 3). This is very simi-

lar to the concept of the ‘climatic niche’ which

represents the climatic conditions that are suitable for

species persistence and is driven by species physiologi-

cal tolerances (e.g., lethal physiological temperatures).

The climatic niche breadth has important implications

© 2013 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12195
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on species responses to climate change (e.g., Tingley

et al., 2009; Monahan & Tingley, 2012). If the relation-

ship between population growth and climate varia-

tions is inferred from a single local population,

inference at the species level and climatic niche is

based on the Janzen hypothesis (Janzen, 1967; Quintero

& Wiens, 2013). Janzen assumes that the overall real-

ized climatic niche breadth of a species is set by the

temporal variations of climate within-locality and thus

spatial variation in climatic conditions is relatively

unimportant. This hypothesis has been rarely tested,

but Quintero & Wiens (2013) found that within-locality

seasonal variation explains most variation in climatic

niche breadths among 409 species of frog, lizards and

salamanders.

Similar to the climatic niche breadth, the range of cli-

matic conditions, C�
a , where the population is capable of

increase (i.e., where the intrinsic population rate of

increase r is positive) can inform the ability of a species

to cope with climate change. Eury-species (wide C�
a ,

e.g., eurythermal species for temperature) may cope

better with future climate change than steno-species

(narrow C�
a) because they may have a greater chance of

having a population that may grow under shifting

climate conditions. To compare the width range of

climatic conditions where the population is growing,

I propose to express the climate covariates C as propor-

tional anomalies (Ca) relative to the mean. Such a

dimensionless variable allows for the comparison

between various climate variables and species. They

can be calculated as follows:

Cat ¼ Ct � C

C
ð1Þ

where Ct is the climate covariate in year t and C the

mean of C over a specified period of time (usually rela-

tive to a present time window of several decades).

In addition to quantifying the climatic range where

the population can persist, the relationship between

population growth and climate quantifies how fast a

population can grow for a specified range of climate

conditions r*. In other words, it measures the popula-

tion’s ability to withstand or recover from difficult cli-

mate conditions and how much extra environmental

deterioration a population can tolerate within C�
a

(Fig. 3). To integrate both C�
a and r*, I define the ‘popu-

lation robustness to climate change’ as the area of the

region in the r � Ca plane of Figure 3 bounded by the

curve r(Ca) and over the interval C�
a ¼ ½C1;C2�. The

‘population robustness to climate change’, noted R, is

computed using integral calculus as:

Fig. 3 Description of the ‘population robustness to climate change’. The ‘population robustness to climate change’ is represented by

the yellow area. It is a measure combining the range of climatic conditions where the population is capable of increase (i.e., where the

intrinsic population rate of increase is positive, noted as C�
a , green arrow) and the magnitude of how fast a population can grow within

C�
a (e.g., noted r*, red arrow, for the optimal Ca). Eury- species (wide C�

a , left panels) may cope better with future climate change than

steno- species (narrow C�
a , right panels) because they may have a greater chance of having a population that may grow under shifting

climate conditions. In addition populations with a greater magnitude of positive growth rate for a given climate condition (upper pan-

els) can withstand higher population growth reduction caused by other perturbations (climatic or not) than populations with a limited

growth (lower panels).
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R ¼
Z C2

C1

rðCaÞdCa ð2Þ

To compare ‘population robustness to climate change’

among short and long-lived species, life expectancy

must be considered. Indeed, there is a gradient of life

history traits among species resulting in a slow–fast con-
tinuum of population growth rates (e.g., in birds: Sæther

& Bakke, 2000). Thus, a measure of population growth is

given by: re(0); where e(0) is the life expectancy. Under

the umbrella of matrix stage structured models, e(0) can

easily be calculated (Caswell, 2001 section 5).

Climate mean state, variability, and extreme effects

Climate is changing, both in term of its mean state and its

variability (Solomon et al., 2007) and both components

affect population dynamics in complex ways (Boyce

et al., 2006). In a small songbird population, the dipper

(Cinclus cinclus), Sæther et al. (2000a) showed that half of

the environmental stochasticity was explained by varia-

tion in mean winter temperature. An increase in mean

winter temperature of 2.5 °C increased the expected

population size by 58% at carrying capacity and the

average population size from 117 to 184 in a nonlinear

relationship.

Climate variability can have different impacts on

population dynamics than climate mean state; thus, it

is important to adopt a stochastic climate approach.

Only three avian studies [on Blue Cranes Anthropoides

paradiseus: Altwegg & Anderson (2009); Eurrasian

Oystercatchers: van de Pol et al., 2010; Emperor Pen-

guins: Jenouvrier et al., 2012]; have studied the role of

climate mean states and variability. van de Pol et al.

(2010) and Jenouvrier et al. (2012) have concluded that

the effect of variability is smaller than the effect of the

mean states of climate. This is similar to the results

found for the effect of temporal variability on vital

rates: the sensitivity of population growth rates to stan-

dard deviations of vital rates is much lower than the

sensitivity to mean vital rates (Morris et al., 2008). Tem-

poral variance in the vital rates is known to reduce the

stochastic population growth rate but variations in cli-

mate do not necessarily decrease the stochastic growth

rate. Indeed, potentially nonlinear relationships

between vital rates and climate variables may lead to

the opposite pattern: a positive effect of climate vari-

ability on the stochastic growth rate (Boyce et al., 2006;

Morris et al., 2008; Koons et al., 2009). The effects of an

increase in sea ice concentrations (SIC) variance on

Emperor Penguin population growth rates can be posi-

tive or negative depending on the mean state of SIC

(Jenouvrier et al., 2012). Higher rainfall variability dur-

ing the early breeding season results in a small increase

in Blue Cranes population growth due to the nonlinear

relationship between rainfall and reproduction (Altw-

egg & Anderson, 2009). Finally, an increase in climate

variance could increase the strength of covariation

between vital rates, which can have a large effect on

the population growth rate (Boyce et al., 2006). For

example, during extreme events, several vital rates can

be affected in the same direction, having a dramatic

impact on population size.

The effects of extreme climatic events, however, have

been poorly studied despite an increasing awareness of

dramatic impacts on wildlife populations (IPCC Special

Report on Extreme Events, Easterling et al., 2000). Plus,

extreme events are rare, which means there is little data

available to make assessments regarding changes in

their frequency or intensity. Some bird studies have

explored the effect of extreme variability in vital rates

on populations, such as the effect of extreme mortality

on European Shag (Phalacrocorax aristotelis) (Frederiksen

et al., 2008) and Barn Owl (Altwegg et al., 2006) popula-

tions; and of the extreme massive breeding failures on

population recovery of Emperor Penguins (Jenouvrier

et al., 2009b). However, those studies did not directly

integrate the effect of extreme climatic events on popu-

lation dynamics (but see van de Pol et al., 2010; Nur

et al., 2012) and the effects of extreme events frequency

and intensity have yet to be explored. Figure 2 shows

the effects of the frequency of extreme harsh winters on

a population of Barn Owl using the exceptional long-

term data of Altwegg et al. (2006). In the absence of

harsh winters, the population increases ~2% per year.

With the actual frequency of harsh winter (2 events

among 58 years = 0.035), the population is projected to

decrease by ~2% per year. When the frequency of harsh

winters increases, the stochastic population growth rate

declines dramatically.

Effects of climate on population dynamics through vital
rates

The way climate may drive population dynamics

depends on a complex interplay of how the population

growth rate (hereafter noted k) is impacted by changes

in vital rates and the amplitude of vital rate fluctuations

induced by climate variations. Life-history theory pre-

dicts that phenotypic plasticity and selection processes

lead to a reduction in the environmentally induced var-

iance of a life history trait having a high impact on k
(Caswell, 1983), which has been called ‘environmental

canalization theory’ (Gaillard & Yoccoz, 2003). Several

avian studies have shown that the vital rates to which k
are most sensitive show small temporal variations

(Sæther & Bakke, 2000) and are less affected by climate

variations (Nevoux et al., 2007, 2010; Oro et al., 2010).
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van de Pol et al. (2010) found that juvenile survival was

more variable in time and more affected by winter

temperature than adult survival for the Eurasian

Oystercatchers, in agreement with the ‘environmental

canalization theory.’ However, the population dynamic

was more affected by change in climate on adult

survival (the canalized trait) than juvenile survival,

emphasizing the importance of conducting a full demo-

graphic analysis with both prospective and retrospec-

tive analyses to quantify the potential impact of vital

rates and the contribution of their climate-induced vari-

ations on k.
A prospective analysis (known also as perturbation

or sensitivity) enables a projection of the consequences

of future or hypothetical changes in the vital rates and

climate factors on the population growth rate (Caswell,

2000, see supplementary Table S1). For example, Peery

et al. (2012) detected effects of both temperature and

precipitation on vital rates of Mexican Spotted Owl

(Strix occidentalis). Using a climate-dependent popula-

tion model and conducting a sensitivity analysis they

showed that k is more sensitive to temperature than

precipitation. Thus, a change in temperature will have

a greater impact than a change in precipitation on the

Spotted Owl population growth rate. Stochastic sensi-

tivity analysis (Tuljapurkar et al., 2003; Caswell, 2005;

Haridas & Tuljapurkar, 2005) can disentangle the effect

of the mean and variance of individual environmental

drivers on the stochastic growth rate and thus is very

useful to compare the respective effects of climate mean

state and variability.

A retrospective analysis sheds light on how variation

in each of the vital rates has contributed to an observed

variation in the population growth rate (Caswell, 2000).

For example, in long-lived species such as Emperor Pen-

guin, k is more sensitive to changes in adult survival

than breeding success (Jenouvrier et al., 2005a). How-

ever, a retrospective analysis shows that adult survival

and breeding success variations contribute equally to

past population growth variations. During the late

1970s, a dramatic 50% population decrease was caused

by a decline in adult survival (especially males) due to

an unusually low sea ice extent (Barbraud &

Weimerskirch, 2001; Jenouvrier et al., 2010). After the

1980s, it is the increased frequency in massive breeding

failure, probably due to years with extensive sea ice

extent (Massom et al., 2009), that hinders the population

from recovering (Jenouvrier et al., 2009b). To measure

variations in k as a function of (co)variation in the vital

rates and climate, life table response experiment (LTRE)

methods and other kinds of variance decomposition

can be applied, both in deterministic and stochastic

environments (Caswell, 2010; 2000; Davison et al., 2010).

For stochastic analysis, Caswell (2010) focuses on the

contributions of variation in the environmental compo-

nents (e.g., autocorrelation) and of population-specific

responses of vital rates to these environmental changes.

Davison et al. (2010) focus on the contributions of differ-

ences in the mean and the variance of the vital rates.

Thus, deterministic and stochastic LTRE approaches

provide useful tools to explore the effects of climate sta-

tistical components (mean, variance, extreme, auto-

correlation) on population growth rate.

Summary of step 2

To summarize this second step, integrating the mea-

sured effects of climate change into a climate-dependent

population model permits a thorough understanding of

the processes by which climate affects population

growth and fluctuations. Modeling tools and informa-

tion to parametrize models from Step 1 are available, yet

there are relatively few studies exploring the respective

effects of climate variables, and their components (mean

state, variability, extreme) on population dynamics.

Drawing general patterns along the life history gradi-

ent, among behavioral traits (migrant vs. resident) or

foraging traits (specialists vs. generalists), across taxo-

nomic levels or communities and across climatic zones,

may help to identify the major climate threats and

threatened avian species. However, such analysis is

hampered by the lack of a universal variable quantify-

ing how a population may cope with climate impacts.

The ‘population robustness to climate change’ as well

as prospective and retrospective analyses provide such

common tools. Prospective and retrospective analyses

have proven their powerful application in the context

of the ‘environmental canalization theory’ to infer a

general pattern of the effects of vital rate variations on

population growth across a life history gradient. Future

research entails incorporating the effect of climate mean

states and variability; especially since variations in

climate do not necessarily translate into similar effects

than vital rate variations on the population growth.

Finally, process-oriented models including the climate

change impacts on vital rates, may help to move

forward a predictive ecology (Evans, 2012, see step 3).

Step 3: Prediction of avian population responses to

climate change

Although efforts to project population responses to cli-

mate change are increasing, this is still a nascent field

(Wormworth & S�ekercio�glu, 2011; see publication date

on Table 1). Climate model simulations included into the

assessment reports of the IPCC are a primary means of

analyzing climate dynamics and making skillful predic-

tions of future climate change based on state-of-the-art

© 2013 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12195
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Table 1 Projections of avian population’s responses to climate change using information from IPCC-class models

Species Climate Population Conclusion

Snowy Plover Florida

(Aiello-Lammens

et al., 2011)

1 mid-level SRES*; 1 regional

model; determinist predictions

of sea-level rise

Stochastic predictions

of population trajectories,

quasi-extinction probability†

based on habitat availability

Up to 25% quasi-extinction

probability; decline of

carrying capacity by ~35%

Ad�elie and Emperor

penguins Antarctica

(Ainley et al., 2010)

1 mid-level SRES;

selection among

18 AOGCMs; deterministic

prediction of sea ice

coverage and thickness,

wind speeds, precipitation,

and air temperatures

Anticipate population trends

based on habitat availability

By global average, air

temperature reaches 2 °C
above preindustrial levels:

anticipated decline of colonies

north of 70 °S (~50% of

Emperor colonies and ~75%
of Ad�elie colonies)

Albatrosses and petrels

Southern Ocean

(Barbraud et al., 2010)

Three SRES; selection among

18 AOGCMs; deterministic

predictions of sea surface

temperature and sea

ice extent

Stochastic predictions of

population trajectories,

quasi-extinction time and

probability

Extinction of the Black-browed

Albatross population; Increase

of Amsterdam Albatross

population; snow petrel – 1%

change in mean stochastic

k between present and

2075–2100

Four duck species Western

boreal forest of North

America

(Drever et al., 2011)

1 pessimistic SRES;

8 AOGCMs; stochastic

predictions of spring snow

cover duration

Stochastic forecasts of mean

population size

Median of relative proportional

change: increase up to 8.1% for

mallard; decline up to �12.4%

for american pigeon, �12.9%

for scaup, �31% for scoter

Emperor Penguin Antarctica

(Jenouvrier et al., 2009a)

(Jenouvrier et al., 2012)

1 mid-level SRES; selection

among 20 AOGCMs; stochastic

predictions of years with lower

sea ice extent stochastic

predictions of sea

ice concentration

Stochastic predictions of

population trajectories and

quasi-extinction probability

The median population size is

predicted to decline to 400

(Jenouvrier et al., 2009) and by

575 breeding pairs

(Jenouvrier et al., 2012)

Tidal Marsh Song Sparrows

San Francisco Estuary

(Nur et al., 2012)

1 mid-level SRES; 2 regional

models; stochastic forecasts of

temperature and precipitation;

scenarios of sea-level rise/

extreme tides/nest management

Stochastic predictions of

population trajectories and

quasi-extinction

probability

Quasi-extinction probability

vary from 2% for a low

sea-level rise scenario up to

60% for high sea-level rise.

Occurrence of infrequent

extreme tides more than

doubled the quasi-extinction

probability from 12% to 28%

for the medium sea-level

rise scenario.

Nests management actions

can arrest and even reversing

these anticipated declines

Spotted Owls Southwestern

USA (Peery et al., 2012)

Three SRES; 4 AOGCMs;

stochastic forecasts of

temperature

and precipitation

Stochastic predictions of

population trajectories

and quasi-extinction

probability

Quasi-extinction probability are

up to 99 and 94% for

populations at Arizona and

New Mexico; no extinction for

Southern California

population

Eurasian Oystercatcher

the Netherlands

(van de Pol et al., 2010)

Four scenarios; 1 regional model;

stochastic predictions of

temperature

Stochastic predictions

of population trajectories

and time to extinction

Shift from extinction to

stationary fluctuations around

a mean population size
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process-oriented climate models. In addition, the IPCC

framework permits to include the various sources of

uncertainty ranging from future greenhouse gas emission

levels to climate modeling. This section describes various

approaches to project population responses using climate

predictions from IPCC climate models and a handful of

avian case studies. The aim is not to criticize the specific

approaches chosen in these examples, but instead to

reveal the critical challenges of developing an effective

and innovative applications of IPCC-class climate models

to project population responses to climate change.

Goals of IPCC-class models

It is important that ecologists improve their knowledge

of climate models, emissions scenarios, and the capabil-

ities and limitations of climate projections (Seavy et al.,

2008). Coupled Atmosphere-Ocean General Circulation

Models (AOGCMs) that contributed to the last IPCC

Scientific Assessment of Climate Change (2007) incor-

porate detailed representations of the atmosphere, land

surface, oceans, and sea ice. Climate change may be

due to natural internal processes or external forcing, or

to persistent anthropogenic changes in the composition

of the atmosphere or in land use. The Earth’s energy

balance (i.e., difference between absorbed solar energy

and emitted infrared radiation into space) is affected by

a ‘forced change,’ which is a combination of natural

(e.g., solar, orbital changes, volcanoes) and anthropo-

genic forcings (e.g., greenhouse gases, many classes of

aerosols). IPCC-class models maintain the global energy

balance, and changes in climate can arise due to changes

in the ‘forced change’ or due to internal variations in the

climate system, referred as ‘natural variability’.

The first goal of climate modeling is to understand

the processes that control the most important climate

features (such as temperature, precipitation, windiness,

and storminess) and predict the dynamics of these

features over long time scales. The focus of climate

modeling is not on individual weather events, which

are unpredictable on long time scales, but on the statis-

tics of these events in terms of mean and variability

over a period of time ranging from months to thou-

sands or millions of years, and on the slow evolution of

oceans and ice sheets (Bader et al., 2008).

The second goal of climate modeling is to predict

future climate change using various scenarios of future

climate forcing and anthropogenic responses to imple-

ment mitigation strategies. Impacts of climate change

on the environment and society will depend not only

on the response of the Earth systems to changes in radi-

ative forcing but also on how human societies respond

through changes in technology, economies, lifestyle,

and policy. The last IPCC AR4 is based on the Special

Report on Emissions Scenarios (SRES, 2000), but the

upcoming AR5 is using the new Representative Con-

centration Pathway (RCP) scenarios (van Vuuren et al.,

2011). The RCP are no longer defined by the IPCC but

developed by a special group, and differ from SRES by

assuming various levels of mitigation. RCP incorporate

the complete path from socio-economic ? greenhouse

gas emissions ? long-lived greenhouse gas abun-

dances ? forcing of mean climate change. Different cli-

mate scenarios should be used to explore the potential

ecological consequences of various climate change miti-

gation strategies (Visser, 2008; Moss et al., 2010), but

bird studies that have done so to predict future popula-

tion responses are rare (but see Barbraud et al., 2010;

Peery et al., 2012; Table 1).

Important characteristics of IPCC-class models

There are important characteristics of AOGCM cli-

mate simulations and real climate system that should

Table 1 (continued)

Species Climate Population Conclusion

Cassins Auklet California

(Wolf et al., 2010)

1 mid-level SRES; 1 regional

model; deterministic sea surface

temperature and upwelling

intensity

Stochastic predictions of

population trajectories

and population growth

rate

Up to 0.447 absolute change

in mean stochastic population

growth rate between

1980–1999 and 2080–2099

*SRES is a Special Report on Emissions Scenarios by the IPCC describing greenhouse gas emissions scenarios making different

assumptions for future greenhouse gas pollution, land-use and other driving forces using assumptions about future technological

development as well as the future economic development.

†Quasi-extinction probability are defined as a probability of a population decline by x% or more by 2100; x being defined by each

study differently.

k is the population growth rate.

Anticipating refers to projection based on fact and qualitative expert judgment; forecasting to projection obtained with time series

statistical projections and predicting to projection using some level of our understanding of causal mechanisms underlying climate

or population processes using mathematical models.
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be considered carefully when attempting to project

population persistence under future climate scenarios:

• there are several AOGCMs and a multimodel ensem-

ble is a set of AOGCMs using the same ‘forced

change’ (i.e., scenario);

• the resolution of climate output is larger than the

scale at which ecological processes occur;

• models differ in their ability to reproduce the climate

and ‘Each model tends to simulate some aspects of

the climate system well and others not so well, and

each model has its own set of strengths and weak-

nesses.’ (Knutti, 2008); and

• both internal variability and radiatively forced

changes are important components of the real

climate system (Stock et al., 2011).

Thus, projecting population responses to climate

change using AOGCM outputs requires (i) using a mul-

timodel ensemble; (ii) extracting the climate output at

appropriate temporal and spatial scales; (iii) selecting

the appropriate set of models for which the statistical

property of the forecasted climate variables agrees well

with past observations (known as hindcasting); and (iv)

the need to account for both internal variability and

radiatively forced changes because climate changes evi-

dent at any time and location will be a combination of

these two sources.

First, the biologically relevant climate forecasts

should be extracted from various IPCC-class models

because combining different models exploits the

strength of diverse approaches and yields a more

appropriate estimate of the uncertainties (Meehl et al.,

2007). Although nearly all AOGCMs use the same set

of primitive dynamical physical equations, model

structural differences arise by different numerical

algorithms to solve dynamical physical equations and

different approximations, as well as differences in spa-

tial resolutions and configurations of model grids

(Bader et al., 2008). Ideally, a set of model simulations

from structurally different models using the same forc-

ing but where one or more initial condition ensembles

are available from each model should be considered,

which is known as multimodel ensembles (Tebaldi &

Knutti, 2007). IPCC-class model outputs are freely

available from the archive of coupled model output at

the Program for Climate Model Diagnosis and Inter-

comparison (PCMDI, http://www-pcmdi.llnl.gov/)

(Meehl et al., 2007), with a set of coordinated simula-

tions from more than 20 AOGCMs. Outputs are

categorized by variables (e.g., temperature, precipita-

tion), scenario (i.e., climate experiment), and climate

models. Each file contains a single output variable

(along meta-data) from a single model and a single

simulation (i.e., from a single ensemble member of a

single climate experiment) over specified time periods

(historical ‘control run’ or future scenarios) and scales

(e.g., month) and specified spatial grid covering the

entire surface of the globe. Meta-data contain the coor-

dinate/grid variables, time variables, and variable

attributes (names, description, dimensions) and fol-

lows the NetCDF Climate and Forecast (CF) Metadata

Convention.

Second, the temporal and spatial scales of the vari-

ables of interest should be chosen carefully given the

resolution of AOGCMs. The temporal and spatial scales

at which ecological processes occur are usually finer

than the coarse grid of AOGCMs, or the temporal reso-

lution at which climate outputs are saved (due to com-

putational constraints). There are two approaches to

address this issue: either using climate covariate at a

larger spatial scale than the scale at which the ecologi-

cal processes occurs assuming it is a good proxy of local

climate or downscaling climate projections. Jenouvrier

et al. (2012) used the first approach, and showed that

sea ice concentration at large spatial scale is a good

proxy of local sea ice characteristic affecting the life

cycle of emperor penguins. Downscaling methods such

as statistical downscaling or regional climate models

may help to obtain finer-scaled climate data (Bader

et al., 2008; Seavy et al., 2008; but see Racherla & Shin-

dell, 2012). For example, Wolf et al. (2010) used a regio-

nal climate model to forecast changes in the California

Current upwelling ecosystem, especially SST and

upwelling intensity, to predict the future population

growth rate of Cassin’s Auklets. Regional climate mod-

els are driven by boundary conditions from AOGCM,

and several AOGCM(s) should be ideally used (Pierce

et al., 2009).

Third, there is no ‘best model,’ and climate simula-

tions from various state-of-the-science AOGCMs differ.

Defining a unique overall figure of merit of a climate

model, that is, metric or skill score for its ability to pre-

dict future climate change, is extremely difficult and

debated (Knutti 2008). Thus, selecting a set of climate

models depends on the climate variable of interest, and

the ability of climate models to simulate past climate

observations gives us some confidence in their ability

to simulate the future. AOGCMs forced with observed

natural and anthropogenic forcings are able to simulate

the observed 20th century global mean temperature

well, with typical correlations between models and

observations of 95% or better. Other climate variables

are still problematic, and for precipitation, the correla-

tion between seasonal means of models and observa-

tions is 50% to 60% on scales of a few hundred

kilometers (Bader et al., 2008). Therefore, ecologists

should compare the statistical properties of the climate
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‘control run’ projection to observations to select the

most appropriate multimodel ensembles (Tebaldi &

Knutti, 2007; Knutti et al., 2010) at relevant temporal

and spatial scales.

Finally, it is important to take into account climate

changes generated by both the ‘forced change’ and nat-

ural variability. For example, an average over a set of

models may provide climate simulation superior to any

individual model and climatologists have used such

averaged ensembles to study the ‘forced change’ signal.

However, for assessing the ecological impact of climate

change, it is important to integrate the change in natu-

ral variability (see Step 2).

To illustrate the importance of considering an ensem-

ble of several selected climate models rather than focus-

ing on a single model, Figure 4a shows the Emperor

Penguin population trajectories obtained from sea ice

concentrations (SIC) predicted by different climate

models. Those five AOGCMs were selected among 20

models for their ability to most accurately reproduce

the statistical properties of past sea ice observations

(Jenouvrier et al., 2012). If the study had used only the

climate model ‘ukmo-hadcm 3’ to predict the Emperor

Penguin population persistence by 2100 in Terre

Ad�elie, it would have concluded that Emperor

Penguins are not threatened by climate change. On the

contrary with ‘cccma-cgcm 3- 1,’ the probability that

the population declines by more than 90% by 2100

(noted Pe) is 99%. Including all selected climate models,

the conclusion ranges between these two extremes

(Pe=43%).

Ecological studies often forecast future climate change

based on the predicted climate mean state by AOGCMs

(e.g., Peery et al., 2012) because these values are very eas-

ily accessible in publications (e.g., Solomon et al., 2007).

Figure 4b shows the Emperor Penguin population pro-

jections obtained using such an approach. Under these

assumptions, Emperor Penguins are not threatened by

climate change. These contrasting results emphasizes

the importance of incorporating the natural variability,

the nonstationary and tipping point dynamic predicted

by a time series of climatemodels.

Finally, ecological studies often use the averaged cli-

mate ensemble (e.g., Barbraud et al., 2010), ignoring the

change in natural climate variability. Figure 4c illus-

trates how these different assumptions can lead to dif-

ferent outcomes when predicting the population

response of Emperor Penguins. Although the effect of

climate mean state is greater than the effect of variabil-

ity on population growth rate (see Step 2), climate

variability still plays an important role in population

dynamics as shown by the different population

trajectories projected using ‘forced change’ vs. ‘forced

change + natural variability.’

(a)

(b)

(c)

Fig. 4 Projections of the Emperor Penguin population based

on sea ice concentration predictions from a multi-model ensem-

ble of five AOGCMs and a mid-level range climate scenario.

The black line gives the observed number of breeding pairs

from 1979 to 2010. (a) For each AOGCM, the median are shown

(thick colored line); the median and 95% envelope (grey area)

of the ensemble are shown from the combined 200 000 simula-

tions for the set of five GCMs, which include demographic and

climate uncertainties. (b) Comparison of the median and 95%

envelope (grey area) for the ensemble and median and 95%

envelope (dotted lines) using a linear climate forecast. The lin-

ear climate forecast is obtained using the mean SIC predicted

by an ensemble of AOGCMs by 2100 (estimates from Lefebvre

& Goosse, 2008) and projecting a linear trend from 2010 to

2100. Stochastic SIC forecasts are obtained by sampling at each

time t into a normal distribution of mean lt and variance rt. lt
is estimated from the linear trend, and rt is either the observed

variability (calculated from observed data) or the predicted

variability (estimates from Lefebvre & Goosse, 2008). (c) Com-

parison of the median and 95% envelope (grey area) for the

ensemble and the median and 95% envelope (dotted lines)

from the average of the ensemble. The average of the ensemble,

provide better projections of the current forced climate change

because this averaging procedure hides the errors from indi-

vidual models. However, ecologists rarely calculate the vari-

ance of the average of the ensemble and thus ignore the full

range of natural variability.
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Future population responses to climate change: a handful
of studies

There are relatively few studies projecting bird popula-

tions (Table 1). Among them, two-thirds of the popula-

tions are projected to decline if climate changes as

predicted by IPCC-class climate models. Ominously,

those projected to decline include: Snowy Plover threa-

tened by sea-level rise (Aiello-Lammens et al., 2011);

Emperor and Ad�elie Antarctic Penguins by sea ice

decline (Jenouvrier et al., 2009a, 2012; Ainley et al.,

2010); Black-Browed Albatross by warmer SSTs (Barb-

raud et al., 2010); Tidal Marsh Song Sparrows (Melosp-

iza melodia) by high sea-level rise and extreme high tide

(Nur et al., 2012); Mexican Spotted Owls by wetter and

hotter climates in Arizona and New Mexico (Peery

et al., 2012) and Cassin’s Auklets by warmer SSTs and

reduced upwelling intensity of the California upwelling

system (Wolf et al., 2010). One may wonder if the pre-

dominance of population decline projections results

from a publication bias toward ‘doom and gloom’ sce-

narios. Evidently, one could also be tempted to con-

clude that there will be more losers than winners under

future climate change. To answer this question, more

studies are critically needed.

These studies differ in the approach adopted for

projecting population responses to climate using a

range of combinations including anticipating, forecast-

ing or predicting climate and populations in the future.

Berteaux et al. (2006) distinguish anticipation, forecast-

ing and prediction for inferences based, respectively,

on facts, statistical evidence, or causal relationships, but

acknowledge that projections are often based on mixed

approaches. Ainley et al. (2010) anticipate that pre-

dicted sea ice habitat loss may jeopardize Antarctic

penguin colonies north of 70°S, that is, 50% of Emperor

colonies (40% of breeding population) and 75% of

Ad�elie colonies (70% of breeding population). Drever

et al. (2011) forecast the population responses of four

duck species to future snow cover duration in the wes-

tern boreal forest of North America and show that late-

nesting duck species will experience the most severe

population declines. Wolf et al. (2010) predict that the

Cassin’s Auklet population growth rate will experience

an absolute decline of up to 45% if future SST and

upwelling intensity change as predicted by a regional

model in 2080–2099.
Table 1 illustrates that ecologists are putting great

effort into developing population models accounting

for demographic processes to predict population trajec-

tories (nine of 10 used structured-matrix population

models following Caswell, 2001). They are also includ-

ing important features of climate models: ~ half used

an ensemble of models (averaged or not), three used

different scenarios and four did their own climate

model selection. Finally, half of the 10 studies reviewed

focused on ‘forced change’ and ~ half integrated some

natural variability, either using the one predicted by cli-

mate model or observed variability.

While most of the approaches discussed in Step 2

assume stationary climate conditions, climate change is

not stationary, and both the mean state and variability

change over time. All studies from Table 1 have

acknowledged the nonstationary aspect of climate

change, either by using IPCC time series predictions to

fully incorporate nonstationary climate processes (e.g.,

Jenouvrier et al., 2009a, 2012; Barbraud et al., 2010), or

by forecasting the trend of climate averages predicted

by IPCC-class models (e.g., Nur et al., 2012; Peery et al.,

2012), or by focusing on restricted periods where the

climate conditions are assumed to be stationary (e.g., a

20-year window for Wolf et al., 2010; a 30-year window

for Drever et al., 2011).

Studies directly linking IPCC time series to avian

population models are rare (but see Jenouvrier et al.,

2009a, 2012; Barbraud et al., 2010). Nonetheless, this

approach enables an integration of the pathway of

change in mean state and variability in climate, as well

as tipping points and extreme event dynamics. Barb-

raud et al. (2010) linked a stochastic population model

to deterministic climate projections and showed that

future population responses are contrasted among

three seabirds breeding in the Southern Ocean. Black-

browed Albatross’ quasi-extinction is projected by

2100, while the Amsterdam Albatross (Diomedea amster-

damensis) population is projected to increase steadily.

It is also important to include some stochasticity in

climate when using time series from IPCC-class mod-

els, because climate models do not aim to project cli-

mate in a particular year, but rather the change in

statistical properties, mean state and variances over

time. Ideally, this would be obtained from multiple

stochastic realizations of each IPCC-class model, but

such output are limited from few to a couple of tens

runs. For the Emperor Penguin, Jenouvrier et al. (2009a)

obtained stochastic climate forecasts by discretizing the

climate into two states (‘warm’ and ‘regular’) and

applying a nonparametric binary regression to calculate

the forecast frequencies of warm events (see also Hun-

ter et al., 2010 for Polar Bear). For continuous climate

variables, Jenouvrier et al. (2012) developed a novel

approach using smoothed temporal means, variances,

and covariances from the predicted climate outputs.

Finally, only one study explored specifically the

effect of an increased frequency of extreme climatic

events while projecting population responses to future

climate conditions (Nur et al., 2012; although Van de

Pol et al. integrated effect of extreme flooding events in
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their analysis of the Oystercatcher). To project popula-

tion of Tidal Marsh Song Sparrow for the San Francisco

Estuary, Nur et al. (2012) included the frequency of

extreme tides resulting from sea-level rise and/or

severe storms in addition to the impact of temperature

and precipitation forecasted by a downscaled AOGCM

and sea-level rise predicted by a regional climate model

(Stralberg et al., 2011). Extreme high tides were the most

significant climate factor threatening long-term viability

of Song Sparrows due to nest loss from flooding.

Addressing uncertainties

To move forward a predictive ecology, there is a wide

range of uncertainties from climate to ecological pro-

cesses that needs to be addressed through a dialog

involving scientists, managers, and policy makers

(Clark, 2001; Evans, 2012; Ruete et al., 2012; Sutherland

& Freckleton, 2012).

Communicating the degree of uncertainty to the pub-

lic and policy makers is a critical part of the next AR5.

AR5 incorporates two major criteria: the confidence in

the validity of a finding and quantified measures of

uncertainty or likelihood scale. The first criteria is quali-

tative and based on the evidence (limited, medium,

robust) and agreement statements (low, medium, high).

It incorporates the ‘type, amount, quality, and consis-

tency of evidence (e.g., mechanistic understanding, the-

ory, data, models, expert judgment) and the degree of

agreement’ (Mastrandrea et al., 2010; Mastrandrea &

Mach, 2011). The second criteria quantifies ‘probabilis-

tic estimates of the occurrence of outcomes associated

with, unless otherwise noted, high or very high confi-

dence’ (Mastrandrea et al., 2010; Mastrandrea & Mach,

2011). It varies from exceptionally unlikely (0–1% prob-

ability) to virtually certain (99–100% probability).

Quantified measures of uncertainty in population

viability have been addressed by calculating the ‘quasi-

extinction probability’ or the prediction interval for the

population size (Lande et al., 2003). The ‘quasi-extinc-

tion probability’ is the probability that the population

will decline by more than a specific ‘quasi-extinction

threshold’ over a specific time horizon. Population pre-

diction interval (PPI) is a stochastic interval of popula-

tion size that includes the unknown population size

with a given probability (1 � a) over the entire time

horizon of interest. PPI avoid the subjective choices of a

specific time horizon and quasi-extinction threshold,

but not the choice of a. Chatfield (2001) recommended

a = 10%, a compromise between lower and higher

a-PPIs. Higher a -PPIs are better calibrated for their

robustness for outliers and to departures from model

assumptions. Lower a -PPIs provide higher confidence

than higher a -PPIs but show heavy tails.

They are diverse sources of uncertainties when pro-

jecting population responses to climate change ranging

from climate to demography (Fig. 5), which can be

addressed in a hierarchical process (McGowan et al.,

2011). They can be organized in three main categories:

data, model, and prediction uncertainties. Climate and

demographic data are often observed incompletely with

large uncertainty caused by observation and measure-

ment errors. This adds to the temporal variance process

some uncertainty in parameter estimates, which is a

major component of the second source of uncertainty:

model uncertainty. In addition, model uncertainties

include structural uncertainties in the model specifica-

tion and the models’ initial and boundary conditions.

Structural uncertainty arises from competing scientific

theories and simplifications of reality such as inclusion

or exclusion of density dependence in population mod-

els. The last main source of uncertainty is related to pre-

diction and includes uncertainties on future system

drivers and future no-analog climate conditions.

To incorporate uncertainties related to future socio-

economic development and emissions/abundance of

greenhouse gas, several RCP scenarios should be incor-

porated. Ecologists may also want to include uncer-

tainty into decision-making frameworks related to

other factors than climate (Evans, 2012; Milner-Gulland,

2012). For example, Nur et al. (2012) evaluated different

Fig. 5 Description of the various sources of uncertainties, which

can be incorporated using a hierarchical process. Colored circles

represent the various replication loops of the model. Prediction

uncertainty in the climate scenario (or other future driver sce-

nario) is incorporated into the first replication loop. Climate ini-

tial conditions, structural model uncertainty and parameter

uncertainty are included into a second loop by using a multi-

model ensemble of AOGCMs. Climate natural variability using

stochastic climate forecast appears in the third loop. Demo-

graphic initial conditions, parametric and model structural

uncertainties are incorporated into the fourth replication loop,

while environmental stochasticity is incorporated into the fifth

loop for time steps in the model. Finally, demographic stochas-

ticity simulates the fates of individual organisms within a par-

ticular time step and replicate into an inner loop (the individual

loop).
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management strategies to improve nest survival of

Song Sparrow (by reducing predator populations or

access to tidal marsh nesting habitat), which can

reverse projected population declines caused by future

sea-level rise and extreme high tide events.

Because population projections are contingent on

data and model uncertainties in climate, it should be

incorporated by using a climate multimodel ensemble

and a forecasting approach to build stochastic climate

forecasts. Tebaldi & Knutti (2007) argue that integration

of all aspects of climate model uncertainty requires

using multimodel ensembles, which sample initial con-

dition, parameter as well as structural uncertainties in

the model design. It is possible to include uncertainties

in the selection of this multimodel ensemble by attribut-

ing some weights for each climate model by using the

historical relationship between predictions and obser-

vations and then sample the number of future stochas-

tic climate forecasts according to these model weights.

However, the determination of such weights are still

controversial as it is difficult to quantify model skill

and derive model weights accordingly (Knutti et al.,

2010; Weigel et al., 2010).

Demographic data uncertainty caused by observation

and measurement errors may bias estimates of many

population parameters or vital rates, which parametrize

population models (see review in Morris & Doak,

2002). Many statistical methods are available to quan-

tify such uncertainty in parameter estimations, such as

variance decomposition, separating sampling from pro-

cess variance in temporal variations of vital rates (e.g.,

Gould & Nichols, 1998) or maximum likelihood statisti-

cal methods (e.g., De Valpine & Hastings, 2002) to

Bayesian Markov chain Monte Carlo (e.g., Clark &

Bjørnstad, 2004; Clark, 2007) in time series analysis.

Parameter uncertainty may reduce our ability to pre-

cisely predict future population fluctuations (Ellner &

Fieberg, 2003; Holmes et al., 2007; Ellner & Holmes,

2008) and several avian studies have highlighted the

importance of including parameter uncertainty when

making future population projections [e.g., Song Spar-

row: Sæther, 2000; Barn Swallow (Hirundo rustica):

Engen et al., 2001; Piping Plover (Charadrius melodus):

McGowan et al., 2011]. Including the uncertainties in

both demographic parameters and model structure,

involve model selection, model averaging, or both

(Clark, 2001; Burnham & Anderson, 2002). For example,

in the framework of capture-recapture models and

maximum likelihood statistical methods, Hunter et al.

(2010) developed a method to account for both uncer-

tainty in model selection and parameter uncertainty

while preserving the covariances among vital rates in

population projections. Albeit with quite extensive

numerical work in most cases, the Bayesian paradigm

provides powerful new tools which could embrace

unknown levels of error, mixture of models, model

selection, and averaging (Clark & Gelfand, 2006; Gime-

nez et al., 2009). These models allow unknown levels of

errors to propagate through various submodels (Cres-

sie et al., 2009) as well as integrate multiple stochastic

elements (environmental, demographic stochasticity as

well as individual heterogeneity) (Clark, 2001, 2005).

There are few studies comparing the different sources

of uncertainties. Using data from several passerine spe-

cies, Sæther et al. (2009) studied the effect of different

demographic sources of uncertainties on future popula-

tion projections. They showed that including observa-

tion error in the models improves precision in density-

independent population predictions and reduces bias

for density-dependent population models. In addition,

ignoring demographic stochasticity resulted in posi-

tively biased population size predictions and imprecise

density-independent population predictions. Studies

comparing the respective role of the different sources of

uncertainties on population projections in response to

climate change are rare (but see Ruete et al., 2012). The

main source of uncertainties for the Emperor Penguin

population (Jenouvrier, unpublished result), as well as

in the population of bryophyte (Buxbaumia viridis)

(Ruete et al., 2012), is the ‘AOGCM formulation.’ This

result emphasizes the importance of using several

AOGCMs for predicting future population responses.

Summary of step 3

To summarize this last step, predicting population

responses to climate change are now possible thanks to a

tremendous advancement in our understanding of the

demographic processes, and the availability of climate

predictions from IPCC-class models. There are, however,

large uncertainties in population and climate predictions.

Ecologists sometimes see wide population prediction

intervals as indicating ‘failure’ either to fit the right

model or to obtain a usable interval, but prediction inter-

vals could be misleadingly narrow by failing to incorpo-

rate the appropriate uncertainty. Uncertainties in data

and the model structure could be eventually reduced by

improving sampling efforts, our knowledge of the pro-

cesses and refining models (i.e., by continuous feedback

between the three steps of theMUP approach). Situations

where uncertainties are large and information content

too low tomake useful management decisions now could

become more informative within a decade by developing

new or supporting existing long-term data (Step 1), as

well as improving knowledge and refining demographic

models (Step 2). Stochasticities and nonlinearities of any

ecological system results in uncertainties inherent in

predictive ecology, but as Clark (2001) stated: ‘Large

© 2013 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/gcb.12195

3-STEPS: MEASURING, UNDERSTANDING, PREDICTING 17



inherent uncertainty does not necessarily neutralize

efforts to anticipate change.’ To address inherent uncer-

tainties, ecologists should incorporate the natural vari-

ability and non stationarity of climate processes, which

can have a tremendous impact on population dynamics

and devote more effort in using multimodel climate

ensembles instead of one particular climate model. To

provide information to decision-makers and help imple-

ment mitigation strategies, several climate scenarios

should be incorporated, as well as the inclusion of other

drivers than climate change. Indeed, the impact of cli-

mate change will interact with other stressors, such as

habitat destruction, introduced species, overexploitation,

and extinction cascades (chains of extinctions), and effec-

tive mitigation conservation strategies may focus on local

stressors rather than climate change.

Conclusions: Prospects and challenges

Integrating spatial dynamics

Avian population responses to climate change have

often been analyzed in terms of the effect of local cli-

mate conditions on temporal population fluctuations at

a particular location. However, if negative effects of cli-

mate variations on vital rates and populations occur

simultaneously over large geographical areas, the con-

sequences for species persistence will be more severe

than if they occur only locally (Sæther & Engen, 2010).

Climate can induce population synchrony if variations

in climate are autocorrelated in space and if popula-

tions had the same density-dependent structure known

as the ‘Moran effect’ (Moran, 1953; Royama, 1992). Syn-

chrony is of particular concern for assessing the impact

of climate change because species persistence is

strongly related to population synchrony. Spatial syn-

chrony has been detected for numerous avian popula-

tions, but attributing the ‘Moran effect’ has been

difficult (see review of Sæther & Engen, 2010). Climate

can also induce synchrony in vital rate variations and

Jenouvrier et al. (2008b) have shown that adult survival

variations of Cory’s shearwater (Calonectris diomedea)

are synchronized among six populations spread across

4600 km. These synchronous variations are explained by

Southern Oscillation Index fluctuations suggesting strong

effect of climate at large spatial scales on Cory’s shearwa-

ter adult survival during the nonbreeding period.

On the other hand, the effect of the same climate vari-

able may show different directions among different

populations. Various population responses to climate

may result from an interaction between climate and

population growth along a latitudinal or environmental

gradient (see review Sandvik et al., 2008; Barbraud

et al., 2012) or a spatial heterogeneity in the interaction

between climate with other environmental and demo-

graphic factors (see review Sæther & Engen, 2010).

Integrating spatial dynamics will also be critically

needed to adequately understand and predict how spe-

cies may cope with climate change because individuals

may move permanently to other locations, where

climate and associated habitat conditions are more

suitable. Temperature isoclines will, in general, move

poleward in latitude and upward in altitude, resulting

in changes in local population abundance, local extinc-

tion and colonization of new habitats, species range

shifts (Parmesan, 2006), and species extinctions

(Thomas et al., 2004). Birds with high fertility and high

dispersal rates may be able to cope with climate change

by expanding or contracting their range at the right

speed, while birds with lower fertility and limited dis-

persal rates may not (Schippers et al., 2011). For philop-

atric species, the colonization of new habitats with

favorable climate conditions may occur through the dis-

persal of pre breeders. At Lancelin Island, five pairs of

Common Noddies pioneered a colony in 1991 and the

population stabilized around 1200 pairs by 2008 (Worm-

worth & S�ekercio�glu, 2011). Further research should

focus on a better understanding of dispersal processes

in response to climate change (but see Dugger et al.,

2010) and the development of metapopulation models

integrating climate impacts or species distribution mod-

els including demographic processes (but see Keith

et al., 2008; Anderson et al., 2009; Schippers et al., 2011).

Integrating eco-evolution

Species may cope with climate change by adapting to the

new local climate conditions (either through microevolu-

tion or phenotypic plasticity). Although, there is an

increasing agreement that evolutionary processes may

play a crucial role for population persistence under

future climate change, we know surprisingly little about

how changes in climate translate into adaptive pheno-

typic change (see review of Pelletier et al., 2009; Reed

et al., 2010; Gonzalez et al., 2012; Hanski, 2012). Eco-evo-

lutionary approaches are now being developed (e.g.,

Coulson et al., 2006, 2011; in a climate change context see

Baskett et al. (2009), Jenouvrier & Visser, 2011). For exam-

ple, Reed et al. (2011) explored how populations of sock-

eye salmon (Oncorhynchus nerka) can persist under

scenarios of future river warming and evolutionary

changes in migration timing. However, such approaches

have yet to be applied to avian populations.

Conclusion

To conclude, the MUP approach provides a general

framework within which enhanced understanding of
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climate-population processes, along with improved long-

term data, are merged into coherent projections of future

population responses to climate change. Projecting popu-

lation responses is not the major endeavor nor a finality

in itself; instead, I advocate striving for a richer under-

standing of the various eco-evolutionary processes in

which populations can cope with climate change, through

pursuing/establishing new long-term studies, an invalu-

able source for the MUP approach. Applying the MUP

approach using universal quantitative variables (e.g.,

‘population robustness to climate change’) to a broad

range of species may provide the foundations to infer

general patterns across climatic zones, life history strate-

gies, communities, or ecosystems.
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