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A B S T R A C T   

Ecological predictions are necessary for testing whether processes hypothesized to regulate species population 
dynamics are generalizable across time and space. In order to demonstrate generalizability, model predictions 
should be transferable in one or more dimensions, where transferability is the successful prediction of responses 
outside of the model data bounds. While much is known as to what makes spatially-oriented models transferable, 
there is no general consensus as to the spatio-temporal transferability of ecological time series models. Here, we 
examine whether the intrinsic predictability of a time series, as measured by its complexity, could limit such 
transferability using an exceptional long-term dataset of Adélie penguin breeding abundance time series 
collected at 24 colonies around Antarctica. For each colony, we select a suite of environmental variables from the 
Community Earth System Model, version 2 to predict population growth rates, before assessing how well these 
environmentally-dependent population models transfer temporally and how reliably temporal signals replicate 
through space. We show that weighted permutation entropy (WPE), a model-free measure of intrinsic predict
ability recently introduced to ecology, varies spatially across Adélie penguin populations, perhaps in response to 
stochastic environmental events. We demonstrate that WPE can strongly limit temporal predictive performance, 
although this relationship could be weakened if intrinsic predictability is not constant over time. Lastly, we show 
that WPE can also limit spatial forecast horizon, which we define as the decay in spatial predictive performance 
with respect to the physical distance between focal colony and predicted colony. Irrespective of intrinsic pre
dictability, spatial forecast horizons for all Adélie penguin breeding colonies included in this study are sur
prisingly short and our population models often have similar temporal and spatial predictive performance 
compared to null models based on long-term average growth rates. For cases where time series are complex, as 
measured by WPE, and the transferability of biologically-motivated mechanistic models are poor, we advise that 
null models should instead be used for prediction. These models are likely better at capturing more generalizable 
relationships between average growth rates and long-term environmental conditions. Lastly, we recommend that 
WPE can provide valuable insights when evaluating model performance, designing sampling or monitoring 
programs, or assessing the appropriateness of preexisting datasets for making conservation management de
cisions in response to environmental change.  
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1. Introduction 

Predicting the abundance, dynamics, and distributions of species are 
fundamental objectives in ecological studies and are essential for 
informing conservation management decisions under global change 
(Guisan and Thuiller, 2005; Ehrlén and Morris, 2015). Consequently, 
efforts in the last decade to make ecology a more predictive science have 
garnered considerable multi-disciplinary interest (Dietze et al., 2018; 
Lewis et al., 2022). Predictive ecological models are often built by 
relating an ecological response to one or more environmental factors. 
Depending on the modeling goals and data availability, environmental 
variability through space and/or time is used to explain variation in 
some ecological response in the same dimension(s) (e.g. Keith et al., 
2008; Fordham et al., 2013; Gorzo et al., 2016; Pearce-Higgins et al., 
2015; Bateman et al., 2016; Wilson et al., 2018). This relationship can 
then be transferred to predict ecological responses elsewhere in time (a 
temporal transfer) or space (a spatial transfer) (e.g. Osborne and Suárez- 
Seoane., 2002; Wenger and Olden, 2012; Sequeira et al., 2018; Yates 
et al., 2018). Evaluating how well predictive models transfer across time 
and space is crucial to gauging their overall predictive performance and 
the reliability of ecological inferences (Houlahan et al., 2017). In this 
paper, we present an approach based on a recently developed metric for 
measuring time series complexity to assess both the temporal and spatial 
transferability of site-specific population models used to predict abun
dances in the future, the past, and at new locations. 

Temporal transfers can indicate the degree to which predictive 
models accurately reflect the temporal dynamics structuring natural 
systems (Houlahan et al., 2017). While many factors may affect the 
temporal transferability of ecological models, time series complexity is 
of particular importance for assessing the transferability of a model 
given its negative correlation with predictability (Riedl et al., 2013; 
Garland et al., 2014). More complex time series have less temporal 
signals carried forward from past states and more diversity in their 
temporal patterns. Time series complexity places an upper limit, called 
intrinsic predictability, on the temporal predictive performance of 
models fit to these time series (Beckage et al., 2011; Petchey et al., 2015; 
Pennekamp et al., 2019). 

In addition to temporal transfers, time series models fit at one or 
more locations can be used to predict responses at new locations (e.g. 
Jenouvrier et al., 2014; Ryu et al., 2016; Smith and Edwards, 2021). The 
success of this kind of spatial transfer is conditional on the relationship 
found between response and predictor(s) at the initial location(s) being 
broadly applicable across space. This assumption is a frequent necessity 
in ecology and conservation management, especially for species of 
concern whose population dynamics are the subject of long-term 
ecological monitoring programs that are often restricted in spatial 
scope due to practical necessity (e.g. Menges, 2000; Morris et al., 2002; 
US Fish and Wildlife Service, 2020). Despite their ubiquity, general 
guidelines that are already well developed for determining when spatial 
transfers are appropriate for spatially-oriented models (e.g. Roberts and 
Hamann, 2012; Rapacciuolo et al., 2014; Soininen and Luoto, 2014; 
Sequeira et al., 2018; Yates et al., 2018; Iturbide et al., 2018) are lacking 
for assessing the spatial transferability of time series models. This is 
problematic if the time series underlying a temporal relationship 
modeled at a focal site, that is then used to predict time series at other 
sites, is highly complex. Given this, intrinsic predictability may also 
place an upper limit on spatial predictive performance, as well as the 
degree to which spatial transferability decays as a function of distance 
from the focal site. 

Weighted permutation entropy (WPE) is a model-free metric recently 
introduced to ecology for approximating time series complexity and 
intrinsic predictability (Pennekamp et al., 2019). WPE can be useful as 
an indicator for the spatio-temporal transferability of time series models. 
For example, determining whether forecast performance is lower than 
expected when compared to WPE can help decide whether the model or 
the predictability of the data is the cause of low forecast performance 

(Beckage et al., 2011; Pennekamp et al., 2019). Such a forecasting 
assessment framework has been demonstrated through simulations and 
across time series of different species (Pennekamp et al., 2019). How
ever, no studies have investigated the relationship between WPE and the 
spatio-temporal transferability of time series of different populations of 
the same species or used this framework diagnostically for wildlife 
population modeling. 

Here, we use long-term (1980–2018) time series of Adélie penguin 
(Pygoscelis adeliae) breeding population abundances at 24 breeding sites 
across Antarctica to test the spatio-temporal transferability of predictive 
models that link Adélie population growth rates to environmental con
ditions derived from Earth System Models (Fig. 1). We use intrinsic 
predictability (as measured by WPE) to diagnose how well these pre
dictive models transfer temporally and also how reliably temporal sig
nals replicate through space. This case study is broadly applicable to 
ecological forecasting in general, as the large aperiodic fluctuations in 
abundance observed in Adélie penguin breeding populations, which 
play an outsized role in affecting the success of spatial and temporal 
transfers, are a feature of many natural systems for which ecological 
predictions are sought (Doak et al., 2008; Anderson et al., 2017; Clark 
and Luis, 2020). 

2. Methods 

2.1. Adélie colony growth rates and abundances 

Adélie penguins have long been used as a sentinel species to measure 
Antarctic ecosystem health; their sensitivity to environmental vari
ability is often reflected by changes in breeding population abundance 
and success, which can be monitored effectively given their gregarious 
nature (Ainley, 2002; Boersma, 2008). Adélie population dynamics have 
been studied intensively for nearly four decades, and while the Antarctic 
Peninsula region has seen significant declines in abundance, populations 
in eastern Antarctica and the Ross Sea have shown periods of increase 
(Lynch et al., 2012; Lyver et al., 2014; Che-Castaldo et al., 2017). Using 
Adélie nest count data from the Antarctic Penguin Biogeography Project, 
a database containing all publicly available Adélie penguin abundance 
and distribution data since 1979 (Che-Castaldo et al., 2023), we restrict 
our analyses to those breeding colonies whose time series span at least 
24 years and do not have a larger than 5 year gap between any two 
counts. This criteria resulted in 24 colony-level time series of nest 
counts, that range from 24 to 39 years in length and contain between 15 
to 36 nest counts. 

We modify the Adélie penguin global population model introduced 
by Che-Castaldo et al. (2017) and expanded by Iles et al. (2020) to es
timate annual nest abundance, for the 24 selected Adélie breeding col
onies using a Bayesian framework (Fig. 1). This approach allows us to 
model complete time series of true nest abundance, which is otherwise 
unobservable due to observation error, from incomplete time series of 
nest counts. After fitting, we restrict our modeled time series of true nest 
abundance for each colony to begin and end with its first and last year of 
nest counts (see Appendix S1 for details regarding this model). We keep 
the colony growth rate posterior distribution means, hereafter called 
colony growth rates, which serve as the response variable in the colony- 
covariate models. Colony growth rates can be categorized as those with 
corresponding nest counts for both transition years (68%), those with 
nest counts for one of two transition years (21%), and those with no nest 
counts (11%). 

2.2. Colony-covariate models 

Many studies have examined the extent to which environmental 
conditions, principally sea ice as measured by passive microwave 
satellite-based sensors, affect Adélie penguin population dynamics (e.g. 
Fraser et al., 1992; Wilson et al., 2001; Croxall et al., 2002; Ainley et al., 
2003; Jenouvrier et al., 2006; Che-Castaldo et al., 2017; Iles et al., 
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2020). However, these efforts have been unavoidably limited by the 
number of environmental variables that can be directly observed at 
broad spatio-temporal scales. Earth system models (ESMs) provide an 
alternate source of environmental data that overcomes several con
straints associated with passive microwave and other satellite-derived 
products. ESMs simulate moisture, energy, momentum, and carbon 
fluxes within and between various components of the Earth system, 
including the atmosphere, ocean, land, and sea ice (Kobayashi et al., 
2015). In addition to physical ocean variables, ocean biogeochemistry 
and lower-trophic level ecosystem dynamics are simulated within the 
ocean component, thus providing variables such as primary productivity 
and zooplankton biomass, which often lack a complete observational 
record, especially in remote places like the Antarctic. While ESM sim
ulations are subject to model biases stemming from the simplification of 
complex processes, they provide a complete record of numerous vari
ables that could be important to Adélie population growth rates. As 
such, we take advantage of ESMs to incorporate elements of the physical 
ocean environment and food web that are not directly observable as 

model predictors. 
With the goal of explaining spatio-temporal variation in colony 

growth rates, we select 12 environmental variables simulated in a forced 
ocean sea ice (FOSI) configuration of the Community Earth System 
Model (CESM), version 2 (Danabasoglu et al., 2020) run at a nominal 1◦

horizontal resolution and including ocean biogeochemistry (Long et al., 
2021, Table 1). We associate colony growth rates with these environ
mental variables in the same year (a lag of 0) and with 4 lags ranging 
from 3 to 6 years, because the effect of juvenile survival on colony 
growth rates will become apparent only after surviving juveniles first 
return to breed (Ainley, 2002). This results in a total of 60 environ
mental variables. We normalize all variables at the colony-level, causing 
each variable to represent anomalies from the average condition expe
rienced at each colony over the course of its time series. 

We fit colony-specific models that associate annual variability in 
colony growth rates with the 60 ESM environmental variables. For each 
colony, we do this in three steps by 1) regressing all environmental 
variables on colony growth rates using regularized horseshoe priors, 2) 

Fig. 1. Locations of the 24 Adélie penguin breeding colonies whose time series were long enough to be included in this study organized by regions in Antarctica. 
Weighted permutation entropy of colonies with longer than 30 year time series are shown with different shades of green. Regions are color coded, and this coloring 
scheme is repeated throughout the remainder of the figures to denote Antarctic region. 
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selecting the three environmental variables with the largest effects, and 
3) regressing these three colony-specific environmental variables on 
colony growth rates, replacing horseshoe priors with weakly informa
tive ones (hereafter called colony-covariate models). 

Regression modeling with horseshoe priors is a novel variable se
lection framework that is particularly useful when there are many 
possible explanatory variables but only a few with strong effects, a fairly 
common situation in ecology (Piironen et al., 2017). With this approach, 
we model the prior variances for covariate slope parameters as the 
product of a global shrinkage term that pulls all slopes towards 0, and a 
slope-specific parameter, that enables slopes to escape this pull (see 
Appendix S1 for details regarding the colony covariate models). After 
refitting these models with the three colony-specific environmental 
variables having the largest absolute slope estimates we compute RMSE 
and the traditional R2 (square of Pearson’s correlation coefficient). We 
also calculate RMSE for a null model for each colony, whose intercept is 
the mean colony growth rate. We compare the RMSE of the colony- 
covariate models and their respective null models to show how model 
fit improves when including environmental variables. 

2.3. Temporal transferability 

To assess the temporal transferability of the colony-covariate 
models, we create two training-test splits of each colony growth rate 
time series; a forecast split where the last 30% of the time series is the 
test set, and a hindcast split where the first 30% of the time series is the 
test set. In both splits, the remaining 70% of the data form the training 
sets. We refit the colony-covariate models, which were originally fit to 
all available colony growth rates, using the training sets, before fore
casting or hindcasting as appropriate. We bypass the step where regu
larized horseshoe priors are used to determine which variables had the 
largest effect on growth rates. Instead, we refit the colony-covariate 
models to the training sets using the three best environmental vari
ables originally selected for each colony. 

Using model predictions of the two test sets, we calculate forecast 
and hindcast RMSE to score the predictive performance of these tem
poral transfers for each colony. We also compute the traditional R2 for 
the forecast and hindcast for each colony. Using the mean colony growth 
rates from the training sets, we make null model forecasts and hindcasts 
for each colony and compute RMSE for these predictions of the test sets. 
Null models simply predict the average colony growth of the training set 
for each prediction year. We have also tested the temporal trans
ferability of models with density dependence, and regional multi-colony 

models where data for multiple colonies were pooled. In general, these 
models did not improve the temporal transferability of colony-covariate 
models (Appendix S2: Figs. S1 and S2, and Appendix S3: Fig. S1). 

2.4. Spatial transferability 

To assess the spatial transferability of the colony-covariate models, 
we use the model for each colony (focal colony) to predict colony growth 
rates for all other colonies (predicted colonies) within the Ross Sea. We 
repeat this process with the null model for the focal colony (long term 
average growth). We exclude colonies on the Antarctic Peninsula and 
from eastern Antarctica due to, respectively, the limited number of 
colonies in the region and the fact that colonies are located so close to 
one another as to preclude variation in their environmental covariates 
on the spatial scale used by CESM2. We do not evaluate these spatial 
transfers directly using RMSE, as this metric is heavily dependent on 
variability in colony growth rates for the predicted colonies, and is 
therefore not suitable for exploring the effect of distance on spatial 
predictive performance. For each focal colony, we instead compute the 
RMSE ratio of the colony covariate model and its respective null model 
for all predicted colonies. When the ratio is  < 1, the colony-covariate 
model has improved spatial transferability over the null model, and 
vice versa. To determine how spatial transfers decay with distance from 
focal to predicted colony, we use linear regression to estimate the slope 
of the relationship between these spatial RMSE ratios and inter-colony 
distances. 

2.5. Intrinsic predictability 

Following the methodology in Pennekamp et al. (2019), we estimate 
the intrinsic predictabilities for the 14 colonies whose logged nest 
abundance time series (lzi,t in Appendix S1, Eq. 1) are long enough to 
compute weighted permutation entropy (WPE). There are several steps 
to calculating WPE:  

1. Permutations of successive time series elements are established for a 
given “word” length (m). For example, if a time series consist of 7 
elements (x1 to x7) and word length is 3, these permutations would 
start with x1,x2,x3, followed by x2,x3,x4, up until x5,x6,x7. For this 
time series there would be 5 such time-ordered permutations. 

2. Each permutation is ranked into an ordinal pattern before the rela
tive frequencies of each of these possible permutations are calcu
lated. For example, if x4 = 12,x5 = 5, and x6 = 7, then its ordinal 
pattern (from lowest to highest) would be 2(x5), 3(x7), 1(x4). For a 
given word length there are m! possible permutations.  

3. Unweighted and weighted permutation entropy (PE) are calculated 
using the Shannon entropy rate. For unweighted PE, this is computed 
as 

∑
p(π)log2(p(π)), where π is the ordinal pattern and p(π) is its 

relative frequency. Weighted PE weights each time-ordered element 
with its variance to account for the degree of fluctuations in the time 
series: 

pw(π) =
∑

var(Xt)⋅δ(ϕ(Xt), π)
∑

var(Xt)
, (1)  

where var(Xt) is the variance of a given word and δ(ϕ(Xt), π) is an 
indicator variable for cases where the ordinal pattern of ϕ(Xt)

matches a given ordinal pattern π. Weighted PE is then computed 
using the Shannon entropy rate after replacing p(π) with pw(π). 

4. The Shannon entropy rate is normalized by log2(m!) so that it is be
tween 0 and 1. However, when there are ties in the ordinal patterns a 
tie-breaking method needs to be used. Here, we average the ranking 
of the tied elements, which increases the number of possible per
mutations, so normalization is done via log2(2⋅m!).  

5. A time delay may be added. For example, a time delay of 2 would 
mean the first word of the time series would be x1, x3, x5 (instead of 

Table 1 
Environmental variables from the Community Earth System Model version 2 
(CESM2) used for variable selection in the colony covariate models. Times 
selected is how many times a variable was selected with regularized horseshoe 
regression as one of the top 3 variables across the 24 colonies.  

Category Code Description Times 
selected 

sea ice aice area of sea ice (km2) 12 
sea ice aicen area of sea ice thinner than 0.6 

meters (km2) 
9 

sea ice ardg area of ridged sea ice (km2) 7 
sea ice 

dynamics 
divu divergence of sea ice (%/day) 6 

sea ice 
dynamics 

shear shear of sea ice (%/day) 7 

atmosphere uatm eastward surface wind (m/s) 5 
atmosphere vatm northward surface wind (m/s) 0 
atmosphere rain rainfall rate (cm/day) 4 
ocean zooC zooplankton biomass (mmol C/m2) 8 
ocean HMXL mixed layer depth (m) 6 
ocean photoC net primary production (mmol C/m2/ 

day) 
5 

ocean temp upper ocean temperature (top 10 m, 
◦C) 

1  
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x1, x2, x3). We set the time delay to 1 as suggested by Pennekamp 
et al. (2019). 

A WPE of 0 indicates a perfectly predictable time series, while a WPE 
of 1 signals that the time series is completely dominated by stochasticity. 
The choice of word length is limited by the length of the time series 
(Riedl et al., 2013). Here, we use a word length of 4 to estimate WPE, as 
a maximum word length of 3 or 4 is suitable for most ecological studies. 
We use correlation to quantify the relationship across colonies between 

WPE and 1) the forecast and hindcast RMSE computed for temporal 
transfers described in Section 2.3 and 2) the rate of decay (slope) be
tween RMSE ratio and physical distance computed for spatial transfers 
described in Section 2.4. 

Fig. 2. R2 of the 24 Adélie penguin colony covariate models computed from all data (A), the forecast test set (C), and the hindcast test set (E). Predictive performance 
(RMSE) for the 24 Adélie penguin colony-covariate models (orange circles) computed from all data (B), the forecast test set (D), and the hindcast test set (F) when 
compared to their long term average growth rate null model counterparts (white circles). Dark (light) gray lines show when a hindcast/forecast performs better 
(worse) than its associated null model. Sites are grouped and color coded according to their Antarctic region (Fig. 1). 
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3. Results 

3.1. Variable selection 

The set of environmental variables that best fit the data at each 
colony differs between the 24 Adélie colonies included in this study. Ice 
area was the most frequently selected variable, as it was one of top three 
variables with the largest slope for 12 colonies, followed by thin ice area 
and zooplankton biomass (Table 1, Appendix S4: Figs.S1–S21). These 
variables were frequently selected with different lags and they exhibited 
both positive and negative relationships with colony growth rates, 
depending on the colony (Appendix S5: Figs. S1–S72). Appendix S4 
describe in detail the results of the model selection (Figs.S1–S21). 

The colony-covariate models fit to all available data had an average 
R2 of 0.45 (min  = 0.21, max  = 0.67). The R2 values for colonies in 
Eastern Antarctica were generally larger than other regions, while 
Antarctic Peninsula colonies had the lowest R2 values (Fig. 2A). All 
colony-covariate models demonstrated improvements in RMSE over 
their corresponding null model based on long-term average growth rate 
(Fig. 2B). 

3.2. Temporal predictive performance 

For colony-covariate models fit to the training sets, the average R2 

between temporal predictions and test data across the 24 colonies was 
0.23 (min  = 0, max  = 0.66) for forecasts and 0.38 (min  = 0, max  =
0.88) for hindcasts (Fig. 2C,E). Forecasts for 45% of the colonies (11) 
and hindcasts for 75% of the colonies (18) had improvements in the 
RMSE of temporal predictions when compared to forecasts and hindcasts 
made with their corresponding null model based on average growth 
rates (Fig. 2D,F). Across sites that had lower RMSE than their null model 
counterparts, RMSE was reduced, on average, by 24% (SD  = 15%) in 
forecasts and by 21% (SD  = 12%) in hindcasts. Across sites that had 
higher RMSE than their null model counterparts, RMSE increased, on 
average, by 28% (SD  = 29%) in forecasts, and by 14% (SD  = 15%) in 
hindcasts. Intrinsic predictability was a strong predictor of forecast 
RMSE (ρ = 0.71, CI: 0.33, 0.92) and a weaker predictor of hindcast 
RMSE (ρ = 0.41, CI: − 0.09,0.78) (Fig. 3A,B). While colonies on Eastern 
Antarctica were not used for WPE and temporal transferability com
parison as their time series were shorter than 30 years, their inclusion 
does not change the positive relationship between WPE and forecast and 
hindcast RMSE although it weakens it (see Appendix S6: Fig.S1). 

3.3. Spatial predictive performance 

Ross Sea colony-covariate models fit to all available data tended to 
predict colony growth rates of other colonies better when they were 

closer (Figs. 4 and 5). However, across Ross Island colonies, on average, 
only 16% (SD  = 19%) of the spatial predictions of colony-covariate 
models showed any improvement over their null model counterparts 
(Figs. 4 and 5). Additionally, none of the spatial predictions from the 
colony covariate models for Beaufort Island (BEAU), two colonies on 
Cape Bird (BRDS and BRDM), Cape Royds (ROYD), or Coulman Middle 
(CMID) outperformed their respective null model counterparts (Figs. 4 
and 5). Finally, WPE was positively associated with the slope of the 
relationship between spatial RMSE ratio and distance (ρ = 0.62, CI: 
0.09, 0.91, Fig. 6), showing distance decay was stronger for sites with 
lower intrinsic predictability (higher WPE). 

4. Discussion 

Predictive modeling provides a robust approach to determine what 
(and if) we can learn from ecological systems (Houlahan et al., 2017; 
Lewis et al., 2023) and whether we can make useful forecasts (Clark 
et al., 2001). Without demonstrating transferability, models that simply 
explain variation in the data do not provide sufficient evidence that their 
modeled relationships are generalizable (Shmueli, 2010). Here, even 
though all colony-covariate models fit to all the data have relatively high 
R2 values and perform better than models without environmental 
covariates, only about 45% (75%) of the site-level forecasts (hindcasts) 
show improvements (which are often minor) over their null model 
counterparts (Fig. 2D,F). In addition, differences in the temporal 
transferability of time series models are spatially variable. Specifically, 
colony covariate models from Ross Island tended to be more limited in 
their forecast or hindcast performances than those from other locations 
(Fig. 3). Also, models from Ross Island colonies transfer poorly to other 
colonies (have high distance decay, Figs. 4 and 5), meaning their tem
poral signals did not replicate reliably through space. 

Interestingly, this variation in realized predictive performance across 
both time and space is correlated with intrinsic predictability (Figs. 3A, 
6). To our knowledge, this is the first case where intrinsic predictability 
is shown to be: 1) spatially variable across populations for a single 
species and 2) associated with both the spatial and temporal transfer of 
time series models for populations within a species. These two findings 
reinforce the growing awareness that intra-specific variation in life 
history traits is substantial and often overlooked (e.g. Fitzsimmons, 
2013; Che-Castaldo et al., 2018; Luiz et al., 2022). 

The use of intrinsic predictability to help guide forecasting decisions 
and provide context for evaluating predictive outcomes is newly intro
duced to ecology (Beckage et al., 2011; Petchey et al., 2015; Pennekamp 
et al., 2019). Below we discuss the implications of this relationship be
tween intrinsic predictability and realized predictive performance and 
possible ecological and statistical reasons for the spatial and temporal 
variability in WPE we observe across penguin colonies. 

Fig. 3. The positive relationship between weighted 
permuation entropy (WPE) and forecast (A) and 
hindcast (B) RMSE for the 14 Adélie penguin colony- 
covariate models whose time series are long enough to 
calculate WPE. Colonies are color coded according to 
their Antarctic region (Fig. 1). Higher permutation 
entropy indicates lower intrinsic predictability and 
higher RMSE indicates lower prediction performance. 
We report the posterior mean and 95% equal-tailed 
posterior credible intervals for the forecast and hind
cast correlation coefficient.   
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4.1. WPE as a predictor of spatial and temporal predictive performance 

Intrinsic predictability (as calculated by WPE) provides a low-cost, 
easy to calculate measure of population time series complexity. In 
turn, WPE can set expectations as to the potential transferability of 
models before they are developed and evaluate their realized predict
ability after they are built. For example, when there is a positive rela
tionship between WPE and the temporal predictive performance of site- 
specific models (e.g. Fig. 3A), differences in the realized predictability 
across sites are likely due to variation in the intrinsic predictabilities of 
the site-level time series themselves. This does not mean that model 
performances cannot be improved further. Instead, it is simply an 
indication that when sites are modeled individually, as we have done in 
this paper, those with higher WPE will tend to have lower predictive 

performance compared to sites with lower WPE. A weak or no rela
tionship (Fig. 3B) between WPE and temporal predictive performance 
suggests that modeling of some sites are showing lower realized pre
dictability than expected given their WPE values relative to sites with 
higher WPE. This could be a sign that more model development is 
necessary. Model improvement can take various shapes, such as adding 
mechanistic processes such as density dependence, or using more rele
vant variables or increasing their spatial resolution. After refining, the 
relationship between WPE and temporal predictive performance can be 
checked again. Ideally, this process should continue iteratively until a 
positive relationship between intrinsic and realized predictability is 
achieved. 

The relationship we find between WPE and spatial predictive per
formance (Fig. 6) implies that sites with more complex time series are 

Fig. 4. Distance decay measured as the relationship between RMSE ratio and inter-colony distance for Ross Island Adélie penguin colonies at Cape Crozier East 
(CRZE), B) Cape Crozier West (CRZW), C) Cape Royds (ROYD), D) Cape Bird North (BRDN), E) Cape Bird Middle (BRDM), and F) Cape Bird South (BRDS). For a given 
focal colony, the RMSE ratio for any predicted colony is the ratio of RMSE of predictions from the colony-covariate model and its respective null model. The shaded 
areas show the 95% equal-tailed posterior credible intervals of the regression between RMSE ratio and inter-colony distance between focal and predicted site. The red 
line show when the RMSE ratio is 1, indicating that the colony covariate model and its corresponding null model have the same predictive performance. When the 
RMSE ratio is >1 the null model has better spatial transferability than the colony covariate model, and vice versa. 
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less spatially transferable with respect to the physical distance of the 
transfer. This pattern is consistent with what (Petchey et al., 2015) 
define as spatial forecast horizon when describing changes in commu
nity similarity and spatial transferability of species distribution models 
with respect to distance. Although we know of no ecological studies that 

have used spatial forecast horizon to assess how well population dy
namics from well-studied locations transfer across space, this definition 
can be expanded to quantify how the spatial transferability of a time 
series model at a focal site decays with distance when used to predict 
time series at other sites. The relationship between WPE and spatial 

Fig. 5. Distance decay measured as the relationship between RMSE ratio and inter-colony distance for Ross Sea Adélie penguin colonies at A) Coulman Middle 
(CMID), B) Cape Hallet (CHAL), C) Beaufort Island (BEAU), and D) Inexpressible Island (INEX). For a given focal colony, the RMSE ratio for any predicted colony is 
the ratio of RMSE of predictions from the colony-covariate model and its respective null model. The shaded areas show the 95% equal-tailed posterior credible 
intervals of the regression between RMSE ratio and inter-colony distance between focal and predicted site. The red line show when the RMSE ratio is 1, indicating 
that the colony covariate model and its corresponding null model have the same predictive performance. When the RMSE ratio is >1 the null model has better spatial 
transferability than the colony covariate model, and vice versa. 

Fig. 6. The positive relationship between the distance 
decay of spatial transfers and weighted permutation 
entropy (WPE) for the 10 Adélie penguin colonies on 
Ross Sea whose time series are long enough to 
calculate WPE. We estimate distance decay as the 
slope of the linear regression between the RMSE ratio 
and the inter-colony distance between focal and pre
dicted site (Figs. 4 and 5). We show the 95% equal- 
tailed posterior credible intervals for distance decay 
for the 6 Ross Island colonies (circles) and 4 other 
colonies in the Ross Sea (squares). We report the 
posterior mean and 95% equal-tailed posterior cred
ible interval for the correlation coefficient between 
distance decay and WPE.   
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predictive performance raises two key concerns when developing sam
pling programs or gauging the appropriateness of long-term monitoring 
data for conservation or research purposes. The first is that generaliza
tions to larger more policy-relevant spatial scales should not be based on 
a few sites with low intrinsic predictability (high WPE), as other poorly 
monitored or unvisited sites within the region of interest are likely to 
show drastically different dynamics. Second, an understanding of spatial 
forecast horizon as a function of WPE is critical when deciding how 
many sites to monitor within a region of interest and their spacing 
relative to one another. However, it is an unavoidable consequence of 
the long generation time for many species that both these de
terminations may require a significant investment in data collection. 

When intrinsic predictability is low (high WPE), models that attempt 
to explain inter-annual fluctuations in growth rates may struggle to 
predict reliably across both space and time. In these cases, it may be 
better to focus on models that capture long-term average population 
dynamics, as these are more likely to be associated with climate or 
environmental conditions that change over longer time scales. For 
example, although the trajectories of some Adélie colonies suggest sto
chastic dynamics, the average growth rates of these sites still show a 
strong relationship with long-term winter sea ice concentrations (Iles 
et al., 2020). Null models can produce predictions that are as good as, or 
superior to, those from biologically-motivated population models, as 
was often the case here (Figs. 2D,F, 4, 5). Humphries et al. (2018) reach 
a similar conclusion when reporting on a data science competition 
whose purpose was to forecast Antarctic penguin abundance. In this 
competition, the top models included a mix of simple and sophisticated 
models, suggesting that well-constructed null models might be the most 
suitable choice for predictions of noisy systems, while also providing a 
yardstick by which to judge the predictive performance of more complex 
mechanistic models. 

4.2. Geographic patterns in intrinsic predictability and the impact of black 
swan events 

Intrinsic predictabilities across the 14 colonies included in this study 
whose time series were long enough to compute WPE follow a 
geographic pattern, where sites clustered on Ross Island have higher 
WPE values (lower intrinsic predictability) compared to colonies else
where in the Ross Sea region, Pointe Géologie (PGEO), and along the 
western Antarctic Peninsula (Fig. 2). Ross Island colonies also had 
higher levels of inter-annual variability in colony growth rates 
compared to other sites, and their time series were marked by large (and 
sometimes extreme) aperiodic fluctuations in growth (Appendix S7). 
Such fluctuations are not unique to Adélie penguins, but rather features 
of many natural systems. For example, unpredictable extreme shifts in 
abundance, also called black swan events, occur across a wide variety of 
animal taxa and usually manifest themselves as population diebacks or 
mass emigration events (Coulson et al., 2001; Anderson et al., 2017; 
Youngflesh and Lynch, 2017). Despite their rarity, these “surprise 
events” have been shown to be more common in ecology than previously 
thought and are often associated with overlooked or complex species 
interactions (Doak et al., 2008). 

Ross Island colonies experienced what can be characterized as a 
black swan event, when from 2001–2005 two massive icebergs unex
pectedly reduced access to these sites, dramatically altered their local 
environments while present, and affected Adélie metapopulation dy
namics and vital rates (Robinson and Williams, 2012; Dugger et al., 
2014; Lyver et al., 2014). These mega-icebergs directly impacted colony 
growth rates on Ross Island by causing large scale skip breeding events 
and/or relocation of adults from one colony to another (Dugger et al., 
2010; LaRue et al., 2013). Skipped breeding, which occurs when adults 
forgo breeding in a given season, either due to poor body condition at 
the end of winter or adverse site conditions at the onset of the breeding 
season, is relatively common in penguins and other seabirds (Ainley, 
2002; Jenouvrier et al., 2005; Massom et al., 2006). Large skip breeding 

events cause extreme fluctuations in colony growth rates both in the 
year breeding was skipped and the following year when adults return en 
masse to breed (Talis et al., 2022). If the factors dictating large skip 
breeding events are stochastic, as is the case with historically rare but 
major ice calving episodes, time series of colony growth rates experi
encing these events will have lower intrinsic predictability. 

Skipped breeding is a specific case of demographic stochasticity 
(Talis et al., 2022), and any event that is related to demographic or 
environmental stochasticity, none of which occur in a predictable 
manner across time or space, will lead to variability of WPE across 
colonies. Ross Island colonies may be especially vulnerable to environ
mental stochasticity in general, as individuals from these sites undergo 
the longest annual migrations species-wide (Ballard et al., 2010), which 
limits their ability to buffer against inter-annual variation in winter and 
summer environmental conditions (Ainley, 2002; Dugger et al., 2014). 
Given this, it is not surprising that Adélie growth rates from the colonies 
at the leading latitudinal edge of their species range have the lowest 
intrinsic predictability. Understanding the population dynamics of spe
cies along range edges is a priority in ecology, as it can indicate how and 
why species distributions may change under climate change (Mac
Arthur, 1972; Brown, 1984; Sexton et al., 2009). Nonetheless, our re
sults here suggest that understanding and predicting such dynamics may 
be inherently limited by differences in intrinsic predictability between 
core and edge populations, especially since edge populations should 
experience higher levels of environmental and demographic stochas
ticity (Snyder, 2003; Sexton et al., 2009) and extreme events (Lavoie 
et al., 2021). 

The spatial variability in WPE we report here also highlights how 
statistical methodology and survey decisions can impact intrinsic pre
dictability estimation. Adélie colonies vary in the frequency and manner 
with which they are counted, leading to differences across colonies in 
data gaps requiring interpolation and observation uncertainty (Appen
dix S7). Bayesian state space models, which are widely used for wildlife 
population modeling, address these issues by separating process from 
observation error in order to estimate latent or “true” abundance for all 
time steps (e.g. Ahrestani and Hebblewhite, 2013). Computing WPE for 
growth rates derived from latent abundances, as opposed to raw counts, 
offers the advantages of working with time series without missing 
values, that have been adjusted to account for the “lost” information due 
to observation error as defined by Pennekamp et al. (2019), and which 
are ultimately of interest to population biologists. However, this 
approach comes at the expense of WPE no longer being a model-free 
evaluation of intrinsic predictability, but instead conditional on the 
model used to estimate abundance. In this case, these models can lead to 
time series of latent abundances that are smoother and, as a result, more 
predictable than those of raw counts on which they are based, where the 
level smoothing depends on the relative amounts of observation and 
process error and data sparseness. This smoothing occurred for colonies 
at Pointe Géologie (PGEO), due to observation error, and Coulman 
Middle (CMID) and Cape Hallett (CHAL), due to interpolation. As a 
result, differences in intrinsic predictability between Ross Island col
onies and other sites might also be due to spatial differences in the de
gree of model-based smoothing, as well as ecological factors. 

4.3. Intrinsic predictability of ecological time series may vary over time 

The association between hindcast error and WPE, while still positive, 
is weaker compared to forecast error (Fig. 3B). This discrepancy could be 
caused by the violation of the assumption that intrinsic predictability is 
constant across a time series, regardless of its length. No studies of 
ecological predictability to date have investigated whether different 
parts of a time series might be more predictable than others. Instead, 
calculating WPE assumes that the process, or collection of processes, 
that generates a time series is constant. This assumption may not hold 
true, and different parts of time series may be more or less predictable 
than what a WPE value indicates for the full time series. Here, the CRZE 

B. Şen et al.                                                                                                                                                                                                                                      



Ecological Indicators 150 (2023) 110239

10

(Cape Crozier East) hindcast test set is more variable than the forecast 
test set and contains an extreme value for colony growth rate in 1987 
(Fig. 7A,B), leading to poorer predictive performance for the hindcast 
relative to the forecast (Fig. 3). While a single WPE calculated from the 
full time series is unlikely to capture differences in the population dy
namics between the two test sets, neither the test or training sets are long 
enough for the outright calculation of their own WPE value. 

Heterogeneity in the intrinsic predictability of time series may be 
caused by the fact that populations are usually regulated by different 
exogenous (e.g. environmental factors) and endogenous factors (e.g. 
density dependence), whose interactions can vary over time (e.g. 
Coulson et al., 2001; Nater et al., 2016; Nater et al., 2018). Conse
quently, these time-dependent interactions might alter the predictability 
of dynamics in different parts of a time series. For example, the effect of 
density dependence on the survival rates of African striped mouse 
(Rhabdomys pumilio) populations is at a minimum at moderate levels of 
food availability and increases when food is scarce or abundant (Nater 
et al., 2016). Since stronger density dependence relative to environ
mental stochasticity can lead to more predictable time series, as it is a 
deterministic factor, the intrinsic predictability of a time series of its 
abundance will change over time as food availability and, by extension, 
density dependence strength vary. 

For Adélie penguins, we currently lack the ability to identify the 
relevant interactions that impact the intrinsic predictability of colony 
growth rates and how they vary, as the factors affecting Adélie popu
lation dynamics are complex and still an area of active research. Asso
ciating different ecological factors with WPE values computed from 
subsets of a time series requires time series longer than are currently 

available in this study. Nonetheless, such interactions are likely impor
tant in this system given that both atmospheric conditions, which help 
structure the physical environment, and competition between penguins 
and other marine predators for prey vary on decadal scales (e.g Ainley 
et al., 2005; Ainley et al., 2006; Ainley et al., 2007; Ainley et al., 2010; 
Warwick-Evans et al., 2022). 

4.4. Conclusion 

In this study, we demonstrated that intrinsic predictability, as 
measured by WPE, is a reliable predictor of the spatio-temporal trans
ferability of environmentally-dependent population models. The rela
tionship between intrinsic and realized predictability (or its lack 
thereof) can indicate whether the primary limiting factor affecting 
predictive performance is time series complexity or needed model im
provements. Furthermore, spatial variability in intrinsic predictability 
can reveal the underlying geographical heterogeneity of population 
dynamics in an ecological system, as well as highlight populations that 
may have experienced stochastic environmental events that affect 
abundance. Similarly, temporal variability in intrinsic predictability 
across a time series for a single population can show how different 
regulatory mechanisms that are more predictable (e.g. density depen
dence) become more dominant in specific parts of the time series 
compared to others. We recommend that using WPE to approximate the 
intrinsic predictability of a time series should be standard practice when 
setting a priori expectations for model building and potential predictive 
performance across populations or sites, as well as for designing large- 
scale monitoring programs where spatial or temporal transfers are 
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Fig. 7. Colony growth rate time series for Cape Crozier East (CRZE) showing (A) higher forecast predictive performance and (B) lower hindcast predictive per
formance. Training sets, test sets and forecasts/hindcasts are color coded separately. Pink is the training set, blue is the test set, and yellow is the prediction. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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inevitable due to logistic constraints. 
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