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Detecting climate signals cascading through 
levels of biological organization

Marlène Gamelon    1,2 , Stéphanie Jenouvrier    3, Melanie Lindner    4,5, 
Bernt-Erik Sæther2 & Marcel E. Visser    4,5

Threats to species under climate change can be understood as a time at 
which the signal of climate change in ecological processes emerges from the 
noise of ecosystem variability, defined as ‘time of emergence’ (ToE). Here we 
show that ToE for the great tit (Parus major) will occur earlier at the level of 
population size than trait (laying date) and vital rates (survival, recruitment) 
under the RCP 8.5 scenario, suggesting an amplified climate change signal at 
the population level. ToE thus varies across levels of biological organization 
that filter trends and variability in climate differently. This has implications 
for the detection of climate impacts on wild species, as a shift in population 
size may precede changes in traits and vital rates. Further work would need 
to identify the ecological level that may experience an earlier detection of 
the climate signal for species with contrasting life histories, climate trends 
and variability.

The impact of anthropogenic climate change on wildlife populations 
is a topic of profound concern. Climate change occurs in the context 
of broadband natural climate variability, often making it difficult to  
discern the explicit effects of long-term change driven by forced 
response to GHG. In addition, ecological responses to environmental 
variation are stochastic with multiple sources of variation, includ-
ing observed and unobserved variability in abiotic and biotic factors 
that interact with natural climate variability. Accordingly, detecting 
responses to anthropogenically forced changes in climate is challeng-
ing1. This is, however, crucial for the detection and attribution of eco-
logical responses to climate change because changes in climate have 
direct impacts on ecosystem processes and society2.

To detect changes in climate, climatologists have extensively used 
the concept of time of emergence in climate (ToEclimate)3,4. This defines 
the point in time when the signal of climate change emerges from the 
noise of natural climate variability. It has been applied, for instance, on 
changes in temperature3, rainfall5 and polar climate1,4. Here we apply 
this concept for the first time across levels of ecological organization 
to identify the time at which the signal of climate change in ecological 
processes emerges from the stochastic noise associated with natural 

climate and ecological variability (time of emergence, ToE). We assess 
the ToE from trait (ToEtrait) to vital rates (for example, survival or recruit-
ment; ToEvital) and population size (ToEpop) (Fig. 1) to study how the 
climate signal cascades through the levels of biological organization. 
Climate-induced changes in resources that influence fitness-related 
traits are expected to generate changes in vital rates, which lead to 
population-level responses. We may thus expect that the ToE is delayed 
across levels of biological organization, occurring earlier for traits than 
for vital rates and population size6–8. However, those responses depend 
on the sensitivity of vital rates to climate variation and the sensitivity 
of population growth rate to changes in vital rates, potentially driving 
more complex patterns across levels of biological organization1,8,9.

There are not many systems for which this hypothesis can be 
tested because it requires long-term data at various levels of biologi-
cal organization. Here we use one of the best long-term ecological 
time series study systems on the great tit (Parus major) from the Hoge 
Veluwe National Park in the Netherlands between 1985 and 2020  
(Fig. 1). The great tit is a short-lived small passerine bird species abun-
dant in European gardens and woodlands, and it is not migratory. 
Global warming influences this population in several ways. In spring, 
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frequency of beechnut production (Fagus sylvatica)12,13, an important 
food resource for great tits in winter, also affecting their vital rates14. 
Taking advantage of this unique system to quantify the ToE across 
biological levels of organization, we identified the point in time when 
climate-driven signals in trait (laying date), vital rates (survival, recruit-
ment) and population dynamics can be distinguished from noise by 
constructing prediction intervals of ecological projections using the 
Community Earth System Model Large Ensemble (CESM-LE)15.

We first quantified the ToE in caterpillar peak dynamics (ToEcaterpillar).  
Using the established relationship between spring temperatures and 
caterpillar peak (period 1985–2020)16, we projected caterpillar peak 
dynamics under a high emission climate scenario with no policy inter-
vention (representative concentration pathway (RCP) 8.5 scenario) 
back in the past and into the future, from 1920 to 2100. The peak date of 
caterpillar biomass advanced over time16, with an expected ToEcaterpillar 
in 2034, if we only account for natural climate variability (Fig. 2). When 
many sources of ecological stochasticity were included in the projec-
tions, such as uncertainty in parameter estimates and process variance 
corresponding to unexplained temporal environmental stochasticity 
beyond that explained by climate, ToEcaterpillar was detected later, in 2049 
(Extended Data Fig. 1).

Second, we quantified the ToE in trait dynamics, namely laying 
date (ToElaying). Using the established relationship between spring 
temperatures and laying dates (period for example)16, we projected 
laying dates dynamics from 1920 to 2100. Laying occurred earlier and 
earlier over years, with an expected ToElaying in 2045 and 2068 (with 
natural climate variability only and with all sources of uncertainties, 
respectively) (Fig. 2 and Extended Data Fig. 1). Under warmer spring 
conditions, directional selection for earlier laying has been reported 
in a plethora of species11,17–23. The shift in laying date has been inter-
preted as a phenotypic plastic response to increasing temperatures, 
tracking the advance in the phenology of the food peak24–27. Our results 
demonstrate that the difference between laying dates and date of  
the food peak, the so-called phenological mismatch (Fig. 1), might not 
be detectable before 2100 when including many sources of ecological 

warmer temperatures lead to an advanced peak date of caterpillar 
biomass, an important food resource for great tits for feeding their 
offspring during the breeding season. However, the advancement in 
laying dates is slower than the advancement in food peak date, leading 
to a phenological mismatch between offspring requirements and food 
peak10. This mismatch influences the vital rates of great tits11. In sum-
mer, warmer temperatures are expected to influence the intensity and 
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Fig. 1 | Schematic illustration of the general approach. a, Forecasted caterpillar 
peak dates and great tit laying dates as function (f) of temperatures (Temp), 
mismatch between caterpillar peak date and laying date, and beech crop 
production (two scenarios) in the studied great tit population expected from 
1920 to 2100. From the ecological time series, the points in time when climate-
driven signals in food peak, laying and mismatch can be distinguished from noise 
(ToE) are identified. b, Great tit life cycle showing age-specific vital rates (survival 
Si, recruitment Ri) and the number of immigrants joining the population (Nim) 
as functions of mismatch, beech crop and density N. c, Forecasted vital rates and 
great tit population size from 1920 to 2100 according to expected mismatch 
under global warming and beech crop (two scenarios). From the time series of 
vital rates and population sizes, the points in time when climate-driven signals in 
vital rates (ToEvital) and population size (ToEpop) can be distinguished from noise 
are identified.
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forecasted under global warming in the studied great tit population 
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total); the black line corresponds to the mean. Vertical dotted lines indicate the 
historical period (1922–1950), the horizontal line indicates the lower bound of 
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uncertainties in the projections (Extended Data Fig. 1). However, when 
only natural climate variability was accounted for in the modelling, 
the time of emergence for mismatch (ToEmismatch) was detectable and 
expected to occur in 2049 (Fig. 2). Increasing ecological complexity 
delays the ToEmismatch as we expected, but mainly through the interac-
tion with environmental stochasticity.

Third, thanks to the individual long-term monitoring of great tits, 
we estimated annual age-specific great tit vital rates (survival, recruit-
ment) using a state-of-the-art integrated population model28–31 (period 
1985–2020, Extended Data Fig. 2). Annual vital rates were linked to 
past beechnut production, mismatch and density (period 1985–2020, 
Supplementary Table 1). Then we projected age-specific vital rates by 
2100 under expected future conditions of mismatch and beechnut 
production and quantified the ToEvital. Beechnut production is expected 
to change in the future32–34, but there is currently no predictive model 
available for this food resource. Therefore, we simulated two extreme 
scenarios, one of decreasing beechnut production by 2100 and another 
of increasing production (Extended Data Fig. 3). Under the scenario of 
decreasing beechnut production (scenario 1), we found a decrease in 
vital rates over time, with a ToEvital between 2050 and 2060 for most of 
the ages when we accounted only for natural climate variation (Fig. 3 
and Extended Data Fig. 4). When all sources of ecological uncertain-
ties were accounted for, ToEvital was not detectable before 2100 (Fig. 3 
and Extended Data Fig. 5). Similarly, under the scenario of increasing 
beechnut production (scenario 2), we found an increase in vital rates 
over time, with a ToEvital between 2054 and 2084 for most of them when 
we accounted for natural climate variability only (Fig. 3 and Extended 
Data Fig. 6). Interestingly, the ToEvital occurred earlier for survival than 
recruitment rates because of a stronger signal on survival. While the 
ToEvital did not differ much between the two scenarios for survival, it is 
delayed by up to 20 years for recruitment under the scenario of increas-
ing, compared to decreasing, beechnut production. The climate-driven 
signals in recruitment rates by beechnut production were obscured 
by density dependence, which plays a stronger role under favourable 
conditions (that is, when there are more years with a high beech crop) 

and a weaker one under poor conditions. As expected, when all sources 
of ecological uncertainties were accounted for, ToEvital was undetect-
able (Fig. 3 and Extended Data Fig. 7).

Finally, to quantify the ToEpop, we projected the great tit population 
size from 1920 to 2100 by parametrizing a stochastic age-structured 
population model with the projected vital rates (Extended Data  
Figs. 4–7). Under the scenario of decreasing beechnut production, 
population size decreased with a ToEpop in 2028 when we accounted 
for natural climate variability only, whereas population size increased 
under the scenario of increasing beechnut production with a ToEpop 
in 2055 (Fig. 3). When all sources of ecological uncertainties were 
accounted for, ToEpop occurred later, in 2069 under the first scenario 
and in 2074 under the second scenario (Fig. 3).

Remarkably, for any scenario of beech crop production, the ToEpop 
occurred earlier than the ToEvital when all sources of uncertainties were 
accounted for. This is consistent with previous work based on numeri-
cal simulations that has shown that, under a fast rate of environmental 
change and low predictability, a population can decline before any 
apparent change in mean value of the trait8. Similarly, in an experimen-
tal design, a fast change in prey availability resulted in the decline of 
a protozoan ciliate population preceding a shift in mean body size8. 
Therefore, the ToEpop can occur earlier than ToEvital and the detection 
of ToE depends on the level of biological organization considered, its 
sensitivity to climate (that is, magnitude and shape of the functional 
relationship between climate and ecological variable) and also on the 
amount of variability both in the climate and ecological systems.

Climate trends and variability are differently filtered by the vital 
rates (survival, reproduction) and the ages1. In addition, density 
dependence may prolong the ToEpop

1 as illustrated here with our two 
scenarios of changes in beech crop production. Under the scenario 
of decreasing beech crop production (scenario 1), both survival and 
recruitment rates decrease, the magnitude of this decrease being age 
specific. Competition also decreases, allowing for more immigrants. 
The negative influence of beech crop on vital rates, only partially com-
pensated by an increase in the number of immigrants, leads to a rapid 
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population decline, with an early ToE. Under the scenario of increas-
ing beech crop production (scenario 2), survival and recruitment 
rates increase. However, competition also increases, leading to a weak 
positive effect of beech crop on recruitment rates, the latter being 
density-regulated35. Similarly, the number of immigrants joining the 
population is positively influenced by beech crop, but strongly regu-
lated by density, resulting in fewer immigrants. The positive influence 
of beech crop on survival rates, counterbalanced by a strong density 
regulation acting on the number of immigrants and on recruitment 
rates, leads to a moderate increase in population size, and a later ToEpop.

Ecological variability is also key to detecting ToE. We found that 
ToE in mismatch and vital rates are not detectable before 2100 when 
ecological variability is accounted for, emphasizing the difficulties of 
detecting climate change signals in ecological processes. Thankfully, 
some of this noise from sampling and process errors can be reduced 
by increasing monitoring efforts and improving our understanding of 
how biological systems respond to biotic and abiotic factors.

The detection of ToE across levels of biological organization is 
context-specific, and the earlier detection at the population level we 
showed here is unlikely for semelparous species or if climate affects 
primarily fertility1. In addition, several climate variables with differ-
ent ToE may affect the various ecological organizational levels, hence 
making it difficult to predict which ecological level may experience an 
earlier detection of the climate signal. Future studies could build on our 
analysis to better understand and detect when climate-driven changes 
in ecosystems will clearly emerge from the ‘noise’ of variability across 
species with contrasting life histories inhabiting different environ-
ments (for example, diverse climate variability and trends)1. This is par-
ticularly urgent as ecosystems have a limited ability to adapt and large 
changes outside past experience could be particularly devastating36,37.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-023-01760-y.
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Methods
General overview
To detect climate signals cascading through levels of biological 
organization, we constructed a reproducible three-step approach  
(Supplementary Fig. 1). First, long-term data should be collected from 
trait values, vital rates and population size. In parallel, environmental  
variables should be available. Different methods can be used to esti-
mate annual vital rates and population size when the detection prob-
ability is lower than 1—for example capture–recapture models or 
integrated population models (IPM). When the detection probability 
is equal to 1, other methods such as population census or generalized 
linear models can be used. Second, the effects of environmental covari-
ates on annual variation in trait values, vital rates and population size 
are assessed. This can be done using linear mixed models (see below). 
Third, these established relationships permit projecting time series of 
trait values, vital rates and population size under various environmental 
scenarios in the past and in the future to quantify the time of emergence  
(Supplementary Fig. 1) by linking ecological models to climate models.

Methodological approach objectives
Our methodological approach is divided into several objectives:

 (1) Forecasting food peak and estimating the point in time when 
climate-driven signals in caterpillar peak dates timing can be 
distinguished from noise (ToEcaterpillar).

 (2) Forecasting laying dates and estimating the point in time when 
climate-driven signals in great tit laying dates can be distin-
guished from noise (ToElaying) (= ToEtrait).

 (3) Forecasting mismatch and estimating the point in time when 
climate-driven signals in mismatch (between laying dates and 
food peak) can be distinguished from noise (ToEmismatch).

 (4) Forecasting vital rates and estimating the point in time when 
climate-driven signals in vital rates can be distinguished from 
noise (ToEvital for each age-specific vital rate).

 (5) Forecasting population dynamics and estimating the point in 
time when climate-driven signals in population can be distin-
guished from noise (ToEpop).

To achieve objectives 1–3, we used functional relationships linking 
caterpillar peak dates, laying dates and mismatch to temperatures16. To 
achieve objectives 4–5, we built an IPM to estimate annual age-specific 
vital rates. We then estimated the functional relationships between 
environmental variables and vital rates using linear mixed models. 
Finally, to project the great tit population dynamics from 1920 to 2100, 
we simulated two beech crop production scenarios.

Study site and data collection
The studied population is located at Hoge Veluwe National Park in the  
Netherlands (52° 02' N, 5° 51' E), a wood of 171 ha. Great tits (P. major) 
are short-lived small passerine birds, abundant in European gardens 
and woodlands and, in the Netherlands, not migratory. They are 
cavity-nesters and readily accept nest boxes as nesting sites, making 
it possible to monitor the entire breeding population. They produce 
one or two clutches each year38. In the study area, very few females 
breed in natural cavities and most of them breed in nest boxes39.  
The population is open to immigration and emigration11.

The data used in this study were collected between 1985 and 2020. 
Nest boxes were visited during the breeding season and laying dates 
were recorded (first egg laid). In addition, three types of demographic 
data were recorded. First, the total number of breeding females (Ct). As 
most females start to breed at one year of age, the breeding population 
size is a good proxy for the total number of females40. Second, fledglings 
were marked with a uniquely numbered leg-ring, ringed mothers identi-
fied and unringed mothers given a ring to allow for future identifica-
tions. These unringed mothers were assumed to have immigrated into 
the population during the year in question. The following year, they are 

then considered to be local females. Overall, 2,204 breeding females of 
known age (local and immigrant) were monitored, providing capture–
recapture (CMR) data of known age females. We grouped the breeding 
birds of known age into four age classes: (1) corresponding to the first 
year of breeding (that is, second calendar year of life); (2) correspond-
ing to the second year of breeding; (3) corresponding to the third year 
of breeding; and (4) breeding females in their fifth calendar year of life 
and older. Third, ringed fledglings were recorded as recruited to the 
breeding population if they were caught breeding in a subsequent year. 
From the monitoring of breeding females of known age, we reported for 
each year t the observed number of breeding females in age class i (Bi,t) 
and also the observed number of locally recruited females produced 
per age class i (Ji,t). In total, this type of demographic data based on 
reproductive success consisted of 3,675 breeding events.

Environmental data collection for food peak, mismatch, 
beech crop index and temperatures
Between 1985 and 2020 (except 1991), annual peak dates of cater-
pillar biomass (hereafter food peak) were determined41. The annual  
mismatch corresponded to the difference in mean laying date for 
great tits minus the food peak plus 33. These 33 days accounted for 
incubation duration and assumed that nestlings have the highest 
energy demand ten days after hatching16. In addition to caterpillars, 
beech mast is an important food resource for great tits, especially 
during winter when other resources are scarce. It is also indicative of 
seed production of other tree species14,39. The beech crop index (BCI), 
measured as the net weight of all nuts per m2, was recorded annually 
as a three-level index (1, 2 or 3).

Annual temperatures were recorded. Previous work showed 
that laying dates in this great tit population depended on spring tem-
peratures from 11 March to 20 April (hereafter Templaying), whereas 
temperatures from 6 March to 14 May had the strongest influence 
on food peaks (hereafter Tempcaterpillar)

16. We thus recorded mean 
daily temperatures during these two time windows. We standardized  
Templaying and Tempcaterpillar with the mean and the variance of Templaying  
and Tempcaterpillar observed during this period, so Templaying and  
Tempcaterpillar were transformed as Z scores. Temperature data  
were obtained from the De Bilt station of the KNMI (Royal Dutch Meteoro-
logical Institute), less than 50 km from the Hoge Veluwe field site.

Objective 1
In this population, food peak dates (in Julian date) are linked to  
temperatures (Tempcaterpillar) through the relationship16:

foodpeak = 138.379 (s.d.0.629) − 7.162 (s.d.0.629)

×Tempcaterpillar + 3.719
(1)

From this relationship, we estimated past (1920–2019) and future 
(2020–2100) food peak dates according to the RCP 8.5 climate scenario, 
which considers no policy intervention. This scenario brings together 
40 ensemble members diagnosing the influence of internal climate 
variability on projections15 and it is the preferred choice for assessing 
climate change impacts risks throughout the mid-century42. The mean 
and the s.d. over 1985–2020 of all members were used to transform 
temperatures (Tempcaterpillar) into Z scores. Thus, the mean and the s.d. 
used for standardizing each of the members was the mean of means 
and the mean of standard deviations calculated for each member. 
Such a rescaling allowed observed temperatures in the study site and 
climate scenarios (on average across all 40 of them) to be aligned 
between 1985 and 2020 so that they had the same mean and variance. 
From equation (1), we performed 100 simulations, parameters in the 
equation being drawn from normal distributions. This resulted in 100 
simulations per member—that is, 4,000 simulations from 1920 to 2100. 
This gave us expected food peak dates when all sources of ecological 
uncertainties were accounted for, including parameter uncertainty and 
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process variance corresponding to unexplained temporal variation in 
parameters beyond that explained by climate.

After having visually controlled for a good match between 
observed food peak dates and predicted dates (period 1985–2020,  
Fig. 2), we selected a historical time window during which food peak 
dates were stable over time (1922–1950, slope of the regression between 
food peak dates and years during this time window: 0.032 (s.d. 0.025)). 
We computed the lower bound (LBcaterpillar) of the 66% prediction interval 
for food peak dates during this historical period, and determined the 
point in time when the upper bound (UBcaterpillar) of the 66% prediction 
interval for food peak dates became lower than LBcaterpillar. This point 
corresponded to the time of emergence for food peak (ToEcaterpillar). 
In addition, we forecasted food peak dates but we only accounted for 
climate uncertainty in the projections. To do so, we turned off standard 
errors and σ (the last term) in equation (1) to obtain 40 projections of 
food peak dates from 1920 to 2100—that is, one projection per member.

Objective 2
We replicated the same procedure for laying dates. In this population, 
laying dates (in Julian date) are linked to temperatures (Templaying) 
through the relationship16:

layingdate = 110.980 (s.d.0.582) − 4.947 (s.d.0.590) × Templaying + 3.493
(2)

We estimated the expected annual laying dates between 1920 
and 2100 according to the RCP 8.5 climate scenario with all sources 
of uncertainty and when only climate uncertainty was accounted for. 
We selected a historical time window during which laying dates were 
stable over time (1922–1950, with a slope of the regression between 
laying dates and years during this time window of 0.019 (s.d. 0.017)) 
and we identified the time of emergence for laying dates (ToElaying).

Objective 3
We then calculated the mismatch between laying dates and food peak 
from 1920 to 2100 as the difference in expected annual laying dates 
minus the expected annual food peak plus 33 (ref. 16). This was done for 
the 4,000 simulations accounting for all sources of uncertainties and 
for the 40 simulations accounting for climate uncertainty only. In both 
cases, we identified the time of emergence for mismatch (ToEmismatch).

Objectives 4 and 5
Estimating annual age-specific vital rates and densities. For popu-
lations with a recapture rate of 1, a population census can be used as 
a proxy of population size and survival rates can simply be estimated 
using a generalized linear model with binomial link function, based on 
whether or not the individual has been observed. Here we used an IPM 
to obtain accurate and precise estimates of annual population size and 
age-specific vital rates. Even if the recapture probability is high on the 
study site11, still not all females may be recaptured, resulting in biased 
estimates of vital rates and number of individuals. There was also a pos-
sibility of double counts, for instance if one female has produced two 
broods but was only identified in one of them (because she has deserted 
one of the clutches), and a possibility that some clutches are missed 
(because females have bred in natural cavities). To estimate age-specific 
demographic rates and density while accounting for these issues, we 
integrated the recorded number of breeding females (Ct), CMR data 
of females of known age and data on reproductive success (that is, Bi,t 
and Ji,t) into an IPM29 (Supplementary Fig. 2). This framework allowed 
us to obtain the posterior median of age-specific vital rates (survival 
Si,t, recruitment Ri,t), the number of local (Nlocal) and immigrant (Nim) 
breeding females in each age class Ni and total N (total density) for each 
year t with improved precision and free of observation error28–31,43. The 
joint analysis of these three datasets thus allowed us to account for 
observation error associated with the recorded number of counted 

breeding females44. It also allowed us to account for the incomplete 
information on age structure in the monitoring data (for example, some 
females are of unknown age), for imperfect detection (for example, 
recapture probability is not 1) and for demographic stochasticity45.

The likelihood of the IPM corresponds to the product of the like-
lihoods of the three different datasets, namely CMR data, reproduc-
tive success data and population counts43. For CMR data of breeding 
females of known age, we used the Cormack–Jolly–Seber model46, 
which allows estimation of annual survival between age class i and  
i + 1 (Si,t) and annual recapture (pt) probabilities. For data on reproduc-
tive success, the observed number of daughters locally recruited per 
age class i (Ji,t) is Poisson distributed with Ji,t ~ Poisson (Bi,t × Ri,t), where R is 
the recruitment rate of females of age class i at year t. For the population 
count data, we used a state-space model47 which consisted of a process 
model describing how the population size and structure changed over 
time as well as an observation model28. We considered a pre-breeding 
age-structured model with the four predefined age classes.

The model was fitted within a Bayesian framework using NIMBLE 
(v.0.9.1)48. We ran four independent chains with different starting values 
for 200,000 MCMC iterations, with a burn-in of 150,000 iterations, 
thinning every hundredth observation and resulting in 2,000 posterior 
samples. We used the Brooks and Gelman diagnostic ̂R to assess the 
convergence of the simulations and used the rule ̂R < 1.1 to determine 
whether convergence was reached49. For a full description of the IPM, 
the priors used and the R code to fit the IPM, see Gamelon et al.50.

Linking vital rates to BCI, mismatch and density. The IPM was used 
to estimate annual age-specific vital rates and densities. Once these 
were estimated, we linked annual age-specific vital rates and annual 
number of immigrants joining the local population as response vari-
ables to annual density, BCI and mismatch (from 1985 to 2020) (Fig. 1b). 
The same approach was adopted in the previous studies51–53 that first 
used an IPM to estimate vital rates and density, and then used regres-
sions to link vital rates to density and/or environmental covariates. As 
the annual vital rates and densities are estimated in the IPM model, 
they are not obscured by sampling variance and observation errors 
and thus this approach does not lead to spurious detection of density 
dependence50,54,55. In detail, survival between two successive breed-
ing seasons t and t + 1 could be affected by BCI at time t. Therefore, we  
linked age-specific survival rates Si,t (on a logit scale) to BCI at t. Because 
the effect of BCI on survival may be age specific, we included the inter-
action between age and BCI. To account for the non-independence 
of the survival rates among age classes of a given year, we included 
the year as a random effect. The linear mixed model (LMM)  
took the following form:

logit(Si,t) = μ + β1,ia + β2BCIt + β3,i[a × BCIt] + βyearyear + εSi,t (3)

where μ is the intercept, a is the age class (that is, 1, 2, 3 and 4), β are the 
regression coefficients, year is the random effect and εSi,t corresponds 
to the residuals of the LMM. Note that the LMM was weighted by the 
inverse of the variance of the survival rates (on a logit scale) to account 
for the uncertainty associated with the survival rates estimated with 
the IPM.

The recruitment rate of a given breeding season t could be affected 
by the number of breeding females at time t in the population (density 
at t) and by BCI at time t. Therefore, we linked the age-specific recruit-
ment rates Ri,t (on a log scale) to density at t, Nt, and to BCI at t. Because 
the effect of BCI and density on recruitment may be age specific, we 
included the interaction between age and BCI and between age and 
density. The LMM took the following form:

log(Ri,t) = v + β′1,ia + β′2BCIt + β′3Nt + β′4,i[a × BCIt] + β′5,i[a × Nt]

+β′6year + εRi,t

(4)
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where ν is the intercept, a is the age class, β′ are the regression 
coefficients and εRi,t  corresponds to the residuals of the LMM. As for 
survival rates, the LMM was weighted by the inverse of the variance of 
the recruitment rates (on a log scale) to account for the uncertainty 
associated with the recruitment rates estimated with the IPM.

The number of immigrants joining the population during the 
breeding season t + 1 may be influenced by BCI and mismatch as well 
as the number of local breeding females Nlocal at t. Therefore, we linked 
the number of immigrant breeding females Nimt+1 to the number of 
local breeding females Nlocal,t, BCI and mismatch at t using a generalized 
linear model (GLM) with Poisson distribution:

Nimt+1 = η + βI,1BCIt + βI,2Mismt + βI,3Nlocal,t + ε
It+1

(5)

where η is the intercept, βI are the regression coefficients and εIt+1  
corresponds to the residuals of the GLM.

Building the population model. For given conditions of BCI, mismatch 
and densities, age-specific survival and recruitment rates as well as the 
number of immigrants joining the local population may be simulated 
(hereafter denoted as Ssimi,t, Rsimi,t and Nimsim,t+1). As a result, the number 
of breeding females in the population Nsim,t may be simulated.

In detail, the total number of breeding females in the population 
at time t + 11, Nsim,t+1, corresponded to the sum of breeding females in 
each age class i, Nsimi,t+1, at time t + 1 (Fig. 1):

Nsim,t+1 = Nsim1,t+1 + Nsim2,t+1 + Nsim3,t+1 + Nsim4,t+1 (6)

 (1) As most of the immigrant breeding females were females of 
age class 1, we assumed that Nsim1,t+1 corresponded to the sum 
of the number of daughters that were locally recruited into the 
population nsim,t+1 (that is, produced by the breeding females of 
each age class) and also of the number of immigrants Nimsim,t+1 
arriving into the population:

Nsim1,t+1 = nsim,t+1 + Nimsim,t+1 (7)

nsim,t+1 was modelled using a Poisson distribution to include demo-
graphic stochasticity:

nsim,t+1 ∼ Poisson (Nsim1,t×Rsim1,t) + Poisson(Nsim2,t × Rsim2,t)

+Poisson (Nsim3,t × Rsim3,t) + Poisson(Nsim4,t × Rsim4,t)
(8)

 (2) Nsim2,t+1 corresponded to the number of females of age class 1 
that survived from time t to time t + 1, and was modelled using a 
binomial process to include demographic stochasticity:

Nsim2,t+1 ∼ Bin (Nsim1,t, Ssim1,t) (9)

 (3) Nsim3,t+1 and Nsim4,t+1 corresponded to the number of females in 
the previous age class that survived from time t to time t + 1:

Nsim3,t+1 ∼ Bin (Nsim2,t, Ssim2,t) (10)

Nsim4,t+1 ∼ Bin (Nsim3,t, Ssim3,t) + Bin (Nsim4,t, Ssim4,t) (11)

Therefore, for given conditions of BCI, mismatch and densities, 
Ssimi,t, Rsimi,t and Nimsim,t+1 may be computed. We accounted for sources 
of environmental stochasticity due to processes other than covariates 
included in the model with a covariance matrix Σ of ‘random year effect 
+ εSi,t’ and ‘random year effect + εRi,t’. The covariance matrix was esti-
mated and new residuals were generated from a multivariate normal 
distribution with covariance matrix equal to Σ. Then, Nsim1,t+1, Nsim2,t+1, 
Nsim3,t+1 and Nsim4,t+1, functions of Ssimi,t, Rsimi,t and Nimsim,t+1, may be com-
puted and, finally, the density Nsim,t+1 may be simulated.

Forecasting vital rates and population size and estimating ToEvital 
and ToEpop. Using the age-structured population model described 
above, which accounted for the effects of BCI, mismatch and density on 
vital rates, we forecasted the great tit population under two simulated 
beech crop production scenarios.

Forecasting beech crop index under two scenarios. BCI is a categori-
cal variable with three levels: 1 (low), 2 (medium) and 3 (high produc-
tion). We simulated two extreme scenarios of beech crop production 
by 2100.

In the first scenario, we simulated a decrease in beech crop pro-
duction in the future. The probability of having a year of low produc-
tion (P(BCI = level 1)) increased over time, from 0.005 in 1920 to 0.9 in  
2100. The probability of having a year of medium production 
(P(BCI = level 2)) was set to 0.1, the average observed between 1985 and 
2020. The probability of having a year of high production (P(BCI = level 3))  
corresponded to 1 − P(BCI = level 1) − P(BCI = level 2) and thus ranged 
from 0.895 to 0 from 1920 to 2100 (Extended Data Fig. 3, left panel). 
For each year, we performed 100 draws from a three-category multi-
nomial distribution with probabilities P(BCI = level 1), P(BCI = level 2),  
P(BCI = level 3). This resulted in 100 simulated time series of BCI 
between 1920 and 2100. These projections of BCI expressed as levels 
(1, 2 and 3) were used afterwards to project the great tit population size.

In the second scenario, we simulated an increase in beech crop 
production in the future. The probability of having a year of high pro-
duction (P(BCI = level 3)) increased over time, from 0.005 in 1920 to 
0.9 in 2100. The probability of having a year of medium production 
(P(BCI = level 2)) was set to 0.1. The probability of having a year of 
low production (P(BCI = level 1)) corresponded to 1 − P(BCI = level 2) 
− P(BCI = level 3) and thus ranged from 0.895 to 0 from 1920 to 2100 
(Extended Data Fig. 3, right panel). For each year, we performed 100 
draws from a three-category multinomial distribution with probabili-
ties P(BCI = level 1), P(BCI = level 2), P(BCI = level 3). This resulted in 100 
simulated time series of BCI between 1920 and 2100.

Forecasting vital rates and great tit population size. Using trajec-
tories of mismatch expected from 1920 to 2100 under the RCP 8.5 
scenario that accounted for all sources of uncertainties (see objective 3)  
and simulated trajectories of BCI simulated according to the first sce-
nario (decreasing beech crop production) as well as the age-specific 
densities in 1987 estimated with the IPM, we simulated 100 stochastic 
trajectories in vital rates and population sizes per ensemble member 
from 1920 to 2100, resulting in a total of 4,000 stochastic trajectories. 
We computed the 95% and 66% prediction intervals of the predicted 
age-specific vital rates, number of immigrants and total population 
size. We then selected a historical time window during which popu-
lation size was stable over time (1922–1950, slope of the regression 
between population size and years during this time window: 0.092 
(s.d. 0.217)) and estimated the time of emergence for population size 
(ToEpop) and vital rates (ToEvital). In addition, we forecasted the great tit 
population but accounted for climate uncertainty only in the projec-
tions. To do so, we used trajectories of mismatch expected from 1920 
to 2100 that accounted for climate uncertainty only, and turned off 
stochasticity in equations (8)–(11) as well as the covariance matrix, to 
obtain 40 projections of age-specific vital rates and population sizes 
from 1920 to 2100—that is, one projection per member.

We replicated the exact same procedure with trajectories of 
BCI simulated according to the second scenario (increasing beech  
crop production) to obtain forecasted time series of vital rates and 
population size.

All these analyses were performed with R software56.

Inclusion and ethics
The research was carried out under licence AVD801002017831 of the 
Centrale Commissie Dierexperimenten (CCD) in the Netherlands. 
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Fieldwork at the National Park de Hoge Veluwe was carried out with 
permission of the park.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data used in the analysis are available at https://github.com/marleng/
ToE_greattit. Data on past observed beech crop index, past observed 
mismatch between laying dates and food peaks, expected spring tem-
perature according to the RCP 8.5 scenario, past observed annual 
age-specific population size and vital rates and their variance are 
provided.

Code availability
R code used for the analysis is available at https://github.com/marleng/
ToE_greattit.
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Extended Data Fig. 1 | Forecast of food peak dates, laying dates and mismatch 
under the RCP 8.5 scenario in the studied population between 1920 and 
2100, when all sources of uncertainties are accounted for in the projections. 
Black line corresponds to the median, shaded dark gray corresponds to 66% and 
light gray to 95% prediction intervals. Vertical dotted lines indicate the historical 

period (1922–1950), horizontal line indicates the lower bound of the 66% interval 
during that period for food peak dates and laying dates and indicates the upper 
bound of the interval for the mismatch. Vertical red lines correspond to the time 
of emergence (ToE). In yellow, annual observed values between 1985 and 2020 are 
provided.
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Extended Data Fig. 2 | Directed acyclic graph of the integrated population 
model (IPM). Squares represent the data, circles represent the parameters 
to be estimated. Arrows represent dependencies. Three types of demographic 
data are collected: CMR data (m), count data (C) and fecundity data (number of 

daughters locally recruited (J) and number of mothers (B) in each age class i at 
year t). Parameters estimated with the IPM are the annual recapture probability 
pt, annual age-specific survival Si,t, annual age-specific recruitment Ri,t, annual 
number of immigrants Nimt and annual population size Nt.
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Extended Data Fig. 3 | Two extreme scenarios of beech crop production (scenarios 1 and 2). Displayed are the probabilities of having a year of high BCI (level 3)). 
Black lines correspond to the median, shaded dark gray corresponds to 66% and light gray to 95% prediction intervals.
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Extended Data Fig. 4 | Age-specific vital rates, number of immigrants and 
population size forecasted in the studied great tit population between 1920 
and 2100, when climate uncertainty is accounted for in the projections, 
under a scenario of decreasing beech crop production (scenario 1). Each line 

corresponds to one climate scenario (40 in total), and the black lines correspond 
to the mean. Vertical dotted lines indicate the historical period (1922–1950), 
horizontal lines indicate the lower bound of the 66% interval during that period. 
Vertical red lines correspond to the time of emergence (ToE).
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Extended Data Fig. 5 | Age-specific vital rates, number of immigrants and 
population size forecasted in the studied great tit population between 1920 
and 2100, when all sources of ecological uncertainties are accounted for 
in the projections, under a scenario of decreasing beech crop production 
(scenario 1). Black lines correspond to the median, shaded dark gray 

corresponds to 66% and light gray to 95% prediction intervals. Vertical dotted 
lines indicate the historical period (1922–1950), horizontal line indicates the 
lower bound of the 66% interval during that period. Vertical red line corresponds 
to the time of emergence (ToE).
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Extended Data Fig. 6 | Age-specific vital rates, number of immigrants and 
population size forecasted in the studied great tit population between 1920 
and 2100, when climate uncertainty is accounted for in the projections, 
under a scenario of increasing beech crop production (scenario 2). Each line 

corresponds to one climate scenario (40 in total), and the black lines correspond 
to the mean. Vertical dotted lines indicate the historical period (1922–1950), 
horizontal lines indicate the upper bound of the 66% interval during that period. 
Vertical red lines correspond to the time of emergence (ToE).
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Extended Data Fig. 7 | Age-specific vital rates, number of immigrants and 
population size forecasted in the studied great tit population between 1920 
and 2100, when all sources of ecological uncertainties are accounted for 
in the projections, under a scenario of increasing beech crop production 
(scenario 2). Black lines correspond to the median, shaded dark gray 

corresponds to 66% and light gray to 95% prediction intervals. Vertical dotted 
lines indicate the historical period (1922–1950), horizontal line indicates the 
upper bound of the 66% interval during that period. Vertical red line corresponds 
to the time of emergence (ToE).
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