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Abstract

Climate impacts are not always easily discerned in wild populations as detecting cli-

mate change signals in populations is challenged by stochastic noise associated with nat-

ural climate variability, variability in biotic and abiotic processes, and observation error

in demographic rates. Detection of the impact of climate change on populations requires

making a formal distinction between signals in the population associated with long-term

climate trends from those generated by stochastic noise. The time of emergence (ToE)

identifies when the signal of anthropogenic climate change can be quantitatively distin-

guished from natural climate variability. This concept has been applied extensively in

the climate sciences, but has not been explored in the context of population dynamics.

Here, we outline an approach to detecting climate-driven signals in populations based on

an assessment of when climate change drives population dynamics beyond the envelope

characteristic of stochastic variations in an unperturbed state. Specifically, we present a

theoretical assessment of the time of emergence of climate-driven signals in population

dynamics (ToEpop). We identify the dependence of ToEpop on the magnitude of both trends

and variability in climate and also explore the effect of intrinsic demographic controls on

ToEpop. We demonstrate that different life histories (fast species vs. slow species), de-

mographic processes (survival, reproduction) and the relationships between climate and

demographic rates, yield population dynamics that filter climate trends and variability

differently. We illustrate empirically how to detect the point in time when anthropogenic

signals in populations emerge from stochastic noise for a species threatened by climate

change: the emperor penguin. Finally, we propose six testable hypotheses and a road

map for future research.
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1 Introduction1

Climate change is expected to have significant effects on biological populations [Ma-2

son et al., 2019]. Many studies have assessed the influence of particular climate variables3

on demographic rates (e.g., survival) and population sizes [e.g., see review Gaillard et al.,4

2013; Jenouvrier, 2013; Reed et al., 2021]. However, while the primacy of climate influence5

is commonly accepted, specific detection and attribution of population trends to anthro-6

pogenic changes in climate is complicated by substantial stochastic noise related to obser-7

vation error (i.e., errors due to measurement imprecision) and process error in biological8

processes (i.e., unexplained variation in true abundance driven by unobserved biotic such9

as species interactions or abiotic processes such as habitat quality, resource variability...)10

and climate variability [Che-Castaldo et al., 2017; Parmesan et al., 2013] (Table 1). Climate11

variability is an important characteristic of the climate system and a driver of popula-12

tion dynamics [Boyce et al., 2006; Vázquez et al., 2015] that may occlude the population13

response to the underlying climate change signal.14

Natural climate variability is noise from unforced variability generated internally within15

the climate system Mann et al. [2021]) (Table 1). Natural variability in the climate system16

occurs over a broad range of temporal and spatial scales, with spectral properties in the17

seasonal, interannual to decadal bands. It arises from different sources, including vari-18

ations that are (1) driven by a periodic external forcing, like the diurnal or the seasonal19

cycle of insolation, (2) due to the non-linear interplay of feedbacks within the climate20

system, such as coupled mode of variability (e.g. El Niño-Southern Oscillation, North21

Atlantic Oscillation, Pacific Decadal Oscillation), and (3) associated with random fluctua-22

tions in the external or internal climate system [Ghil, 2002]. In addition, climate change is23

characterized by an anthropogenic climate change signal (Table 1). This secular trend is24

the deterministic response of the climate system to an external forcing driven by anthro-25

pogenic emissions of greenhouse gases and changes in land use. Hence, the detection of26
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anthropogenic forced change is a signal to noise problem.27

To detect and attribute the threats to a species posed by climate, climate-driven sig-28

nals in population should be distinguished from stochastic noise. The concept of time29

of emergence (ToE) exactly does that: it identifies when the signal of anthropogenic cli-30

mate change can be formally distinguished from noise associated with natural variability31

(Table 1). In climate science, the ToE has been studied extensively [Hawkins et al., 2020;32

Hawkins & Sutton, 2012]. It is used to detect climatic changes and to describe whether33

climate changes are potentially beyond the known natural environmental variability of34

ecosystems [Giorgi & Bi, 2009; Mahlstein et al., 2013].35

Although, this concept of ToE has yet to be formally applied to ecological time se-36

ries, some studies have quantified when novel climate conditions relevant for ecological37

processes will emerge from natural variability. For example, Beaumont et al. [2011] have38

characterized the standard deviation (SD) of surface air temperature for a baseline pe-39

riod (1961-1990) and then evaluated the number of months that the temperature exceeds40

2 SDs by 2070 for various ecoregions of exceptional biodiversity. They found that more41

than 83% of terrestrial and freshwater ecoregions will be exposed to temperature exceed-42

ing 2 SDs by 2070.43

The ToE explicitly characterizes the point in time when anthropogenic climate change44

can be formally distinguished from noise associated with natural variability. Hence, it45

informs on how fast changes exceed natural variability and can help prioritize decisions46

about when, where and for which conservation and management actions may be neces-47

sary. Some studies have characterized explicitly the ToE of ecosystem drivers in marine48

ecosystems [Henson et al., 2017; Schlunegger et al., 2020]. For example, Henson et al. [2017]49

found that climate change signals of pH and SST emerge rapidly while climate change50

trends in interior oxygen content and primary productivity emerge later. In terrestrial51

ecosystems, Rojas et al. [2019] focused on the timing when the precipitation changes will52

emerge outside the range of natural variability during the 21th century relevant for agri-53
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cultural activities. They found early timing of emergence in precipitation trends for the54

production regions of four major crops (wheat, soybean, rice, and maize) even under a55

low-emission scenario. Sorte et al. [2019] characterized the seasonal and spatial variations56

in the emergence of novel climates characterized by precipitation, minimum and maxi-57

mum temperature, along the migration routes of 77 passerine bird species. They found58

that earlier ToE occur for migrants that winter within the tropics. However, none of these59

studies have applied directly the concept of ToE to time series of population dynamics.60

Here, we apply the concept of ToE to characterize climate-driven signals in popula-61

tion dynamics. We present a new perspective on detecting climate-related impacts in62

populations by characterizing the ToE in population growth rate (herefater, ToEpop), the63

point in time when climate-driven signals in population dynamics can be quantitatively64

distinguished from noise associated with year-specific stochastic variations in population65

growth rates (Fig. 1). While in climate science the noise is associated with climate nat-66

ural variability, applying this approach to population dynamics does not exclude other67

sources of noise (e.g., observation and process errors; demographic and environmental68

variability, the later being driven by fluctuations in physical habitat, resource availability,69

and biological interactions).70

For species threatened by climate change, ToEpop can represent the time at which the71

population will detectably decline to a level below its historical variability. This point72

in time potentially corresponds to the time at which the species will be exposed to high73

extinction risk, to the time at which individuals will migrate massively to track ecolog-74

ical niches, or to the time at which individuals may have to adapt to new conditions75

through evolutionary adaptations. The earlier the ToEpop occurs, the faster novel condi-76

tions emerge out of the natural range of variability, the faster the population will reach77

a non-historical level, with less time for the organisms to adapt or migrate. The ToEpop78

is one illustrative metric that acknowledges the dual role of natural variability and an79

anthropogenic climate change signal, also useful for populations increasing under cli-80
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mate change [Román-Palacios & Wiens, 2020; Stephens et al., 2016]. Importantly, ToE al-81

lows meaningful comparative studies of when the signal of anthropogenic climate change82

emerges from natural variability across ecosystem drivers [Henson et al., 2017], species83

[Sorte et al., 2019], ecosystems [Beaumont et al., 2011] and for future socio-economic pro-84

cesses relevant for climate mitigation [Schlunegger et al., 2020].85

From a conceptual viewpoint, ToEpop occurs earlier when the slope of the popula-86

tion climate-driven trend is large and/or when the population variability is small (Fig.87

1). Both the population climate-driven trend and variability depend on the species’ life88

history and the functional relationships between climate and the demographic rates (Bar-89

raquand & Yoccoz [2013]). Specifically, species of both plant and animal kingdoms can90

be ranked along a main axis of life history variation, the so called "slow-fast continuum"91

[Gaillard et al., 2016; Oli, 2004; Sæther, 1987; Salguero-Gómez et al., 2016; Stearns, 1983].92

Species with fast life history are characterized by early maturity, high reproductive out-93

put and short lifespan; while species with slow life history have opposite characteristics.94

Previous work has shown that depending on their position along this continuum, species95

exhibit contrasting demographic responses to climate change with various spectrum of96

variability and amplitude of the response [Compagnoni et al., 2021; Doak & Morris, 2010;97

Jenouvrier et al., 2005; Morris et al., 2008; Paniw et al., 2017]. In addition, the population98

responses to climate change depend on the function that links climate variables to de-99

mographic rates (survival, growth, reproduction) that drive population growth rate and100

structure (i.e. functional relationships, Fig. S 1).101

After briefly reviewing the time of emergence in climate (section 2), we present this102

concept in the context of population dynamics (section 3). Then, we characterize and103

compare the time of emergence of climate-driven signals in population dynamics in a104

theoretical context to address five questions (section 4):105

• How does ToEpop in populations relate to ToE in climate?106

• How does ToEpop vary across life histories (e.g. slow- fast species)?107
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• How does ToEpop vary across demographic processes (e.g. survival, reproduction)?108

• How does ToEpop vary among different functional relationship between climate and109

demographic rates?110

• Do some species, demographic processes or functional relationship magnify the sig-111

nal of anthropogenic climate change?112

We find that different life histories (e.g., long vs. short-lived species) and demographic113

processes by which climate affects the population (i.e., through survival, reproduction)114

provide different “scale-dependent” filters so that some life histories magnify signal-to-115

noise ratios while other demographic dynamics prolong ToEpop. Furthermore, to illustrate116

our theoretical results, we quantify the ToEpop of an iconic species endangered by climate117

change: the emperor penguin (Aptenodytes forsteri) [Jenouvrier et al., 2021] (section 5).118

Finally, we propose a set of six testable hypotheses based on the patterns of ToE in climate119

(hereafter ToEclimate) and the demographic processes across life histories and propose a120

road map for future studies on the ToEpop (section 6).121

2 Time of emergence in climate122

The concept of ToEclimate has been discussed for several decades in the climate sciences123

with studies attempting to detect the carbon dioxide warming signal published more than124

80 years ago ([Callendar, 1938; Revelle & Suess, 1957], see review in Hawkins et al. [2020]).125

The time of emergence has been characterized in temperature [Mahlstein et al., 2011],126

precipitation [Giorgi & Bi, 2009], climate extremes [King et al., 2015], in sea level [Lyu127

et al., 2014], in Arctic climate [Landrum & Holland, 2020] and biogeochemical variables128

[e.g., Henson et al., 2017; Long et al., 2016; Schlunegger et al., 2020].129

Different methods have been used to quantify ToEclimate, most of them using climate130

model simulations (but see Hawkins et al. [2020] for an application using observation131

of temperature). The common methods for estimating ToEclimate are the signal threshold132
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method (section 3), and the signal-to-noise ratio method with a particular cutoff [Hawkins133

& Sutton, 2012]; a variant of this approach is the identification of the signal-to-noise ra-134

tio using a predefined threshold across multiple consecutive years (refereed as the ex-135

ceedance threshold) [Mora et al., 2013]. Various statistical methods have been developed,136

from statistical test to assess for significant differences between time periods [Zappa et al.,137

2015], estimation of the standard error of the regression to estimate the lead-time required138

for a linear trend to emerge from natural variability [Mahlstein et al., 2012], development139

of hierarchical statistical state-space model [Barnhart et al., 2016] or artificial neural net-140

works [Barnes et al., 2018].141

Recently, the availability of large ensembles of climate (or Earth system) models have142

open new doors to quantify climate natural variability and hence evaluations of the ToEclimate.143

An ensemble is a collection of coupled climate simulations (Table 1) that are integrated144

in parallel, typically with small differences in initial conditions applied to each ensemble145

member. Climate model generate internal variability as a product of interactions between146

components internal to the climate system [Hasselmann, 1976]. Since the climate system147

is chaotic, perturbations in initial conditions grow with time, randomizing the phase of148

natural variability and leading to spread across the ensemble. This spread can be inter-149

preted as a measure of the amplitude of natural climate variability. As all the ensemble150

members are subject to the same external forcing (i.e., emissions scenario), the determin-151

istic response of the climate system can be assessed as the mean across the ensemble152

members, which effectively filters out the noise associated with natural variability [Kay153

et al., 2015]. Modeling centers usually contribute a small number of ensemble members154

to international climate change projection assessments, typically ranging from 3 to 10 en-155

semble members for a given model. Large ensembles with ensemble sizes ranging from156

30 to 100 members permit climatologists to compute emergence thresholds to formally157

consider the uncertainty in the forced response due to natural climate variability [Barn-158

hart et al., 2016].159
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Here, we use signal threshold method (section 3) based on a large ensemble by con-160

structing prediction interval of the climate and population projections, and estimate the161

time taken by the system to emerge from the background of natural variability [Barnhart162

et al., 2016]. For example, the left part of Figure 2 shows an idealized climate trajectory163

corresponding to a single ensemble member (red line) and the associated envelope of nat-164

ural variability based on a 95% prediction interval (gray). ToEclimate is the time when the165

projected future conditions under the influence of climate change, “forced conditions”166

(red lines), exceeds a pre-defined threshold for emergence that is based on the histori-167

cal unperturbed conditions (gray area, with the horizontal line illustrating the baseline168

threshold at which climate change is defined to emerge).169

The emergence thresholds are typically based on the percentile of the distribution of170

the historical and forced projections. They define the prediction intervals at which the171

signal of climate change emerges from the natural climate variability. We present the re-172

sults for one threshold of wide confidence envelope with a 95% prediction interval based173

on emergence thresholds defined by the 2.5 or 97.5 percentile values of the distribution,174

where impacts are triggered by the extreme historical conditions only. The analysis with a175

narrow confidence envelope with emergence thresholds defined by the 20 or 80 percentile176

values of the confidence interval (i.e. 60% prediction interval) is shown in appendix (Fig.177

S 3). In that case, the system is likely highly sensitive to climate as severe impacts are178

thought to occur for lower percentile of the climate conditions distribution experienced179

during the historical run. Our results are qualitatively the same between 95% and 60%180

prediction intervals (Figs. 3 versus S 3).181

In our simulations, we construct a large ensemble of climate time series for both the182

historical and forced environment for various natural climate variability (ff2) and warm-183

ing trends (¸). Specifically, the historical climate time series are obtained by sampling184

into a normal distribution – centered on a zero mean and with a specific standard devia-185

tion ff – with independent draws each year (i.e. Independent and Identically Distributed186
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random variables (IID)). The forced climate time series are calculated by adding to this187

natural variability a linear trend of slope ¸. In that context, this ToE calculation in an188

IID environment is directly related to the signal-to-noise ratio: ToE = 2P
SNratio

with P the189

climate value corresponding the threshold of the prediction interval.190

In our theoretical study, we explore a range of parameters consistent with the observed191

standard deviation of the inter-annual temperature variability (Fig. 1 of Hawkins & Sut-192

ton [2012]) and the projected climate warming by 2100 (IPCC), with ffC ∈ [0:2 1:5] and193

¸C ∈ [0:01 0:15] (Fig. 2). In our empirical example, we used 40-members from the Com-194

munity Earth System Model Large Ensemble (CESM-LE, Kay et al. [2015]) to characterize195

the confidence envelope of sea ice, hence the ToEclimate and ToEpop.196

3 Conceptual model of the time of emergence in popula-197

tion198

The time of emergence depends both on (1) the time varying signal, T (t) estimated as199

the long term monotonic trend (red trend on Fig. 1) and (2) the noise based on the range of200

natural variability over some historical period (variations of the black time series on Fig.201

1, section 2). Hence, it is important to understand how the climate-driven trend in pop-202

ulation growth rate and its year-specific stochastic variations are related to climate trend203

and variability (section 3.2, Fig. 1). Although, previous theoretical studies have shown204

that the variance in annual population growth rates depends on the variance in climate205

in a stationary environment [Engen et al., 2005], we still lack a theoretical understanding206

on how the population trend and variability respond to climate in a non-stationary en-207

vironment. Hence, after introducing the methods to estimate the time of emergence in208

population (section 3.1), we discuss conceptually the links between the trend and vari-209

ability of population and climate (section 3.2, Fig. 1). In addition, to partially shedding210

light on those concepts, we build on previous theoretical studies [Engen et al., 2005; Morris211

et al., 2008] to show analytically how the variance in annual population growth rates can212
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be related (linearly for small environmental changes) to the climate variance in a stochas-213

tic and stationary environment by explicitly accounting for the functional relationship214

between climate and demographic rates (section 3.3, eq. 8).215

3.1 Methods to estimate ToEpop216

As in climate (section 2), population ecologists can use various methods to estimate the217

time of emergence in population ToEpop. Figure 2 illustrates the signal threshold method218

used here (section 2), where the time of emergence is the first year when the projected fu-219

ture state of a variable crosses a pre-defined emergence threshold based on the historical220

variations. For example, the projected future state of a population can be depicted by the221

gray envelope of future projections (red lines on Figs. 1, 2) under a specific forcing sce-222

narios based on a range of emissions of greenhouse gases (GHGs), while the emergence223

threshold can be determined from the gray envelope of historical population projections224

(black lines on Figs. 1, 2)).225

In ecological impact studies, the emergence threshold (e.g., horizontal lines on Figs. 1,226

2) can be interpreted as thresholds beyond which management-relevant impacts will oc-227

cur and depend on the management sensitivity to changes in climate conditions. Indeed,228

emergence thresholds are not necessarily set at the extreme 2.5% high or 2.5% low of the229

range of historical population variations (∼ 2ff) usually used in risk impact studies but230

can be set at any thresholds at which the decline or increase in population is perceived as231

unsustainable. For example, high management sensitivity threshold may be desirable for232

increasing species, whereby management actions are triggered by low emergence thresh-233

olds e.g. 60% prediction interval of population growth distribution during the baseline234

period (Fig. S 3).235

3.2 Factors influencing the ToEpop236

Figure 2 shows that the time of emergence in populations varies among species. From237

a conceptual viewpoint, this depends on the sensitivity of the population growth rate238

to climate: @–
@C

(Fig. 1). This sensitivity can be decomposed into two main components.239
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First, it depends on the sensitivity of the demographic rates themselves „i (e.g. survival,240

reproduction) to climate @„i
@C

(panel 1 in the demographic rates box on Fig. 1). Therefore,241

the functional relationships between climate and the demographic rates likely play a key242

role in the sensitivity of the population growth rate to climate. Second, @–
@C

depends on243

the sensitivity of the population growth rate to demographic rates @–
@„i

(panel 2 in the244

demographic rates box on Fig. 1). The latter is influenced by the species’ life history245

[Saether & Bakke, 2000]. For instance, the “demographic buffering” hypothesis posits246

that in long-lived species, adult survival is expected to be buffered against environmental247

changes (environmental canalization sensu Gaillard & Yoccoz [2003]) and reproduction248

is expected to be more variable with stronger functional relationships with climate. The249

opposite patterns are expected in short-lived species (see Hilde et al. [2020] for a review).250

Therefore, demographic rates of species with contrasting life histories are expected to251

be differently influenced by climate, influencing in turn the sensitivity of the population252

growth rate to climate, the variance in annual population growth rates and the climate-253

driven change in population. As a result, time of emergence in populations is expected to254

vary among species, but the pattern of such variations are difficult to predict conceptually.255

Indeed, in next section, we show that the magnitude of the demographic response to256

climate (i.e. @„i
@C

) increase both the variance and the climate-driven trend of the population,257

with effect size that vary with the mean state of climate (see Supplementary Appendix 1258

and Fig. 1), hence unknown resulting impact on ToEpop.259

3.3 Population variability in a stationary environment260

In this section„ we show how the variance in annual population growth rates depends261

on the variance in climate, ff2, and the functional relationship between the mean climate C262

and demographic rates, assuming a stationary environment (i.e., one in which the mean263

C and variance ff2 do not vary over time). For a structured population model of the264

form nt+1 = Atnt (see section 4, Fig. 1) in a stationary environment characterized by265

small variations, the environmental variance of the population growth rate –t (such that266
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Nt+1 = –tNt) can be approximated (first degree Taylor approximation) by [see Engen et al.,267

1998, 2005]:268

var(–t) =
X
i ;j

@–

@„i |„i=„i

@–

@„j |„j=„j
Cov(„i ; „j) (1)

with „, the vector of mean demographic parameters including fertility, survival of juve-269

niles and adult and maturation rates (Table 1).270

This variance is important as it influences the long-term stochastic growth rate of the271

population:272

log –s = lim
T→∞

1

T
log ∥AT−1 · · ·A0n(0)∥: (2)

Let us assume that the environment affects only one demographic rate, „i (the other rates273

„j remain constant over time), then Eq 1 simplifies as:274

var(–t) =

„
@–

@„i |„i=„i

«2

var(„i t): (3)

The demographic rate „i is a function of a climatic variable Ct . „i is also affected by275

other unknown variables generating environmental stochasticity ›, such as observation276

and process errors. › is a stochastic environmental noise of mean 0, and variance var(›t)277

and is considered as an additional variability independent from C. For example, let’s278

assume that „i is an inverse logit function of a linear function of C:279

„i t = „i(Ct ; ›t) = g(y = ˛0Ct + ˛1 + ›t); (4)

where ˛0 and ˛1 are the constant regression coefficient of the functional relationship be-280

tween climate and the demographic rate (Fig. 1); g is the inverse logit link function so that281

„i ∈ [0 1]. Applying the second order Taylor expansion, the variance of the demographic282

rate „i is:283

var(„i t) ≈ (g ′(y))2var(y) =

„
@„i
@C |C=C

«2

(˛2
0ff

2 + var(›t)
2) (5)
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with ff2 the variance of the climatic variable C and284

@„i
@CC=C

= y ′
exp(−y)

(1 + exp(−y))2 = ˛0
exp(−˛0C − ˛)

(1 + exp(−˛0C − ˛1))2
(6)

.285

Hence Eq 3 can be simplified as:286

var(–t) =

„
@–

@„i „i=„i

«2„
@„i
@C |C=C

«2

(˛2
0ff

2 + var(›t)
2): (7)

Applying the derivative chain rule and assuming › = 0, i.e., that the demographic rate287

„i is a deterministic function of climate, like in our simulations, we obtain:288

var(–t) = ˛2
0ff

2

„
@–

@C |C=C

«2

(8)

Hence the year-specific stochastic variation depends on climate internal variability289

ff2, the stochastic environmental variability, as well as the sensitivity of the population290

growth rate to the demographic rate and the sensitivity of the demographic rate to climate291

in a stationary environment that both define the overall the sensitivity of the population292

growth rate to climate.293

In a non-stationary environment (Fig. 1), C is changing, and var(–) varies, in general,294

non-linearly with C depending on the sensitivity of the population growth rate to climate295 `
@–
@C

´
(see Supplementary Appendix 2 and Fig. 1), this latter also influences the population296

trend. Hence, it is difficult to posit a priori how ToEpop will vary with the signal and297

noise in climate across life histories and demographic processes for various functional298

relationship between climate and demographic rates. In section 4 we use a simulation299

framework to answer our five questions posed in the introduction, and discuss six testable300

hypotheses in section 6.301
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4 Time of emergence in populations302

4.1 Population projections303

To project the population dynamics of species with four contrasting life histories along304

the slow-fast gradient (Table 2), we use a simple two-stage climate-dependent population305

matrix model that permits to explore some of the diversity of life cycles (Caswell [2001];306

Neubert & Caswell [2000], Fig. 1). The model distinguishes non-reproducing juveniles307

and reproducing adults (see life cycle on Fig. 1). The population is projected from year t308

to year t+1 by:309

nt+1 = A(„[(Ct)])nt (9)

with nt the population vector made of the abundances of juveniles and adults and A310

the population transition matrix including demographic rates „[(Ct)] that are defined by311

specific functional relationship with climate C (Figs. 1, S 1). The demographic rates are312

the survival of juveniles Sj and adults Sa, the development rate of juveniles into adults ‚313

(maturation rate), and the fertility of adults F .314

A =

264Sj(1− ‚) F

Sj‚ Sa

375 (10)

This model permits the simulation of population dynamics of species with four con-315

trasting life histories with increasing generation time (the mean age of mothers at child316

birth), which is a reliable metric to rank species along the continuum of life history varia-317

tion [Gaillard et al., 2005]). Species differ in terms of reproductive strategy (semelparous318

vs. iteroparous), age at first reproduction (precocial vs. delayed) [Neubert & Caswell,319

2000] and lifespan (short vs. long) and thus range along the slow-fast continuum of life320

history variation [Gaillard et al., 2016] from fast species with short generation time, high321

reproductive output and short lifespan (species 1) to slow species with opposite char-322

acteristics (species 4) (Table 2). For example, species 1 represents organisms with rapid323
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life cycle development, only one reproductive event in their lifetime and high fecundity324

(b ∼ 168) (Table 2), such as many annual plants and insects. Species 2 are short-lived325

iteroparous species producing 7-8 offspring per unit time per female such as small mam-326

mals and birds. At the other end of the spectrum, species 4 are long-lived species with327

delayed first reproduction, low reproductive output per breeding event and long lifes-328

pan such as primates, whales, or albatross. While these species do not capture the full329

diversity of life history, especially for plants that exhibit a vast amount of life-history330

variations, they provide a reasonable sample of characteristic traits across a representa-331

tive range. Indeed, Salguero-Gómez et al. [2016] showed that the first axis of life-history332

variations of 418 plant species worldwide representing the slow-fast continuum explains333

34% of the variation in plant life-history strategies, while it explains even a higher per-334

centage of variations (60–80%) among mammals [Oli, 2004], birds [Sæther, 1987], and335

reptiles [Bauwens & Diaz-Uriarte, 1997].336

We include the effects of climate acting on only one demographic parameter at a time337

„i and assume that the inter-annual variability in population growth rates is induced by338

climate only (i.e. › = 0 in eq.7). In each case, the functional relationship between demo-339

graphic rates and climate „i(C) is either linear, sigmoid or a bell shaped curve functions340

(Fig. 1, Fig. S 1) and is defined by the equation 4 with › = 0 and ˛1 = „ih the mean341

demographic parameter in the historical unperturbed environment that leads to a stable342

population with C = 0 (Table 1). Specifically, relationships can be linear functions on the343

real scale, with344

„i(Ct) = ˛0Ct + „ih (11)

and results are shown only on supplementary figure S 4 for all demographic rates. Rela-345

tionships can be sigmoid functions, with346

„i(Ct) == g(y = ˛0Ct + „ih) (12)
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and g the inverse logit link function. Relationships can be bell shaped curves functions347

with quadratic functional relationship between demographic rate and climate:348

„i(Ct) == g(y = ˛0C
2
t + „ih) (13)

For most demographic rates, g is the inverse logit link function so that „i ∈ [0 1], but not349

for fertilities of species 1 to 3 that vary on the real scale.350

To characterize a reasonable range of demographic rates and lifetime outcomes in the351

set of projected environmental conditions, ˛0 vary in a specific range that depends on352

the functional relationship. For linear functional relationships between climate and de-353

mographic parameters (equation 11), the slope varies as: ˛0 ∈ [−0:03 0:03] (Fig. S 4).354

For sigmoid functional relationships the slope varies as: ˛0 ∈ [−0:15 0:15] (Fig. 3a). For355

bell-shaped functional relationships the slope vary as: ˛0 ∈ [−0:025 − 0:01] (Fig. 3b).356

We calculate the time of emergence of population using the threshold methods fol-357

lowing the same methodology as for climate (section 2). We assume that the historical358

population is stable in an unperturbed stationary environment with C = 0 and variance359

ff2; i.e. the stochastic long-run growth rate is null: ln(–s) = 0 (calculated from equation 2).360

ln(–s) depends on variance in annual population growth rates var(–) [Lande et al., 2003;361

Tuljapurkar & Orzack, 1980] that is driven by the natural climate variability ff2 (section362

3). Climate fluctuations that increase the variance of demographic rates usually decrease363

the stochastic long-run growth rate of populations [Engen et al., 2005; Lande et al., 2003;364

Tuljapurkar, 1982]. Hence, to set ln(–s) = 0 across environmental historical conditions, the365

vector of demographic parameters „ is slightly tuned for each environmental variability366

ff.367

4.2 Time of emergence in population depends on climate variability and trend368

We found that ToEpop can be predicted by the climate signal-to-noise ratio and occurs369

earlier as the signal-to-noise in climate becomes larger (Fig. 3). Indeed, the ToEpop is370
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linearly and positively correlated to the ToEclimate (Fig. 3) as both the variability and trend371

in population are positively related to the natural variability and trend of climate (Fig. 4).372

Remarkably, the ToEpop can be earlier or later than the ToEclimate, depending on the life373

history strategies and the demographic processes by which climate affects demographic374

rates (Fig. 3). For example, the ToEpop is earlier than ToEclimate for iteroparous species for375

which climate affects maturation or adult survival rates for long-lived species (species376

3 & 4) or juvenile survival for short-lived species (species 2). Hence, some life histories377

may permit an earlier detection of the time at which the signal of anthropogenic climate378

change emerges from the noise of natural climate variability379

4.3 Time of emergence in population across life histories and demographic processes380

The ToEpop can be predicted by life histories and demographic processes (Fig. 3, Fig. 5).381

Across life histories, the ToEpop is the largest for species 1 (semelparous short-lived strat-382

egy), which have on average the largest population variations (Table 2, Fig. 5). Across383

demographic processes, the ToEpop is the longest for the fertility (Table 2). For iteroparous384

species, the ToEpop depends on the sensitivity of the population growth rate to the demo-385

graphic rate affected by climate and occurs earlier as the sensitivity increases (Fig. 5). As386

a consequence, the ToEpop occurs later as species longevity increases when climate affects387

fertility and juvenile survival. However, the opposite pattern occurs when climate affects388

adult survival and maturation rate: ToEpop occurs earlier for long-lived than short lived389

species (Fig. 3, Table 2).390

4.4 Time of emergence in population among different functional relationships be-391

tween climate and demographic rates392

Surprisingly, the type of functional relationship between climate an demographic rates393

and its slope have little effect on the ToEpop (Fig. 3, Fig. 6). While the variability of the pop-394

ulation in the historical environment is smaller for bell shape versus linear relationships395

(see eq 9 section 3), both the trend and variability are larger for bell shape relationship396

in the non-stationary forced environment (Table 3). Indeed, the variability in the forced397
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environment increases substantially compared to the variability in the historical environ-398

ment for bell shape, while it does not change for linear relationships (Table 3). However,399

the ratio of the trend to the magnitude of variability is very similar between bell shape400

and linear relationship, and the patterns of time of emergence are thus very similar re-401

gardless of the shape of the functional relationship. The slope of those relationships has402

also little impact of the ToEpop relative to life histories and demographic processes, prob-403

ably because it affects both the trend and variability simultaneously (Fig. 1).404

5 Time of emergence of emperor penguin population405

The emperor penguin is a relevant example to test our theoretical predictions, specif-406

ically that long lived species (comparable to species 4) may permit an earlier detection407

of anthropogenic climate change influences in population growth rates (Fig. 3, section408

4.2). Penguins are threatened by future climate change as they rely on sea ice for breeding409

substrate and warming is driving reductions in sea ice cover [Jenouvrier et al., 2020, 2014,410

2021]. Adult survival is strongly affected by sea ice during four seasons of the life cycle411

resulting in complex, non-linear bell shape relationships [Jenouvrier et al., 2012]. Adult412

survival is maximized at intermediate levels of sea ice because neither the complete ab-413

sence of sea ice (low food resources and/or high predation), nor heavy and persistent sea414

ice (longer foraging trips), provide satisfactory conditions. Thus, in contrast to our the-415

oretical examples, relationships between climate and demographic rates are even more416

complex for the emperor penguin. Indeed, sea ice affects a multitude of demographic417

rates during various seasons, with different functional responses among sexes. Further-418

more, other processes contribute to the variability in population growth rate (i.e. › >> 0419

in eq.7, related to sampling variance and process variance due to unmeasured environ-420

menal conditions such as local fast ice dynamics or large-scale atmospheric perturbations,421

see Trathan et al. [2020] for a review).422
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5.1 Emperor penguin life cycle423

The life cycle of emperor penguins includes 5 stages according to breeding status and424

sex (Fig. 7): male and female pre-breeders (birds that have yet to breed for the first time),425

breeding pairs, and male and female non-breeders (birds that have bred before but do426

not do so in the current year). The demographic rates describing the transitions between427

these stages from year t to t + 1 includes: the probability that an individual of a given428

stage returns to the breeding site, the probability of mating as a function of the availability429

of potential mates, the probability of breeding success (raising an offspring given that the430

female lays an egg), the primary sex ratio (fixed at 0.5), the survival of offspring during431

the first year at sea, and the annual survival of pre-breeders, non-breeders and male and432

female breeders.433

The functional relationships between demographic parameters and sea ice concentra-434

tion anomalies depend on four seasons (described in detail in Jenouvrier et al. [2012]):435

1. The non-breeding season from January to March,436

2. The arrival, copulation and laying period (April–May), hereafter called the laying437

period,438

3. The incubation period (June–July),439

4. The rearing period (August–December).440

Relationships are sigmoid functions, with linear (˛2 = 0) or quadratic functional relation-441

ship between demographic rate and sea ice x on the logit scale:442

„i(x(t)) == g(y = ˛0 + ˛1x(t) + ˛2x(t)
2 + ›t) (14)

including the parameter estimates ˛k and the environmental stochasticity › generated by443

other unknown variables. › is a stochastic environmental noise of mean 0, and variance444
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var(›t) and is considered as an additional variability independent from sea ice. g is the445

inverse logit link function so that „i ∈ [0; 1].446

5.2 Emissions scenario, climate model and climate outputs447

The climate outputs from multiple AOGCMs (Atmosphere Ocean General Circulation448

Model) are publicly available in a standardized format on the Coupled Model Intercom-449

parison Project (CMIP) website. CMIP5 provides a framework for coordinated climate450

change experiments for assessment in the IPCC Fifth Assessment Report (AR5) in 2014451

using four Representative Concentration Pathways (RCP) describing future GHG con-452

centration trajectories based on socio-economic assumptions. Newer emissions forcing453

scenarios have been developed and used for climate projections in CMIP6 for the Sixth454

Assessment Report (AR6) released in August 2021. These “Shared Socioeconomic Path-455

ways” [O’Neill et al., 2016](SSPs) differ in the time evolution of specific climate forcers,456

such as GHG and aerosol emissions, but bracket the same range in energy flux varia-457

tions in the atmosphere caused by anthropogenic factors of climate change (i.e., radiative458

forcing range) as the RCP scenarios.459

There are several sources of uncertainties in climate projections that affect the time460

of emergence, including the structural uncertainty associated with the different climate461

models used to make projections, and the scenario uncertainty associated with different462

future emission pathways [Deser et al., 2012; Hawkins & Sutton, 2009; Schlunegger et al.,463

2020]. However, here we use one climate model and one scenario to obtain the sea ice464

outputs from a large ensemble [Kay et al., 2015] for illustrative purposes, as large ensem-465

ble simulations using several scenarios from several climate models were not available at466

the time of our analysis.467

Specifically, we used RCP 8.5 high emission scenario [Meinshausen et al., 2011], that468

represents a future in which greenhouse gas emissions continue unabated. RCP 8.5 is con-469

sidered as a useful scenario for quantifying physical climate risk, especially over near- to470

midterm policy-relevant time horizons [Schwalm et al., 2020]. Indeed, the total cumula-471
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tive CO2 emissions since 2005 projected under RCP8.5 by 2020 are in close agreement with472

historical observed total cumulative CO2 emissions [Schwalm et al., 2020]. In addition,473

the total cumulative CO2 emissions since 2005 projected under RCP8.5 by 2050 agree well474

with energy forecasts under current and stated policies by 2050, with still highly plausible475

levels of CO2 emissions by 2100 [Schwalm et al., 2020].476

We use sea ice outputs from a large ensemble produced by the Community Earth477

System Model (CESM), development of which is coordinated by the National Center for478

Atmospheric Research (NCAR), allowing us to characterize the natural climate variability479

[Kay et al., 2015]. In addition, the CESM model resolves very well the Antarctic sea ice480

conditions that influence the most emperor penguin population growth rates [Jenouvrier481

et al., 2020].482

5.3 Sea ice and penguin projections483

We calculate ToEpop for the 54 known colonies around the coast of Antarctica ([Fretwell484

et al., 2012; Fretwell & Trathan, 2009], Fig. S 7) following the approach outlined in section485

2 based on projections of population growth rates driven by sea ice changes. Specifically,486

to project emperor penguin population growth rate at each colony, we link a climate-487

dependent demographic matrix model to sea ice projections (section 5.2). Our sea ice-488

dependent demographic model includes demographic rates that depend on the sea ice489

conditions during four seasons (non-breeding, laying, incubating and rearing, section 5.1490

), and accounts for differences in the impact of sea ice conditions on adult survival be-491

tween sexes (see Supporting information S3 for more details). These relationships and492

their estimations are described in detail in Jenouvrier et al. [2012]. The model includes493

sources of stochasticity and uncertainties: (1) parameter uncertainty describes statisti-494

cal uncertainty in the estimates of demographic parameters (e.g., survival, and their re-495

sponses to sea ice concentration anomalies) and (2) process variance (i.e., environmental496

stochasticity) reflects true “unexplained” temporal variance in demographic rates that is497

not accounted for by sea ice, which combined reflect the term var(›) in eq.7, section 3. As498
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we ignored these context specific uncertainties in our theoretical simulation, we present499

the results with two scenario: with or without var(›).500

For our historical environment we used sea ice projections from 1920-1950, and for501

the forced environment we used sea ice projections from 1950-2100 under climate sce-502

nario RCP 8.5 (section 5.2). We assume that the population is stable in the historical,503

unperturbed environment and our emergence threshold are based on the 95% prediction504

interval. This permit us to characterize when anthropogenic signals in emperor penguin505

populations are very likely to emerge from stochastic noise.506

5.4 Time of emergence in sea ice and penguin507

The ToEclimate in sea ice varies among seasons and colonies (Fig. 8, Fig. S 5) and as508

a consequence, the ToEpop varies among colonies. The ToE in sea ice and populations509

are earlier for colonies in East Antarctica, than in the Ross, Bellingshausen, Amundsen510

and Weddell Seas (Fig. S 7). The variability and trend are negatively related (Fig. S 6), so511

regions showing a larger signal also exhibit larger variability in climate and population as512

sea ice loss are projected into the future. When the environmental stochasticity generated513

by other factors than sea ice (var(›)) is ignored, the ToEpop occurs earlier than climate for514

most colonies, except the ones located from Enderby Land to Terre Adelie Land in East515

Antarctica for which the ToE in sea ice is the earliest. When parameter uncertainty and516

process variance are included, the ToEpop occurs later than ToEclimate for almost all colonies,517

except the few colonies in the Bellingshausen and Amundsen Seas for sea ice during the518

rearing season.519

6 Discussion520

Anthropogenic climate change has triggered impacts on ecosystems world-wide, yet521

the timing at which these biological impacts can be formal detected has been insufficiently522

described [Beaumont et al., 2011]. Here we focused on detecting climate-driven signals in523

population, but this approach can be applied to climate-related impacts on changes in524
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distribution by accounting for the temporal dynamics in those spatial changes. Hereto-525

fore, changes in distribution are often assumed to depend only on the climate signal and526

analyses using, for example, species distribution models often ignore climate variability527

(but see Zimmermann et al. [2009]).528

We found that the time of emergence of climate-driven signals in population dynam-529

ics ToEpop depends on (1) the magnitude of climate change and variability and (2) life-530

histories and demographic processes by which climate affects the population and we pro-531

pose six testable predictions. In the context of detection and attribution of climate change,532

we find that some life histories magnify signal-to-noise ratios in climate (ToEclimate), en-533

abling observations of populations to yield earlier detection of anthropogenic climate534

change than observations of a climate variable itself— while other demographic dynam-535

ics prolong the detection of anthropogenic climate change relative to ToEclimate.536

In our emperor penguin example, density dependent processes occur because of sex-537

biased mortality in response to sea ice, which displays spatiotemporal autocorrelation,538

affecting reproduction and survival. These dynamics result in complex co-variations539

among demographic rates, and the life cycle is structured in several stages. Our main540

theoretical result – some life histories enable an earlier ToEpop than ToEclimate– is well sup-541

ported by our example when the noise is driven by climate natural variability and all542

complexities arising in natural systems discussed in the following sections are included.543

However, when stochastic variations from observation error and other biotic and abi-544

otic processes other than sea ice natural variability are included, the ToEpop occurs later545

than ToEclimate for almost all colonies. However, sampling and process errors can be re-546

duced by increasing monitoring effort and improving our understanding of how the bi-547

ological systems respond to biotic and abiotic factors. Furthermore, aggregating abun-548

dance across space attenuates the random component of the underlying growth rates549

and may permit a better detection of anthropogenic signals in populations [Che-Castaldo550

et al., 2017].551
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Regardless of whether the stochastic noise associated with other sources than nat-552

ural variability in climate occludes an earlier ToEpop than ToEclimate, the time of emer-553

gence identifies when the signal of anthropogenic climate change in populations can be554

quantitatively distinguished from year-specific stochastic variation. Quantifying ToEpop is555

critically needed to provide relevant cost/benefit evaluations for climate mitigation and556

adaptation strategies, as well as accurate assessments of the risks climate change poses557

to conservation and management of ecosystems [Hawkins et al., 2020; Hawkins & Sutton,558

2012]. In this context, we propose a road map for future research.559

6.1 ToEpop is predicted from ToEclimate560

We find that the ToEpop depends almost linearly on the ToEclimate (Fig. 3). Hence, we561

suggest the following hypotheses.562

[H1] Tropical species may permit an earlier detection of anthropogenic climate change than563

temperate species, especially if temperature in summer affects their demographic rates. Many cli-564

mate studies have shown that the ToE in temperature is earlier for low latitude regions565

than for mid-latitude regions and is of intermediate duration for polar regions [Hawkins566

et al., 2020; Hawkins & Sutton, 2012; Mahlstein et al., 2012, 2011]. The emergence of signal567

of anthropogenic climate warming occurs the soonest in the summer season at low lati-568

tudes [Mahlstein et al., 2011]. The studies of Beaumont et al. [2011] and Sorte et al. [2019]569

support this hypothesis: tropical and subtropical ecosystems, and mangroves, face ex-570

treme conditions earliest than boreal forests and tundra biomes because the low SD com-571

pensate for the relatively small absolute changes [Beaumont et al., 2011]. Passerine bird572

species that migrate between temperate breeding grounds in North America and south-573

ern tropical wintering grounds experience an earlier ToEclimate than species wintering in574

the subtropics [Sorte et al., 2019]. ToEclimate exceeding 2300 occurred only in the northern575

latitudes corresponding to the southern non-breeding grounds of some birds [Sorte et al.,576

2019]. Studies on the thermal tolerance of terrestrial ectotherms also support this hypoth-577

esis. For example, tropical insects are relatively sensitive to temperature change and are578
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currently living very close to their optimal temperature, while species at higher latitudes579

have broader thermal tolerance and are living in climates that are currently cooler than580

their physiological optima [Deutsch et al., 2008].581

[H2] In terrestrial systems, species affected by temperature may yield earlier detection of an-582

thropogenic climate change than species affected by precipitation. Climate studies have shown583

that changes in precipitation are often harder to detect because natural variability in pre-584

cipitation is larger than in temperature [Giorgi & Bi, 2009]. For example, the ToEclimate in585

precipitation extremes does not occur prior to 2100 in many regions [King et al., 2015].586

However, an anthropogenic signal is emerging soon in wintertime heavy precipitation587

events over much of Eurasia and North America, so species in these regions may ex-588

perience earlier ToEpop. However, this hypothesis depends also on the sensitivity of the589

population growth rate to temperature versus precipitation. In a comparative study of590

time series of 165 plants populations around the globe, Compagnoni et al. [2021] found591

that demographic responses to climate are larger for precipitation than temperature, but592

large noise hampers the detection of the impact of precipitation on plant populations.593

[H3] In marine systems, species dependent on the upper ocean biological cycling of carbon,594

photosynthetic activity, or salinity may yield later detection of anthropogenic climate change than595

species affected by sea surface temperature or pH. Several studies found that variables inte-596

grating the effect of invading anthropogenic carbon into the global ocean (e.g. pH) and597

sea surface temperature emerged most rapidly while variables related to the upper ocean598

mixing, associated changes in biological processes (e.g. export of organic matter, pri-599

mary productivity) and salinity, only emerge after several decades [Henson et al., 2017;600

Schlunegger et al., 2020].601

6.2 ToE in population is predicted from life histories and demographic processes602

The ToEpop can be also predicted by life histories and demographic processes that will603

interact with our previous three hypotheses based on the relationships between ToEpop604

and ToEclimate .605
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[H4] ToEpop occurs later in selmeparous species. Semelparous species, such as salmon,606

bamboos, and monocarpic herbs, exhibit a “big-bang reproduction” whereby individu-607

als die immediately after the first reproduction [e.g. Metcalf et al., 2003]. As a conse-608

quence, their population dynamics is often more variable than population of iteroparous609

species. Indeed, the various reproductive events of iteroparous species may be spread610

out throughout their life as a bet-hedging strategy in unpredictable environments, buffer-611

ing the effect of environmental variability on population growth rate [Hilde et al., 2020].612

However, there is little theory available to predict how the degree of iteroparity might in-613

fluence the demographic response to climate. A comparative study found no correlation614

between the degree of iteroparity with population responses to climate in plants [Com-615

pagnoni et al., 2021]. Further work should entail a direct comparison of the influence of616

the generation time and degree of iteroparity on ToEpop.617

[H5] The ToEpop of iteropareous species depends on the sensitivity of the population growth618

rate to the demographic parameter affected by climate (Fig. 5). For population dynamics that619

are mainly affected by the impact of climate on adult survival during the non-breeding620

season (‘tub’ hypothesis, Sæther et al. [2004]), the ToEpop will occurs earlier in long lived621

species than short lived species. This might be the case for many migratory species, when622

the climate conditions affects survival during the migration, and in the non breeding623

quarters [Sorte et al., 2019]. The ‘tap’ hypothesis [Sæther et al., 2004] proposes that en-624

vironmental conditions during the breeding season affect population size the following625

year because it influences the inflow of new recruits into the population. The ToEpop in626

population occurs earlier if climate conditions during the breeding season have carry-627

over effect on demographic rates influencing the number of recruits, as observed in many628

species [e.g. Szostek & Becker, 2015]. Specifically, this will occur when climate affects629

juvenile survival for short lived species and maturation rate for long lived species. Ob-630

viously, the underlying processes of the ‘tub- tap’ effects are not mutually exclusive, and631

multiple demographic rates are affected by climate, that will eventually shorten or pro-632
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long the ToEpop.633

[H6] Iteropareous species can act as earlier indicators of the detection of anthropogenic cli-634

mate change than climate itself. Earlier ToEpop than ToEclimate occurs when climate affects635

the demographic rates that most influence the population growth rate: adult survival636

and maturity for long-lived iteroparous species and juvenile survival for short-lived ones637

(Fig. 3, Fig. 5). This hypothesis is supported by our empirical example: the popula-638

tion growth rate is mostly sensitive to the adult survival [Jenouvrier et al., 2010], which639

is affected by sea ice conditions [Jenouvrier et al., 2012]. Here, we found that the ToEpop640

occurs earlier than ToEclimate when process variance due to other environmental factors641

and demographic parameter uncertainties is ignored (Fig. 8a). In natural system, the642

process variance may be large, obscuring an earlier detection of anthropogenic climate643

change in populations than in climate variables itself (Fig. 8b, Sæther et al. [2007, 2004]).644

However, if the goal is to use earlier indicator species in the detection of anthropogenic645

climate change, it is possible to reduce the demographic parameter uncertainties with646

higher sampling effort and decrease the process variance by a better understanding of647

the factors affecting the demographic processes.648

6.3 Road map for the future649

We provide the first theoretical study of the ToEpop to understand the proximate mech-650

anisms of the impact of climate change and variability and demographic processes using651

a simple model. We illustrate how to use a climate explicit population model to quan-652

tify ToEpop for emperor penguin, and argue that climate-dependent demographic mod-653

els could be developed for several species allowing future comparative analysis. But654

many questions remained unanswered about the effect of more complex climate-driven655

demographic processes occurring in natural systems such as density dependence, auto-656

correlation in climate, co-variation among demographic rates, population structure, and657

multiple climate drivers, to name a few. We propose a road map for future research, and658

acknowledge that we only scratched the surface on these important topics.659
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6.3.1 Comparative studies of the ToE in population using climate explicit population660

models661

Characterizing the time of emergence requires long-term time series to define the his-662

torical unperturbed state. For many species, the unperturbed state benchmark is not663

available as most long-term ecological times series cover only recent decades while pro-664

found global changes were already underway. It is challenging to characterize ToE from665

observations in natural systems using statistical approaches, even in climate sciences.666

Hence, most the climate studies have used climate outputs from atmospheric–oceanic667

global circulation models (AOGCMs) to quantify the ToEclimate [Hawkins et al., 2020; Hawkins668

& Sutton, 2012]. Similarly, we propose to develop climate explicit population models to669

characterize the ToE in population. We have illustrated our approach using a simple670

structured population matrix model [Caswell, 2001], but other demographic, trait-based671

or eco-evolutionary modeling frameworks can be developed.672

We argue that the ToEpop can be quantified for many species already [Doak & Morris,673

2010; Saether et al., 2019; Treurnicht et al., 2016] allowing comparative studies to address674

our specific hypotheses on the variations of ToEpop across regions, ecosystems drivers,675

and species life histories. In recent decades, there is an increase in the number of studies676

measuring the effect of climate accounting for multiple seasonal and carry-over effects677

of climate on the complete life cycle of a species [Cordes et al., 2020; Doak & Morris,678

2010; Iles & Jenouvrier, 2019; Jenouvrier, 2013; Ozgul et al., 2010]. Although fewer stud-679

ies have developed climate-dependent population model, the information is available in680

the literature to integrate the statistical relationships between climate and demographic681

rates into population models. The last step requires an interdisciplinary approach to use682

climate-dependent population models with projections of historical and future climate683

from AOGCMs [Iles & Jenouvrier, 2019; Jenouvrier, 2013]. AOGCMs project (often non-684

linear) changes in climate over time, and critically, provide quantitative estimates of nat-685

ural climate variability [Kay et al., 2015]. We hope that ecologists will take advantage of686
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the free availability of climate outputs in both the pre-industrial, historical and future en-687

vironment supervised by the Coupled Model Intercomparison Project (section 5.2). The688

most recently completed phase of the project (CMIP6) includes more climate models and689

output variables than previous phases, and importantly, includes several large ensemble690

runs of the same AOGCMs and experiment to account for natural variability in climate691

models [Deser et al., 2020].692

Finally, the key to quantifying ToEpop is to characterize the population variability in693

the historical stationary environment. This requires careful consideration of the demo-694

graphic stochasticity, especially for small populations, environmental stochasticity not695

driven by climate, density dependence and interactions with other species, which can be696

incorporated in demographic models [Lande et al., 2003]. Other important environmen-697

tal drivers of population dynamics such as habitat quality and resource variability can698

be incorporated into demographic models to reduce the process variance in the historical699

environment, enabling an earlier detection of the impact of climate change on popula-700

tions. This is particularly important as habitat loss and resources exploitation (land-use701

change, fisheries and deforestation) are key threatening processes driving the global loss702

in biodiversity that have synergistic effects with climate change [Dobson et al., 2021; Lem-703

mer et al., 2021; Mantyka-pringle et al., 2012]. If the combined effects of those threats and704

climate change are greater than the effects of each threat individually, the climate driven705

trend in population maybe larger than the climate driven trend without interaction with706

other threats, with potentially earlier detection of anthropogenic forced change in popu-707

lations. On the other hand, if those threats augment noise in the system, that may reduce708

the signal to noise ratio and delay the detection of anthropogenic climate change relative709

to ToEclimate. For example, the effects of fragmentation and loss of important habitat types710

will reduce population size and increase the impact of demographic stochasticity on the711

population dynamics [Hanski & Gaggiotti, 2004; Lande, 1998], which reduces the power712

of detecting any signal of climate variation. In addition, environmentally induced fluctu-713
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ations in population size can be magnified by harvesting (harvest–interaction hypothesis)714

that may also prolong the ToEpop [Gamelon et al., 2019].715

6.3.2 Density Dependence716

Our population model does not include density dependence. The impact on the ToEpop717

will depend on the strength and type of the density dependence (negative density depen-718

dence: exact compensation, over-compensation, under-compensation, positive density719

dependence), the specific demographic rate that is affected by density dependence, the in-720

teraction between climate and density dependence and the life history of the species. For721

example, populations with undercompensating growth tend to respond slowly to envi-722

ronmental changes [Gamelon et al., 2017; Hansen et al., 2019], that may prolong the ToEpop.723

For population declining in response to climate change the results should be qualitatively724

similar, except if Allee effects occur (a positive relationship between demographic rates725

and population), thereby accelerating extinction rate at low density [Courchamp et al.,726

2008, 1999]. The Allee effect will increase the magnitude of the decline of the popula-727

tion trend and ToEpop will probably occurs earlier [Lande, 1998], but that will depend if728

an increase variance compensate for this larger signal. For population increasing in re-729

sponse to climate change, the patterns found without density dependence are more likely730

to change, that will depend on the emergence thresholds and carrying capacity of the731

population. For example, for invasive species, the emergence thresholds may be defined732

well below the carrying capacity of the population, hence the results would be qualita-733

tively the same as without density dependence. However, if the emergence thresholds734

are defined above the carrying capacity, the signal of anthropogenic climate change in735

population cannot be formally distinguished from population variability.736

6.3.3 Temporal autocorrelation in climate and demographic rates737

Our simulated environment does not include autocorrelation in the climate time se-738

ries, while most environmental variables exhibit a red noise that may increase the prob-739

ability of extinction of populations [Mustin et al., 2013; Rescan et al., 2020]. Environmen-740
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tal variables in reddened environments imply consecutive periods of favourable or un-741

favourable conditions (positive autocorrelation), and a lower probability of at least one742

extremely poor year compared with white noise for a given time period, which may both743

decrease or increase population extinction risk [Schwager et al., 2006]. The response of744

species to coloured environmental variations depends on the time-scale considered, the745

strength of environmental fluctuations, the particular life-history traits that are affected746

by environmental change and the species life cycle defining the sensitivity of popula-747

tion dynamics to these fluctuations [Engen et al., 2013]. For example, a study from 454748

plant and animal populations found that fast life histories show highest sensitivities to749

temporal autocorrelation in demographic rates across reproductive strategies, while slow750

life histories are less sensitive to temporal autocorrelation, but their sensitivities increase751

for species with a large degree of iteroparity [Paniw et al., 2017]. An important question752

is then how the sensitivities to temporal autocorrelation in demographic rates is related753

to the ToEpop, and can be addressed by incorporating such autocorrelation in our current754

framework. Since the patterns of the sensitivities of the population growth rate to both in-755

terannual variability and temporal autocorrelation in demographic rates are similar [Iles756

et al., 2019; Paniw et al., 2017], and the influence of autocorrelations on the population757

variability driven by environmental noise is small [Engen et al., 2013], we do not expect758

that including temporal autocorrelation will change our six hypothesis.759

6.3.4 Correlation among demographic rates760

Correlations among demographic rates can occur when climate affects rates simulta-761

neously, and were ignored in our simulations. Positive covariation and autocorrelation762

in demographic rates tend to increase the variability in demographic rates, decreasing763

the stochastic growth rate and increasing the variability in population growth rates [En-764

gen et al., 2013; Tuljapurkar et al., 2009]. On the opposite, negative covariation and auto-765

correlation tends to decrease the variability in demographic rates, such as the survival-766

fecundity-trade-offs that reduces the variance in the population growth rate [Colchero767
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et al., 2019; Sæther & Engen, 2015]. Correlations of opposite signs among the various de-768

mographic rates may cancel out the effect of each other, and the resulting effect on the769

population growth rate maybe small. In addition, the life-history strategy and density770

dependence affect the population responses to covariation and autocorrelation in demo-771

graphic rates [Colchero et al., 2019; Iles et al., 2019] making challenging to predict how772

the trend and variability in population, hence the ToEpop, will be affected by covariation773

among demographic rates. Demographic rate correlations had the largest effect on the774

population growth rate for life histories with short to medium generation time [Iles et al.,775

2019], that may amplify or dampen the detection of anthropogenic climate change.776

6.3.5 Population structure777

Our population model includes the simplest age-structure by aggregating age-classes778

into two stages: juvenile and adult. Although this simple life cycle is useful to explore a779

wide range of life histories (Table 1), it leads to a reduced variance in annual population780

growth rates in an unperturbed environment [Colchero et al., 2019]. In our definition,781

the ToEpop is based on the comparison of the variability between the unperturbed and782

perturbed environment. Hence, the resulting ToEpop should not be highly sensible to783

the structure of the population, except if the life cycle structure buffers or amplifies the784

population variability response to population structure in a non-stationary environment.785

The life cycle of many species are much more complex than our simulated life histo-786

ries. For example, the life cycles of plants include cryptic life stages such as long-term787

seedbanks and dormant adults. The reproduction of plants is highly variable with some788

plants reproducing vegetatively and seed mass and per-capita seed production ranging789

typically across six orders of magnitude [Kattge et al., 2011]. Plants exhibits also an in-790

credible range of longevity, from weeks to millennia [Peñuelas & Munné-Bosch, 2010].791

For example, an alpine carex, Carex curvuIa is a very slow-growing rhizomatous sedge792

can have a lifspan of 2000 years [Steinger et al., 1996]. The range of temperature vari-793

ations that this alpine flora can sustain (i.e. breath of thermal niche) is exceeding the794
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worst climate warming scenarios [Körner & Hiltbrunner, 2021], suggesting that the time795

of emergence would be prolonged for those species. Those complex life-history traits are796

not exclusive to the plant kingdom, and further work focusing on how age, stage and797

trait structure affect the dynamics of populations and potentially dampen or amplify the798

climate-driven variability in population (e.g. cohort resonance, Bjørnstad et al. [2004]),799

will provide fundamental insights to theoretical and applied research of the detection of800

anthropogenic climate change. For example, Bjørnstad et al. [2004] showed that spectral801

frequencies of the catches of cod in the Skagerrak were not the dominant frequencies of802

key environmental drivers, rather there was a spectral shift with a frequency peak at cod803

generational time scales, the so-called cohort resonance. Population dynamics may also804

potentially retain a memory of prior forcing, especially when climate events occurring in805

one season or stage of the life cycle affect individual performance in a subsequent sea-806

son or stage (e.g. carry-over effects of climate; effect of climate at young age classes that807

may delay age at first recruitment [Hollowed & Sundby, 2014; Lindström & Kokko, 2002;808

Ranta et al., 2005]; effect of climate on dormant stages [Hairston Jr, 1996]).809

6.3.6 Multiple climate drivers810

Our modeling framework includes only a single environmental time series. The cu-811

mulative integrations of white-noise atmospheric forcing in ecosystem drivers can gen-812

erate population responses that are characterized by strong transitions and prolonged813

apparent state changes in marine ecosystems that will affect the ToEpop [Di Lorenzo &814

Ohman, 2013]. In addition, integrating multiple drivers to characterize the ToEpop is im-815

portant, as different climate variables affect organisms at various seasons and stages of816

their life cycle, sometimes in opposite ways [Jenouvrier, 2013; Jenouvrier et al., 2018]. In a817

butterfly species, warmer temperatures have a positive effect on the survival of eggs, pre-818

diapause larvae and pupae but a negative effect on the survival of overwintering larvae819

[Radchuk et al., 2013]. Climatic conditions experienced at different stages cause complex820

patterns of environmental covariance among demographic rates even across generations,821
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which may either buffer or amplify the signal of anthropogenic climate change, empha-822

sizing the importance of considering the complete life history of individuals when pre-823

dicting and detecting the effect of climatic change on population dynamics [Herfindal824

et al., 2015; Iles et al., 2019; Jenouvrier, 2013].825

7 Conclusion826

In the current global biodiversity crisis, the development of tools to detect, quantify,827

and compare the signal of anthropogenic climate change is essential to understand, antic-828

ipate and adapt to climate change. Here, we provide a new perspective on how climate-829

induced changes in populations can be detected by quantifying the Time of Emergence in830

populations. We hope that ecologists will embrace the relevance of this concept in their831

attempt to understand population responses to climate change in non-stationary environ-832

ments and provide a robust assessment of future climate risk to inform management and833

policy decisions.834
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Figure1137

Figure 1: Conceptual diagram of the time of emergence (ToE) in climate (ToEclimate) and1138

in populations (ToEpop). ToE identifies the point in time when the signal of anthropogenic1139

climate change (red time series) emerges from the noise associated with natural variability1140

(black time series). ToEpop depends on the response of population growth rate to climate1141

that is defined by: (1) the impact of climate on demographic rates (e.g. survival) with1142

different functional forms that influence the sensitivity of demographic rates to climate;1143

(2) the impact of demographic rates on the population growth rate resulting from non-1144

linear demographic processes occurring throughout the species life cycle (described in1145

section Population projections).1146

Figure 2: Illustrative figure of the time of emergence in climate (ToEclimate on left panel)1147

and in populations (ToEpop on right panels) of four species along the gradient of life his-1148

tories, from fast species (species 1) to slow species (species 4). The figure shows one time1149

series simulated during the historical environment (black line) and forced environment1150

(red line). The emergence thresholds are based on a 95% prediction interval of 1000 sim-1151

ulations (grey area). The natural variability in climate is ff = 0:5. The forced perturbation1152

occurs at years 80 years resulting in a positive trend in climate. Climate affects negatively1153

maturation rate (slope of the linear relationship on logit scale: ˛ = −0:125). Y-axis is1154

different for each species.1155

Figure 3: Relationship between ToEclimate (x-axis) and ToEpop (y-axis) for four life his-1156

tory strategies (from fast (species 1) to slow (species 4)), whereby climate affects only one1157

demographic parameter at a time (colored dots: blue is fertility, red is juvenile survival,1158

orange is adult survival and purple is maturation rate). Black lines represent the time1159

when ToEpop = ToEclimate.1160

Figure 4: a) The variability in annual population growth rates depends on the natural1161

variability of climate ff, in both in the historical and perturbed environment (example for1162
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˛ = 0:125 ¸ = 0:05). (b) The trend of population growth rate at the time of emergence1163

in population depends on the trend of climate ¸ (example for ˛ = 0:125 and ff = 0:5 ).1164

Colors refer to the climate-dependent demographic rate: blue is fertility, red is juvenile1165

survival, orange is adult survival and purple is maturation rate. The dots on (a) stand for1166

the forced environment while square are the historical environment. Panels show four1167

different life history strategies, from fast (species 1) to slow (species 4).1168

Figure 5: ToEpop as function of the sensitivity of the population growth rate to the1169

demographic rate affected by climate. The ToEpop is the median across various natural1170

variability and trend of climate and various slope in the functional relationship between1171

climate and the demographic rate (Table 2). The sensitivity of the population growth rate1172

to the demographic rate is calculated for the averaged population matrix in the historical1173

environment. Symbols refer to species.1174

Figure 6: ToEpop as function of the absolute slope of the functional relationship be-1175

tween climate and demographic rate ˛0. Example for a climate trend of ¸ = 0:05 and1176

climate variability of ff = 0:5 . Colors refer to demographic pathway by which climate af-1177

fects demographic rates: blue is fertility, red is juvenile survival, orange is adult survival1178

and purple is maturation rate. The dots stand for ˛0 > 0, while square shows ˛0 < 0.1179

Panels show four life history strategies.1180

Figure 7: Annual life-cycle graph for the emperor penguin. It represents a two-sex1181

model with males (black) and females (gray). Fertilities are shown by dotted lines, and1182

the transitions between stages of individuals already present in the population are repre-1183

sented by solid lines (see Figure 1 from Jenouvrier et al. [2010] for more details on seasonal1184

cycle of the emperor penguin).1185

Figure 8: Difference between the time of emergence in sea ice and ToEpop of emperor1186

penguin (ToEclimate − ToEpop) for the 54 known colonies (x-axis) and four seasons (color).1187

The calculation of ToEpop accounts for var(›) generated by parameter uncertainty and pro-1188

cess variance (i.e., environmental stochasticity) (a) or not (b).1189
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Figure 1: Conceptual diagram of the time of emergence (ToE) in climate (ToEclimate) and in popu-
lations (ToEpop). ToE identifies the point in time when the signal of anthropogenic climate change
(red time series) emerges from the noise associated with natural variability (black time series).
ToEpop depends on the response of population growth rate to climate that is defined by: (1) the
impact of climate on demographic rates (e.g. survival) with different functional forms that influ-
ence the sensitivity of demographic rates to climate; (2) the impact of demographic rates on the
population growth rate resulting from non-linear demographic processes occurring throughout
the species life cycle (described in section Population projections).
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Figure 2: Illustrative figure of the time of emergence in climate (ToEclimate on left panel) and in
populations (ToEpop on right panels) of four species along the gradient of life histories, from fast
species (species 1) to slow species (species 4). The figure shows one time series simulated during
the historical environment (black line) and forced environment (red line). The emergence thresh-
olds are based on a 95% prediction interval of 1000 simulations (grey area). The natural variability
in climate is ff = 0:5. The forced perturbation occurs at years 80 years resulting in a positive trend
in climate. Climate affects negatively maturation rate (slope of the linear relationship on logit
scale: ˛ = −0:125). Y-axis is different for each species.
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Figure 3: Relationship between ToEclimate (x-axis) and ToEpop (y-axis) for four life history strategies
(from fast (species 1) to slow (species 4)), whereby climate affects only one demographic parameter
at a time (colored dots: blue is fertility, red is juvenile survival, orange is adult survival and purple
is maturation rate). Black lines represent the time when ToEpop = ToEclimate.
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Figure 4: (a) The variability in annual population growth rates depends on the natural variability
of climate ff, in both in the historical and perturbed environment (example for ˛ = 0:125 ¸ =
0:05). (b) The trend of population growth rate at the time of emergence in population depends
on the trend of climate ¸ (example for ˛ = 0:125 and ff = 0:5 ). Colors refer to the climate-
dependent demographic rate: blue is fertility, red is juvenile survival, orange is adult survival and
purple is maturation rate. The dots on (a) stand for the forced environment while square are the
historical environment. Panels show four different life history strategies, from fast (species 1) to
slow (species 4).
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Figure 5: ToEpop as function of the sensitivity of the population growth rate to the demographic
rate affected by climate. The ToEpop is the median across various natural variability and trend
of climate and various slope in the functional relationship between climate and the demographic
rate (Table 1). The sensitivity of the population growth rate to the demographic rate is calculated
for the averaged population matrix in the historical environment. Symbols refer to species.
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Figure 6: ToEpop as function of the absolute slope of the functional relationship between climate
and demographic rate ˛0. Example for a climate trend of ¸ = 0:05 and climate variability of
ff = 0:5 . Colors refer to demographic pathway by which climate affects demographic rates: blue
is fertility, red is juvenile survival, orange is adult survival and purple is maturation rate. The dots
stand for ˛0 > 0, while square shows ˛0 < 0. Panels show four life history strategies.
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Figure 7: Annual life-cycle graph for the emperor penguin. It represents a two-sex model with
males (black) and females (gray). Fertilities are shown by dotted lines, and the transitions between
stages of individuals already present in the population are represented by solid lines (see Figure 1
from Jenouvrier et al. [2010] for more details on seasonal cycle of the emperor penguin).
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Figure 8: Difference between the time of emergence in sea ice and ToEpop of emperor penguin
(ToEclimate − ToEpop) for the 54 known colonies (x-axis) and four seasons (color). The calculation
of ToEpop accounts for var(›) generated by parameter uncertainty and process variance (i.e., envi-
ronmental stochasticity) (a) or not (b).
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Table 1: Glossary adapted from the IPCC definitions [Allen et al., 2018]

Climate change
Change in the state of the climate that can be identified (e.g., by using statistical tests) by changes
in the mean and/or the variability of its properties and that persists for an extended period,
typically decades or longer. Climate change may be due to natural internal processes or external
forcings such as modulations of the solar cycles, volcanic eruptions and persistent anthropogenic
changes in the composition of the atmosphere or in land use.
Climate model
A numerical representation of the climate system based on the physical, chemical and biological
properties of its components, their interactions and feedback processes, and accounting for some
of its known properties. Climate models have structural differences for example, in their spatial
resolution, complexity of parameterizations, and processes that are explicitly represented.
Climate signal
Variations in the state of the climate system that have an identifiable and statistically discernible
structure in time and/or space, such as a long-term warming trend.
Climate simulation
A model simulation of the climate state. This can include the simulated response of the climate
system to characterize historical climate conditions, climate predictions, or climate projections.
Climate projection
A simulated response of the climate system to a forcing scenario of future emission or concentra-
tion of greenhouse gases (GHGs) and aerosols, generally derived using climate models.
Climate variability
Variations in the mean state and other statistics (such as standard deviations, the occurrence of
extremes, etc.) of the climate on all spatial and temporal scales beyond that of individual weather
events. Variability may be due to natural internal processes within the climate system (internal
variability), or to variations in natural or anthropogenic external forcing (external variability).
Natural climate variability
Climate fluctuations from unforced variability generated internally within the climate system (e.g.
weather) or associated with external forces to the climate system (e.g. volcanoes).
(Model) Ensemble
A group of parallel model climate simulations. Ensembles made with the same model but dif-
ferent initial conditions characterize the simulation uncertainty associated with internal climate
variability, whereas multimodel ensembles including simulations by several models also include
the impact of model differences.
Time of Emergence
The time at which the signal of climate change emerges from the noise of natural climate variabil-
ity.
Emergence threshold
A threshold at which climate change is consider to emerge.
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Table 2: Demographic rates and outcomes for the four life history strategies (species in columns).
Note that the fertility (F number of offspring that are produced per adult female in year t) is re-
ported here. The fecundity (b the number of offspring born per unit time per female) is discounted
by the probability that an adult will actually survive from the time of the census to the birth pulse
(F = bSa). The deterministic population growth rate is one for all species. The generation time
(in years) is the mean age of parents (eq 14 of Bienvenu & Legendre [2015]), from the fundamental
matrix the following demographic outputs are calculated: the mean life expectancy at birth and
the mean remaining life at adulthood (eq 20 of [Roth & Caswell, 2018]); the probability to return
to the adult state (from eq 47 of [Roth & Caswell, 2018] using state A on Fig. 2). Ex stands for
extreme.

species 1 species 2 species 3 species 4
Life history strategies

Reproductive strategy Semelparous Iteroparous Iteroparous Iteroparous
Developmental strategy Precocious Precocious Delayed Ex-Delayed

Survival strategy Short-lived Short-lived Long-lived Ex-Long-lived
Demographic rates

Annual fertility rate 5.06 3.00 1.00 0.50
Juvenile survival prob. 0.20 0.30 0.40 0.60

Adult survival prob. 0.03 0.39 0.83 0.93
Maturation rate 0.95 0.60 0.30 0.11

Life history outcomes

Generation time 2.04 2.77 7.40 16.30
Life expectancy at birth 1.21 1.47 2.39 4.17

Remaining life at adulthood 1.03 1.63 6.02 14.29
Probability to return to adult state 0.03 0.39 0.83 0.93
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Table 3: Time of emergence, trend and variability of population growth rate, with its sensitivity to
climate across all simulations for four life history strategies (species in row) and four demographic
pathways by which climate affects demography rates (columns). Median of the time of emergence
of population is denoted ToEpop. At the time of emergence in the population: the median of the
trend is TToEpop , the median of the variability in the forced environment is varToEpop and their
ratio is TToEpop=varToEpop at ToEpop; and the median of the sensitivity of the population growth
rate to climate is @–

@CC=CToEpop

. Historical variability is denoted var(–t).

LINEAR BELL SHAPE

F Sj Sa ‚ F Sj Sa ‚
ToEpop

species 1 133 134 125 140 133 126 125 146
species 2 102 64 70 87 106 68 73 86
species 3 116 73 56 63 107 75 60 65
species 4 123 99 54 54 120 105 58 58

TToEpop=varToEpop
species 1 0.04 0.04 0.04 0.04 0.06 0.04 0.02 0.06
species 2 0.05 0.11 0.09 0.07 0.06 0.11 0.09 0.07
species 3 0.03 0.08 0.15 0.11 0.01 0.08 0.14 0.12
species 4 0.03 0.05 0.16 0.16 0.03 0.03 0.15 0.16
TToEpop

species 1 0.0010 0.0032 0.0002 0.0003 0.0041 0.0067 0.0001 0.0085
species 2 0.0010 0.0021 0.0010 0.0008 0.0027 0.0021 0.0011 0.0018
species 3 0.0008 0.0008 0.0008 0.0006 0.0007 0.0010 0.0007 0.0005
species 4 0.0002 0.0004 0.0004 0.0003 0.0005 0.0004 0.0003 0.0002
varToEpop
species 1 0.024 0.088 0.003 0.005 0.092 0.216 0.005 0.149
species 2 0.019 0.019 0.011 0.013 0.047 0.021 0.014 0.027
species 3 0.024 0.010 0.005 0.005 0.054 0.013 0.005 0.005
species 4 0.006 0.008 0.002 0.002 0.023 0.020 0.002 0.002

@–
@CC=CToEpop

species 1 0.010 0.019 0.003 0.004 0.0018 0.0060 0.0002 0.0005
species 2 0.012 0.024 0.011 0.009 0.0022 0.0048 0.0023 0.0021
species 3 0.014 0.009 0.010 0.007 0.0025 0.0019 0.0021 0.0013
species 4 0.001 0.003 0.005 0.004 0.0005 0.0009 0.0011 0.0008
var(–t)

species 1 0.025 0.108 0.003 0.006 0.005 0.022 0.001 0.002
species 2 0.019 0.019 0.011 0.014 0.003 0.004 0.002 0.003
species 3 0.031 0.010 0.006 0.005 0.007 0.002 0.001 0.001
species 4 0.008 0.009 0.003 0.002 0.002 0.002 0.001 0.000
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Supporting Information S1: additional figures1192

Figure S 1: Example of functional relationships that are linear or sigmoid with a slope ˛0 = 0:1,
˛0 = −0:1 for linear sigmoid functional relationship or ˛0 = 0:01 for bell shape relationships for
each species (row panels) and each demographic rate (column panels).
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Figure S 2: Sensitivity of the population growth rate to climate for four life histories (panel in
line: fast (species 1) to slow (species 4)) and demographic rates (panel in column: fertility, juve-
nile survival, adult survival and maturation rate) and different functional relationships between
climate and demographic rates. Blue lines stands for linear on logit scale with ˛0 = [−0:1=0:1],
orange line shows bell shape on logit scale with ˛0 = −0:01, and green lines are linear on real scale
˛0 = [−0:1=0:1],
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Figure S 3: Relationship between the time of emergence in climate (x-axis) and population (y-axis)
for four life history strategies (panels), whereby climate affects only one demographic parameter
at a time (colored dots: blue is fertility, red is juvenile survival, orange is adult survival and purple
is maturation rate). The black line represent the time when the time of emergence in climate
and population are equal. The functional relationships are linear or sigmoid. The emergence
thresholds are defined by the 20th or 80th percentile values of the confidence interval. In that case,
the system is likely highly sensitive to climate as severe impacts are thought to occur for lower
percentile of the climate distribution experienced during the historical run.
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Figure S 4: Relationship between the time of emergence in climate (x-axis) and population (y-axis)
for four life history strategies (panels), whereby climate affects only one demographic parameter
at a time (colored dots: blue is fertility, red is juvenile survival, orange is adult survival and purple
is maturation rate). The black line represent the time when the time of emergence in climate
and population are equal. The functional relationships are linear on the real scale with ˛0 =
[−0:03 − 0:02 − 0:01 0:01 0:02 0:03].
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Figure S 5: Time of emergence in sea ice (black line) and in the population growth rate of emperor
penguin (grey lines) for the 54 known colonies (x-axis) and season (panels). The calculation of ToE
accounts for var(›) generated by parameter uncertainty and process variance (i.e., environmental
stochasticity) (dotted line) or not (plain line).
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Figure S 6: Variability and trend at the time of emergence for sea ice (left panel) and for the
population growth rate of emperor penguin (right panel) for the 54 known colonies (marker) and
season (colors).
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Figure S 7: Map of Emperor penguin colonies.
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Supporting Information S2: population variability in a stationary environment1193

Equation 13 shows that the variance in annual population growth rates var(–t) is linearly1194

related to the climate variance ff2 in a stochastic stationary environment with small vari-1195

ations around a climate mean C.1196

Figure S 8 shows the variance in annual population growth rates var(–t) as function of1197

a mean climate C for different life histories when climate affects the population through1198

different demographic rates „i . The functional relationships between climate and the de-1199

mographic rate are linear on the real scale for fertilities (except species 4) or on the logit1200

scale for other demographic rates. Let’s assume that C represents temperature, and the1201

population is stable for C = 0.1202

The stationarity variability of the population growth rate varies as function of the1203

mean climate in complex non-linear ways that depend on @–
@C

and the sign of the slope1204

of the functional relationships between climate and demographic rates ˛0 that affects @–
@C

.1205

The smallest @–
@C

, hence population growth rate variability, occurs for species 4 with an ex-1206

treme long-lived history and the climate-dependent demographic rate of maturation rate1207

regardless of the mean environmental conditions and functional relationships. Short-1208

lived species (species 1 and 2) and the climate-dependent demographic rate of juvenile1209

survival shows the largest @–
@C

, except for extreme positive mean climate. However, vari-1210

ous patterns are observed between these extremes, which depend on the functional rela-1211

tionship between climate and demographic rates, the demographic rate by which climate1212

affects population and the life histories of the species.1213

For example, for linear functional relationships between the fertility and climate (species1214

1-3), equation 13 becomes:1215

var(–) = ˛2
0ff

2

„
@–

@„i „i=„i

«2„@„i „i=„i
@CC=C

«2

= ˛4
0ff

2

„
@–

@„i „i=„i

«2

(15)

If ˛0 > 0,
“
@–
@„i

”2
increases as C increases, and the variance in annual population growth1216
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rates is larger for warmer climate than colder climate. If ˛0 < 0,
“
@–
@„i

”2
decreases as C1217

increases, and the variance in annual population growth rates is larger for colder climate1218

than warmer climate.1219

For non-linear sigmoid functions, it is more complex, and depends on the specific1220

shape of the
“
@–
@„i

”2
and the sign of ˛0, specifically at which environment C the maximum1221 “

@–
@„i

”2
occurs. For example, for adult survival, the population growth rate variability1222

is larger for warmer climate than for colder climate for long lived species when ˛0 < 01223

(species 3 and 4). However, the opposite pattern occurs for short lived species (species1224

1 and 2): the population growth rate variability is smaller for warmer climate than for1225

colder climate (Fig. S 8). These patterns are opposite when ˛0 > 0.1226

For bell shape functional relationships, the variance of the population growth rate is1227

smaller for comparable range of demographic rates (Table 2). Indeed, to obtain a realistic1228

range of demographic rates when „i t = g(y ∗ = ˛∗
0C

2
t + ˛1 + ›t) than when „i t = g(y =1229

˛0C
2
t + ˛1 + ›t) (Fig. S 1), the slope of the function y ∗ must be smaller: ˛∗

0 < ˛0. Hence1230

var(–) is smaller despite similar magnitude for
“
@–
@„i

”2
for both function y and y ∗ (Fig. S1231

2).1232
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Figure S 8: Variability in annual population growth rates calculated from equation 8 across life
histories. Panels show the variance in annual population growth rates var(–t) as function of the
climate mean C when climate affects population through different demographic rates: fertility,
survival or maturation. Line color indicates different species along a gradient of fast-slow life
histories, from fast (species 1) to slow (species 4). (a) ˛0 = −0:1 and (b) ˛0 = 0:1. ff = 0:2.
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Supporting Information S3: the sea ice-dependent-metapopulation model for em-1233

peror penguins1234

1235

Portions of the Supplementary Material are modified from Jenouvrier et al. (2010),1236

Jenouvrier et al. (2012), Jenouvrier et al. (2017) and Jenouvrier et al. (2021) under the1237

terms of the Publication Agreement with the University of Chicago Press, John Wiley &1238

Sons publications and Elsevier.1239

Our sea ice-dependent-metapopulation model projects the population vector n—comprising1240

the population size ni in each colony i—from time t to t + 1 using:1241

n(t + 1) = D
ˆ
x(t);n(t)

˜
F
ˆ
x(t);n(t)

˜
n(t) (16)

to indicate that the projection interval is divided into two main phases of possibly dif-1242

ferent duration: the reproduction phase (F) followed by the dispersal phase (D) 1. The1243

reproduction matrix F is constructed using the Ricker model, which includes the intrinsic1244

population growth rate ri(t), which vary in time, and the carrying capacity of the colony,1245

Ki , which is set to be constant over the entire time period. The dispersal phase (D) com-1246

bines various dispersal behaviors and dispersal events. The projection matrices D and1247

F depend on both the current population density n(t) and the habitat characteristics (in-1248

cluding sea ice concentrations anomalies), x(t), that vary among colonies and over time,1249

t. The global population size at time t is given by Nt =
P

i ni(t).1250

8.1 Reproduction phase1251

The reproduction matrix, F, is constructed using the Ricker model including the in-1252

trinsic growth rate of each colony ri(t) and the carrying capacity of each colony Ki . Neg-1253

ative density-dependence effects occur within crowded favorable habitats (ri > 0 and1254

ni > Ki ) while populations tend to go extinct within poor habitat colonies (ri ≤ 0). Our1255

1Note on notation: In this paper, matrices are denoted by upper case bold symbols (e.g. F) and vectors
by lower case bold symbols (n); fi j is the (i ; j) entry of the matrix F, ni is the ith entry of the vector n.
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understanding of density dependence processes is extremely limited for emperor pen-1256

guins (see discussion in Appendix S1 of Jenouvrier et al. [2012]). Density dependence1257

may occur at breeding ground due to competition for space. For example, the Beaufort1258

Island colony growth is limited by the limited space available on the fast ice plate next to1259

the island [Kooyman et al., 2007]. Competition for resources may also occur, although em-1260

peror penguins are able to forage over long distances over wide areas, probably reducing1261

intra-specific competition impact.1262

The intrinsic growth rate For each projection interval t; the intrinsic growth rate of each1263

colony ri(t) is projected by a nonlinear, stochastic, sea-ice dependent, two-sex, stage-1264

classified matrix A[„[x(t);n(t)]], including the demographic rates (reproduction and sur-1265

vival) „[x(t);n(t)] (described in more detail in Jenouvrier et al. [2010, 2012]). The life cycle1266

of this model is shown on Figure 7 and includes a sequence of seasonal behaviours (arrival1267

to the colony, mating, breeding) and accounts for differences in adult survival between1268

males and females as function of sea ice concentration anomalies x(t). A[„[x(t);n(t)]] de-1269

pends on n(t) because the reproduction is function of the proportion of males and females1270

within the population through mating processes [Jenouvrier et al., 2010].1271

The carrying capacity For emperor penguins, estimating the carrying capacity of the en-1272

vironment is a daunting task because population time-series are limited to a few colonies1273

around Antarctica, and no study thus far has reported the resources and breeding habi-1274

tat availability. Using the population projections from the stochastic sea-ice dependent1275

model that excludes density dependence [Jenouvrier et al., 2017, 2014], Jenouvrier et al.1276

(2017) estimated the carrying capacity of each colony as Ki = 2N0, with N0 the initial size1277

of the population observed in 2009 [Fretwell & Trathan, 2009; Jenouvrier et al., 2014].1278

8.2 The dispersal phase.1279

Finally, the model includes inter-colony movements. A dispersal event includes the1280

three stages: (1) emigration from the resident colony, (2) search for new colony among1281

other colonies with an average dispersal distance d (transfer), and (3) settlement in a new1282
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colony. The duration of the transfer phase can vary, as the final settlement in a new colony1283

may occur after several events (e.g., an individual may not settle in its first choice habitat1284

if that habitat has reached its carrying capacity ni > Ki :).1285

In our model, movements of individuals among colonies are divided into two succes-1286

sive dispersal events to account for a time-limited search. Indeed for emperor penguins1287

the breeding season lasts 9 months, and thus the timing for prospecting other colonies1288

during the non-breeding season is limited. During the first dispersal event (D1) indi-1289

viduals may select the habitat with highest quality (informed search) or settle in a ran-1290

dom habitat. During the second dispersal event (D2) individuals that reached a saturated1291

colony leave and settle randomly in a new colony (see Fig. 1 in Jenouvrier et al. [2017]).1292

The later is a way to account for a dispersal cost of gathering information for the informed1293

search (see discussion in Jenouvrier et al. [2017]).1294

The dispersal projection matrix D is thus1295

D := D2D1: (17)

and each dispersal matrix De is written1296

De := Se [x]Me [x;ne ] (18)

to indicate that matrices for searching behavior, Se , and emigration, Me , depend on the1297

population size at the start of the event (ne) as well as the environmental conditions x(t).1298

The first dispersal event The emigration rate for each colony i depends on the overall1299

quality of the habitat, which is measured by the median of the realized population growth1300

r ∗i . The emigration rate increases linearly from m1 = 0 at r > 0 to m1 = 1 at critical value1301
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r ∗c < 0. The emigration matrix thus only depends on the ratio r∗(t)=r ∗c ;1302

M1 := M1

"
r∗(t)

r ∗c

#
: (19)

A critical threshold r ∗c close to 0; corresponds to high dispersion scenario while a larger1303

negative threshold reflects low dispersion.1304

Once individuals have left their colonies, we assume that they search for a new colony1305

using two different behaviors: an informed searching behavior (SI) and a random search-1306

ing behavior (SR).1307

The random search assumes that dispersers randomly seek a colony within the limits1308

of the maximum dispersal distance. Thus the probability of selecting a colony depends1309

on the mean dispersal distance of the emperor penguin, d , and the matrix of distance1310

between colonies (dist(i ; j)) included in the vector of habitat descriptors x.1311

SR := SR[x; d ]: (20)

The matrix dist(i ; j) corresponds to the coastal distance between colonies i and j derived1312

from the location of know emperor penguin colonies.1313

Conversely, the informed search assumes that dispersers search for the most favorable1314

habitat they can reach; we use r∗ as a descriptor of the quality of the habitat. Thus the1315

informed search matrix is also a function of r ∗:1316

SI := SI [r∗(t);X; d ]: (21)

If the selected colony is not at carrying capacity, individuals settle in this new habitat.1317

However, individuals are not able to settle in colonies that have reached their carrying1318

capacities after the first dispersal event, and will conduct a novel search during the second1319

dispersal event.1320
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During the second dispersal event, the surplus individuals leave and randomly settle in1321

another colony regardless of their dispersal strategy in their first event. Thus the emigra-1322

tion matrices depend on the carrying capacity K, the population vector n at the end of the1323

first dispersal event, and a random search matrix:1324

M2 := M2[K;n] and S2 := SR: (22)

Note that because of our random settlement assumption during this second dispersal1325

event, individuals may come back to their resident colony if they first reached an over-1326

crowded colony.1327
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