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Climate changes include concurrent changes in environmental mean, var-

iance and extremes, and it is challenging to understand their respective

impact on wild populations, especially when contrasted age-dependent

responses to climate occur. We assessed how changes in mean and standard

deviation of sea surface temperature (SST), frequency and magnitude of

warm SST extreme climatic events (ECE) influenced the stochastic popu-

lation growth rate log(ls) and age structure of a black-browed albatross

population. For changes in SST around historical levels observed since

1982, changes in standard deviation had a larger (threefold) and negative

impact on log(ls) compared to changes in mean. By contrast, the mean

had a positive impact on log(ls). The historical SST mean was lower than

the optimal SST value for which log(ls) was maximized. Thus, a larger

environmental mean increased the occurrence of SST close to this optimum

that buffered the negative effect of ECE. This ‘climate safety margin’

(i.e. difference between optimal and historical climatic conditions) and the

specific shape of the population growth rate response to climate for a species

determine how ECE affect the population. For a wider range in SST, both the

mean and standard deviation had negative impact on log(ls), with changes

in the mean having a greater effect than the standard deviation. Furthermore,

around SST historical levels increases in either mean or standard deviation of

the SST distribution led to a younger population, with potentially important

conservation implications for black-browed albatrosses.

This article is part of the themed issue ‘Behavioural, ecological and

evolutionary responses to extreme climatic events’.
1. Introduction
The Intergovernmental Panel on Climate Change (IPCC) research group out-

lined that special attention should be put forth on the impact of extreme

climatic events (ECE) on human societies and ecosystems [1]. Marked tempera-

ture anomalies and associated heatwaves may become more of a common

environmental feature by the end of the century that our society and wild popu-

lations will have to adjust to, in conjunction with an adjustment to overall

global warming [2]. Yet, assessing changes in ECE remains challenging given

their rarity by definition [3] and the difficulty to model and understand

their ecological effects at different spatio-temporal scales and biological levels

[4–6]. Extreme events can be defined in many ways; throughout this paper, a

climatological definition will be used as the occurrence of a value as rare as

or rarer than the 5th and 95th percentile of the distribution of observed

values in a climatic variable of interest (e.g. temperature and precipitation)

over a specific historical time period [7].

The effects of climate change on wild populations have been extensively

studied but most studies focused on the effect of changes in mean temperature

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2016.0143&domain=pdf&date_stamp=2017-05-08
http://dx.doi.org/10.1098/rstb/372/1723
http://dx.doi.org/10.1098/rstb/372/1723
mailto:deborah.pardo@gmail.com
https://dx.doi.org/10.6084/m9.figshare.c.3723961
https://dx.doi.org/10.6084/m9.figshare.c.3723961
http://orcid.org/
http://orcid.org/0000-0001-9593-1155
http://orcid.org/0000-0002-0457-586X
http://orcid.org/0000-0003-0146-212X
http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160143

2

 on June 16, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
and/or precipitation regimes on phenology, physiology,

behaviour and demography [8–10]. In recent years, the

number of studies investigating the effects of ECE in wild

populations has been increasing [11–13]. There is now

empirical evidence that ECE can have strong ecological

effects as they can lead to local extinctions [14], changes in

sex ratio [15], disease proliferation [16] and even reset com-

munity composition [17]. However, understanding the

respective biological responses to the effects of changes in

mean climate and climate variability—especially ECE—

requires more research [7,18–22]. Projections of population

responses based on mean temperature changes alone can

differ substantially from those incorporating changes to the

variability, including extreme events [23,24].

Furthermore, different life-history stages, phenotypes or

age-classes can respond differently to the same climatic vari-

able [25–27]. For example, Jenouvrier et al. [28] showed that

extreme sea ice years affected foraging behaviour, body con-

dition, vital rates and population growth rate of the southern

fulmar (Fulmarus glacialoides), and individuals of higher qual-

ity were less impacted by these extreme events. Therefore,

changes in ECE can strongly alter not only the population

growth rate, but also the structure of populations. A textbook

example is the contrasted effect of ECE according to age in

human populations. Specifically, during the 2003 heatwave

in Europe, more than 70 000 human deaths were recorded,

with the most vulnerable persons being young and older

individuals [29], which affected the age pyramid.

Here, we focus on the long-lived black-browed albatross

(Thalassarche melanophris) using a 50 year longitudinal data-

set including 4235 individuals. Previous studies have

shown that survival and fecundity of black-browed alba-

trosses breeding in Kerguelen, French Sub-Antarctic

territories, varied in response to changes in sea surface temp-

erature (SST) in their foraging zones during the breeding

season [30–32]. Pardo et al. [33] showed that fecundity and

survival responses to changes in SST were different between

age classes, with larger effects on young and old breeders

than on middle-aged birds. To understand the respective

impacts of increasing mean and variability of SST, as well

as frequency and magnitude of extreme SST events on

population growth and structure, we constructed an age-

structured stochastic matrix population model in which

young, middle-aged and old breeders responded differently

to changes in SST. We had three specific aims (figure 1,

bottom) as follows.

(1) Determine the influence of changes in the mean and stan-

dard deviation of the historical SST distribution on the

frequency and magnitude of warm SST ECE.

(2) Determine the influence of changes in the mean and

standard deviation of the historical SST distribution on

the stochastic population growth rate and stable age

distribution.

(3) Study the effects of ECE on stochastic population growth

rate and stable age distribution.

We address these questions at two different scales of vari-

ation in SST that contrast the historical versus future climate

change ranges: (i) at the local scale around the historical SST

distribution by using a sensitivity analysis based on the par-

tial derivative method and (ii) an analysis over a wider range
of climatic parameters with various scenarios of change in the

mean or standard deviation of the SST distribution using

scatter plots.
2. Material and methods
(a) Species life cycle
Black-browed albatross are large Procellariiforms (3–4 kg,

2–2.5 m wingspan) that breed on Sub-Antarctic islands during

the austral summer. Birds arrive in September and lay a single

egg in October that will hatch in December. Both parents alter-

nate care at the nest during incubation of the egg and brooding

of the young chick, then provision the large chick that fledges

in late March at a size similar to that of an adult. This study

focuses on black-browed albatross breeding at Canyon des

Sourcils Noirs (49.48 S–70.18 E), Kerguelen Islands. Each year

since 1978, pair members were identified with a stainless steel

band. In addition, all fledglings, unringed breeding individuals

and non-breeding individuals attending the colony were

marked. The average age at first breeding is 9.7 and can range

from 5 to 15 years old [34]. During breeding, black-browed

albatrosses forage in northeast and southeast regions of the

peri-insular Kerguelen shelf [30–32]. Their diet at that period is

composed of fish (73%), penguin carrion (14%) and squids

(10%) [35]. They are known to strongly interact with long-line

and trawl fisheries targeting Patagonian toothfish (Dissostichus
eleginoides) and mackerel icefish (Champsocephalus gunnari) to

feed on discards and baits [36]. Such interactions can affect

black-browed albatross demography and dynamics (e.g. increase

their breeding success, diminish adult and juvenile survival)

[37]. In winter, breeding adults migrate to southeast Australia

and north of Tasmania in less than a week, where they remain

until the next breeding season and occasionally follow longliners

fishing for southern bluefin tuna (Thunnus thynnus) and other

tuna species in their wintering zone [38].

(b) Sea surface temperature
Historical SST were extracted from satellite data from 1982 to

2015 in a spatial sector where most birds from this colony

forage during the breeding season (from October to March; Inter-

national Research Institute for Climate and Society, http://iridl.

ldeo.columbia.edu/; see map in Pardo et al. [33]). SST is thought

to be a proxy of food availability in the marine environment and

has been found in several studies to have an influence on breed-

ing parameters as well as survival rates in this population

[30,32,39].

Seasonal means in historical SST data over 34 years were

used to determine thresholds of ECE, so that values below the

5th percentile (3.528C) were considered as cold SST ECEs and

above the 95th percentile (4.638C) as warm SST ECE (figure 1,

top left panel). As the IPCC predicts an increase in Earth surface

temperature (including SST) and an increase in the frequency

and magnitude of heatwaves in particular, here we focused on

the influence of the warmer temperatures [1].

The historical SST followed a normal distribution

(Anderson–Darling test: p ¼ 0.13) with two parameters: the

mean (m ¼ 3.958C at baseline conditions based on the historical

data) and the standard deviation (s ¼ 0.35 at baseline conditions;

figure 1, bottom left panel). We derived various scenarios based

on the normal distribution fitted on historical SST data: the base-

line scenario; a scenario when mean temperature increased up to

m þ 18C in accordance with IPCC predictions [1], which is a 25%

increase relative to the historical mean of 3.958C; and a scenario

when standard deviation increased by 25%. Thus, the range of

change in the mean and standard deviation relative to their his-

torical values are directly comparable. These scenarios resulted
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Figure 1. Sketch explaining the approach followed in this paper. Input environmental data consist of SST sampled from a normal distribution (middle-left). The
observed SST from 1982 to 2015 was used to determine a threshold of warm ECE (top-left in red). We defined the ECE frequency as the occurrence of ECE, and the
ECE magnitude as the maximum SST values occurring in the simulated environment. The population model projects the number of individuals within each age-class
and is described by an age-structured life cycle (middle-right) where vital rates depend on both age and SST (top-right). Vertical traits on the x-axis represent the
occurrence of historical SST. The outputs are of two kinds (bottom): climatic, to measure the influence of SST distribution parameters on the frequency and mag-
nitude of warm SST ECE (1), and demographic, to measure the influence of SST distribution parameters on the stochastic population growth rate and on the stable
age distribution (2). The two outputs were also combined (3).
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in demographic rates that were in a realistic range of variations

(electronic supplementary material, A). Two characteristics of

warm ECE were calculated from an SST vector obtained

by sampling into the fitted distributions (SST vector length of

10 000): the frequency and magnitude. The frequency of warm

ECE was calculated as the number of extreme years divided by

the total number of years multiplied by 100 (baseline frequency

of warm ECE ¼ 2.86%), and the magnitude of warm ECE was
the warmest temperature (i.e. maximum value of the SST

vector, baseline magnitude of warm ECE ¼ 5.288C).

(c) Population model
To calculate the population growth rate and structure, we con-

structed an age-structured matrix model using a pre-breeding

census [40] based on a life cycle of 34 age classes where

http://rstb.royalsocietypublishing.org/
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individuals older than 34 years remain in the last stage

(figure 1, bottom right panel). We projected the population

between time t and t þ 1 using the following equation: n(tþ1) ¼

At n(t), where n(t) is the population vector at time t including

the 34 age classes and At is the projection matrix containing

the age-specific vital rates [40]. The projection matrix At

depended on SST in each year, with vital rates projected from

the specific functional relationships from Pardo et al. [33]

(figure 1, top right panel).

Vital rates were projected using linear and quadratic func-

tional relationships with SST on the logit scale for four

different vital rates (figure 1, top right panel): apparent survi-

val probability, return probability to the breeding grounds,

breeding probability (laying an egg) given return, and breeding

success probability (chick fledged) given breeding. Survival,

return, breeding and success probabilities were estimated for

all individuals according to their age. Vital rates and effect of

SST varied between the following age classes: young from 5 to

10 years old; middle-aged from 11 to 26 years old for return,

breeding and success probabilities and from 11 to 29 for survival

probability [33]. After age 26 for success probability or 29 for sur-

vival probability, birds were in the old-age class until the

maximum age observed (i.e. 34 years old). There was no old-

age class for return and breeding probabilities (electronic

supplementary material, B). Breeding experience was not

included in this study.

Fecundity was defined as the product of age-dependent

return, breeding and success probabilities multiplied by the sex

ratio at birth (assumed unity [37]) and juvenile survival. We

used an estimate of juvenile survival probability from Nevoux

et al. [41] assuming that juvenile survival (Sj) was constant

over the first 5 years (Sj0 – 5 ¼ Sj0 – 1*Sj1 – 2*Sj2 – 3*Sj3 – 4*Sj4 – 5 ¼

0.281). There was no data to estimate annual variation of juvenile

survival before recruitment because young birds stay at sea per-

manently from fledging until first return on land. Thus, annual

juvenile survival was set to constant (Sj ¼0.776 [fifth root of

0.281 for Sj0 to Sj5]). Apparent survival can be an underestima-

tion of true survival due to permanent emigration but in

highly philopatric species such as albatrosses, we do not expect

this bias to be large (less than 2%; [42]). Rolland et al. [37] esti-

mated the annual immigration rate at 0.044 and as we had no

information on how it might be linked with SST or age, we

focused on local population dynamics.

An SST value was drawn randomly 10 000 times from the

normal distribution fitted on historical SST data and altered to

simulate more ECE. The stochastic population growth rate

log(ls) and the stable age distribution (asymptotic proportion

of individuals in each age class) were then calculated following

the approach described in chapter 14.1 of Caswell [39] using

numerical simulation. All analyses were performed in the

program MATLAB [43].
(d) Local sensitivity analysis
We first performed a local sensitivity analysis by estimating the

partial derivative of frequency and magnitude of warm ECE

events (climatic output y) over 10 000 time steps with respect

to the mean and standard deviation of the normal distribution

fitted on historical SST data (Aim 1, figure 1, bottom panel). In

addition, we performed a local sensitivity analysis of the

growth rate and stable age distribution (demographic output y)

with respect to SST parameters following the same approach

(Aim 2, figure 1, bottom panel).

We evaluated the sensitivity of a climatic or demographic

output of the model (y) with respect to the mean or standard devi-

ation of the SST distribution (input x) by calculating numerically

the partial derivative dx/dy. We perturbed the input by a small

perturbation such as the perturbed input is xp¼ x(1+0.001).
We performed 100 simulations for each positive and negative

perturbation, and estimated as dx/dy ¼ (y 2 yp)/(x 2 xp) for

each simulation and perturbation. The sensitivity is measured as

the average of dx/dy over 200 simulations.

(e) Effect of sea surface temperature on stochastic
population growth rate

Since the results of the sensitivity analysis based on the partial

derivative were very local, we performed an analysis over a

wider range of the SST distribution parameters similar to a

global sensitivity analysis. Our aim was to illustrate the con-

trasted effects of changes in SST distribution parameters

between the historical and future projected ranges of SST.

Thus, we chose a simple but useful approach computing the scat-

ter plots of the stochastic population growth rate against SST

distribution parameters as well as the frequency and magnitude

of ECE (Aim 3, figure 1, bottom panel). Starting from the baseline

parameters of the SST distribution, we varied the mean by

up to 18C [1] and the standard deviation up to an increase of

25% relative to the baseline value (s ¼ 0.45). Changes in the

mean and standard deviation of the distribution were varied

independently.
3. Results
(a) Sensitivity of climatic output (Aim 1)
The local sensitivity analysis of climatic output showed the

relative effects of a unit of change in the two parameters of

the historical SST distribution (m,s) on the frequency and

magnitude of warm ECE (figure 2). Increasing the mean or

standard deviation increased the frequency and magnitude

of warm ECE. A unit of change in standard deviation (s)

had a larger effect on both frequency (1.6 times larger) and

magnitude of warm ECE (3 times larger) than a unit of

change in the mean (m) (both m and s parameters are in 8C).

(b) Sensitivity of demographic output (Aim 2)
The sensitivity of log(ls) with respect to the standard devi-

ation was negative while the sensitivity of log(ls) with

respect to the mean was positive (figure 3). A unit of

change in standard deviation (s) had a larger effect on

log(ls) (approx. 3 times larger) than a unit of change in the

mean (m) (figure 3).

http://rstb.royalsocietypublishing.org/
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Considering the stable age distribution, in the baseline

conditions 44% of the population was 5 years old or less

(figure 4a). The sensitivity analysis revealed that changes in

mean or standard deviation of the SST distribution affected

the proportion of individuals in all age classes (figure 4b).

A unit change in mean had a larger influence than a unit

change in the standard deviation, and their relative effects

had opposite sign in middle-aged classes. However, the sen-

sitivities of the stable age distribution with respect to a unit

change in mean and/or standard deviation were both posi-

tive for age classes from 2 to 5 years old and both negative

for old-age classes from 28 to 34þ years old (figure 4b). To

summarize, the number of individuals in the immature age

classes (under 5 years old) increased and the number of

individuals in the oldest age classes decreased when mean

or standard deviation of the SST distribution increased,

resulting in a younger population.
(c) Relationship between extreme climatic event,
population growth and sea surface temperature
distribution parameters (Aim 3)

In the baseline conditions, the stochastic growth rate

was log(ls)¼ 20.033 meaning that the local population of

black-browed albatross is currently decreasing annually

by 3.3%.

As the previous sensitivity analysis was very local, we

also investigated the relationships, relative to baseline

levels, between log(ls) and the climatic ECE characteristics

on a wider range of change in SST distribution parameters

(electronic supplementary material, C; figure 5). First,

figure 5 shows that log(ls) was maximized at slightly

warmer values of mean SST than present (i.e. observed

mean þ 0.18C), with an optimal value of log(ls) of 20.032.

Log(ls) declined as mean SST became warmer or colder.

Interestingly, the effect of colder SST was stronger than the

effect of warmer SST (figure 5). There was a large plateau

around the optimal log(ls) value (20.28C to þ0.48C;

figure 5). Over the range of mean SST values shown here,

the effect of standard deviation was negative, lowering

log(ls) by up to 0.005.

Second, figure 6 shows: (i) how changes to baseline SST

distribution parameters (up to 25% increase for both mean

and standard deviation relative to their historical values)

lead to increased climatic ECE characteristics (frequency
and magnitude on the x-axis, but see also the electronic sup-

plementary material, C) and (ii) how changes in the

frequency and magnitude of ECE lead to changes in log(ls)

(y-axis). Mean and standard deviation parameters both influ-

enced the frequency and magnitude of warm ECE. Mean SST

had by far the strongest impact on the frequency of ECE

(figure 6a; electronic supplementary material, C) after a

small plateau around historical level up to 8% ECE frequency.

For an increase of 18C (i.e. 25% increase in the mean relative

to historical level), log(ls) declined to 20.064 when 80% of

SST were considered extreme according to the historical cli-

matological definition. Changes in the standard deviation

affected the frequency of warm ECE to a much lesser extent

for the range explored here (up to 10% extreme event fre-

quency for a 25% increase in the standard deviation relative

to historical level) and the minimum log(ls) reached 20.037

(figure 6a). Similarly, with the magnitude of warm ECE

(figure 6b), a steeper decline in log(ls) occurred when

changes in the magnitude were caused by a change in

mean SST further from historical value rather than a change

in standard deviation. The mean of the SST distribution

had a greater effect on the magnitude of ECE than the stan-

dard deviation, especially for values far from the historical

range (electronic supplementary material, C). However, the

difference between the impact of mean and standard devi-

ation on the magnitude of ECE is smaller than for the

impact on the frequency of ECE.

To summarize, for changes in SST around the historical

levels observed since 1982, the standard deviation of the

SST distribution had a larger and negative impact on

log(ls) compared to a change in the mean. However, for a

larger range, changes in the mean had a stronger effect on

both the frequency and magnitude of ECE and the stochastic

population growth rate.
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see also the electronic supplementary material, C).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160143

6

 on June 16, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
4. Discussion
Using a black-browed albatross demographic model incor-

porating age- and SST-dependent vital rates, we have

characterized the impact of changes in the mean and stan-

dard deviation of the climatic distribution on the frequency

and magnitude of ECE as well as on the population growth

and structure. We highlighted opposite effects of changes in

mean and standard deviation on the growth rate and some

age classes of the population. In addition, we showed how

the impact of ECE frequency and magnitude on population

growth rate is mediated through change in mean or standard

deviation of the SST distribution. Below, we discuss how our

study complements previous studies on ECE and speculate

on the resilience of the albatross population to climate

change and fisheries in this novel age-dependent framework.

Some methodological aspects of our approach are also dis-

cussed along with how future studies could build on our

approach towards a more comprehensive understanding of

the impact of ECE in wild populations.
(a) Effect of changes in the parameters of the sea
surface temperature distribution on the stochastic
population growth rate

Several recent theoretical studies have emphasized that the

relative effects of environmental standard deviation and

mean on stochastic population growth rate log(ls) are

expected from the curvature of the population growth

response to the environment (referred to as the population

response function): a concave response results in a negative

effect of environmental standard deviation on log(ls) while

the opposite occurs for a convex response (see review by

Lawson et al. [21]). Figure 5 depicts such a population

response function for the black-browed albatross and shows

that the response is concave around historical levels. As

expected, the effect of SST standard deviation was negative

on black-browed albatross log(ls).

We demonstrated that, around the historical values of

SST, a change in the standard deviation of the SST distri-

bution had a larger effect on the black-browed albatross
log(ls) than a change in SST mean. Garcı́a-Carreras &

Reuman [44] concluded that many populations close to

their optimal environment are likely to be more sensitive to

a change in the variability of the environment rather than

the mean. By contrast, changes in mean conditions are

likely to have a greater impact than changes in variabi-

lity on populations far from their optimal environment.

Our results at both the historical (figure 3) and a wider

range of SST distribution parameters (figure 5) are in

agreement with these theoretical expectations because:

(i) we observed a single-peaked response function of the

black-browed albatross log(ls) to SST and (ii) the histori-

cal variation of SST are close the optimal value for the

black-browed albatross.

Noteworthy, the sensitivity of the black-browed albatross

log(ls) with respect to the SST standard deviation was nega-

tive while its sensitivity with respect to the SST mean was

positive. This pattern is expected [44] because the log(ls) is

maximized at warmer values of mean SST than present (i.e.

SSTOPT¼ SSTHISTORICAL þ 0.18C). As a result, larger environ-

mental standard deviation would cause more SST values far

from the optimum, while larger mean would cause more SST

values close to the optimum. This pattern echoes results from

empirical studies on ectotherms [45,46]: a positive shift in

mean temperature (T ) will decrease mean fitness in tropical

ectothermic species, but will increase fitness at higher latitudes

because tropical species are experiencing mean annual

temperatures (THISTORICAL) very close to their optimal temp-

eratures (TOPT), while the opposite occurs at higher latitudes

[45]. Specifically, ectothermic species ‘thermal safety margins’

(TOPT 2 THISTORICAL) are typically 1–48C in the tropics and

increase markedly with latitude, up to 108C or more at

higher latitudes. Therefore, a species would be less severely

impacted by warmer mean temperatures depending on how

much historical SST are below the optimal SST.
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(b) Effect of extreme climatic event on the stochastic
population growth rate

The frequency and magnitude of warm ECE depended on the

two parameters of the normal SST historical distribution.

Thus, it is not straightforward to understand the respective

effect of ECE through their response to a change in the

environmental mean and standard deviation. Around the his-

torical value, our local sensitivity analysis of the climate

outputs showed that both the frequency and magnitude of

ECE were more influenced by a change in the standard devi-

ation rather than the mean of the SST distribution (figure 2).

However, over a wider range of parameters (figure 6; elec-

tronic supplementary material, C), the SST mean had a

stronger impact on the frequency and magnitude of warm

ECE, especially beyond SSTOPT.

The effect of warm ECE was negative on the black-

browed albatross log(ls) (figure 5). In addition, higher fre-

quency and magnitude of ECE mostly decreased log(ls),

although it depended on the path through which such

changes occurred—i.e. changes in the mean, or standard

deviation and the amplitude of the deviation from SSTOPT.

Noteworthy, a change in the mean of the SST distribution

increased black-browed albatross log(ls) despite increasing

the frequency and magnitude of ECE (lower dots on

figure 5). The positive sign of the sensitivity of log(ls) to

the mean occurred because the historical SST mean was

lower than the optimal value for the black-browed albatross,

and there is a large plateau around the optimal value in the

population response function. As a result larger environ-

mental mean increased the occurrence of SST close to the

optimal value that buffered the negative effect of ECE. The

‘climate safety margin’ (i.e. the difference between the

optimal climatic conditions and the historical climatic con-

ditions) and the specific shape of the response function for

a species may determine how ECE affects the stochastic

population growth rate through a change in environmental

mean. Single peak response functions like those reported

here are common in the wild [44], such as thermal perform-

ance curves in ectothermic species [46,47] (figure 5). A

theoretical framework using such response functions [44]

could shed light on the buffering role of the environmental

mean against ECE as a function of the climate safety margins,

the maximum height of the response function, the width of

the range of optimal values, the rate of fall off from the opti-

mal environment, as well as the asymmetry of the response

function. Species with a large climate safety margin, a wide

optimum range and a slow rate of fall off from the optimal

environment are likely to be less sensitive to ECE, especially

when climate changes are dominated by a shift in the mean

rather than a change in the standard deviation.

(c) Age-dependent demographic responses to climate
change

Individuals differ in their quality, age, sex and other charac-

teristics that may mediate the effects of ECE on population

growth and structure. We found that for local changes, the

population structure was altered by increases in both mean

and standard deviation of SST, with opposed effects in

middle-aged individuals, leading to a higher proportion of

young individuals in the population. Old individuals were

particularly affected by both changes in mean and standard
deviation, suggesting a particular vulnerability to the fre-

quency of ECE as reported in humans [29]. These changes

were driven by the age-specific nonlinear relationships

between vital rates and SST, more particularly by the decreas-

ing survival of old individuals in both cold and warm SST

ECE, the increasing breeding probability of young and

middle-aged individuals, and the increasing breeding success

of young and old individuals when SST increased.

With future climate change, new concerns may arise for

this black-browed albatross population, because the structure

of the population is projected to change with a higher pro-

portion of juveniles, which are highly sensitive to other

anthropogenic activities. Juveniles are known to represent a

significant part of birds accidentally killed in long-line fish-

eries [36,38]. Rolland et al. [37] demonstrated relationships

between SST and fisheries impact on the growth rate of this

same population. The stochastic population growth rate

remains negative even when incorporating immigration in

the young and middle-aged classes which is consistent with

previous models and observations since 1976 [37]. This

suggests that even at optimal values of SST, the population

is likely affected by fisheries bycatch [37]. Mitigating the

effect of fisheries with a warmer climate with limited

change in environmental inter-annual variations may allow

the population to recover. This will probably occur only for

a short time as the climate safety margin (0.18C) is relatively

narrow compared to projected SST changes reported by the

IPCC (�18C, [48]). A shift in mean SST by 18C is not unlikely

according to the IPCC projections. However, this would lead

to a frequency of warm event of approximately 80%, and

whether black-browed albatross will adapt to these conditions

remains an open question. To predict the impact of extreme

events and inform policy and management decisions, models

linking IPCC climate projections to a demographic model

would be required [23].
(d) Methodological considerations
The normal distribution is one possible distribution among

many to address the relative impact in mean, variability as

well as ECE. This distribution is symmetrical and thus does

not account for the positive skewness that may result from cli-

mate change (i.e. more extreme warm than cold events or

when the mean of the distribution shifts [1]). To understand

the effect of an increasing frequency of warm events, one

could have used asymmetrical climate distributions, such as

the generalized extreme value (GEV) distribution developed

within the extreme value theory, which are designed to

address the data sparseness problems in the tails of the distri-

bution due to the rarity of extreme events [10,49]. In our case

study, we could not apply such a distribution because our

functional relationships between SST and vital rates were

based on SST averaged over large temporal and spatial

scales. Within extreme value theory, GEV distributions are

used to model the largest or smallest observations. For

example, one can use the maximum SST recorded within a

season or a spatial sector—the data are known as block

maxima. For species such as ectotherms that are very sensi-

tive to temperature daily minima or maxima, GEV

distributions are very valuable [10]. However, long-lived

endothermic species, such as black-browed albatross, are

likely to escape cold spells or heatwaves because of their

wide foraging range, their relatively good fasting abilities,

http://rstb.royalsocietypublishing.org/
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or their ability to skip or abandon reproduction during extre-

mely unfavourable events on the breeding grounds instead of

jeopardizing their survival [13,50]. Thus, we believe that

extreme environmental conditions for black-browed albatross

more likely consist of persistent warmer SST over the entire

breeding season and over a wide spatial sector, whereby

their average value is extreme (i.e. a compound ECE, see [7]).

Our framework was based on the normal distribution,

because it was the distribution that best fitted our historical

SST. However, one could apply the t-location-scale distri-

bution that has heavier tails, meaning that it is more prone

to producing ECE values to study the impact of the shape

of a climate distribution on the population growth and

structure (electronic supplementary material, D).

While previous studies have shed light on the respective

role of the mean and standard deviation of the environment,

few have focused on the shape of the distribution of the

environmental variables. The effects of a change in the

shape of the tail of the distribution set by the skew were gen-

erally small relative to those of environmental means or

standard deviations [21,24]. Vasseur et al. [24] applied a trans-

formation of an (initially) normally distributed temperature

distribution to study the respective effects of the mean, stan-

dard deviation and positive skewness on the thermal

performance of 38 ectothermic invertebrate species. They

found that a change in the mean temperature distribution

had a larger impact than a change in variability and skewness

(their fig. 2).

Models are very useful tools to understand the effect of

climatic extremes that are rare, even if such projections

require projecting beyond historical ranges of variability.

Our study has indeed revealed contrasted patterns between

values around the historical range and a wider range that

depend on the climate safety margin. Although, we have pro-

jected the vital rates using functional relationships obtained

with a robust capture–recapture analysis [33], to limit unrea-

listic demographic rates beyond the observed range, we have

limited our wider range of climate parameters to few scen-

arios where we varied the two parameters of the SST

distribution independently. Thus, we could not conduct a

global sensitivity analysis that would require varying several

model inputs simultaneously to account for interactions

among parameters [51].

Finally, our approach focused on the effect of frequency

and magnitude of extreme events on the long-term demogra-

phy. But other ECE characteristics like the duration of a given

ECE or a particular sequence of ECE (i.e. environmental

auto-correlation) might also be important for the population
[10]. Although the duration and sequence of ECE may

affect greatly the transient population dynamics [52], they

are likely to have little effect on the long-term population

growth and structure for a long-lived species [4,53,54].
5. Conclusion
Our empirical study suggests how the direction and strength

of change in population growth rate and population structure

are determined by the mean and standard deviation of an

environmental distribution, and shows that changes in the

frequency and to a lesser extent the magnitude of ECE

impact the demography of this black-browed albatross popu-

lation. Interestingly, our results indicate that a shift in

environmental mean can buffer and even reverse the effects

of ECE on stochastic population growth rate. Species might

therefore be able to cope with ECE. This depends on the mag-

nitude of climate shift and variation in relation to a species’

optimal environmental conditions.
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