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ABSTRACT
Dispersal is a ubiquitous phenomenon that affects the dynamics of the population and the evolution of natural populations; how-
ever, it is challenging to measure in most species. Furthermore, the influence of informed dispersal behaviors, referring to the 
nonrandom selection of breeding habitats by individuals, on species' responses to rapid global change is substantial but difficult 
to comprehend. Here, we present a modeling framework to assess the dispersal characteristics and behaviors of a metapopulation 
when observations provide information on its neutral genetic structure for a restricted sampling of locations. Our mechanistic-
statistical model couples a deterministic model capturing the spatio-temporal dynamics of four genetic clusters across all breed-
ing colonies by integrating demographic processes with genetic projections, with a probabilistic observation model describing the 
probability to sample an individual from a given genetic cluster. We apply this new framework to the emperor penguin, a species 
living in Antarctica and currently experiencing habitat loss. The model estimates the species' dispersal distance, rates of emigra-
tion, and behaviors associated with dispersal (informed or random). By incorporating these estimations with satellite censuses 
of breeding colonies, we can identify environmental and demographic factors that influence the dispersal of emperor penguins. 
Finally, we provide new global population forecasts for emperor penguins that can inform conservation actions in Antarctica.

1   |   Introduction

Dispersal between suitable habitats influences the dy-
namics of populations (e.g., refs (Hastings  1983; Clobert 
et  al.  2004; Bowler and Benton  2005; Levin et  al.  2003; 
Cayuela et  al.  2018)), their gene flow and genetic structure 
(Slatkin 1987; Bohonak 1999; Hewitt 2000; Roques et al. 2012), 

and hence the ecological and evolutionary processes driv-
ing biodiversity (McPeek and Holt  1992; Olivieri and 
Gouyon 1997; Cadotte 2006; Ronce 2007). The rate and range 
of dispersal of plant propagules and animal individuals are 
commonly characterized by tracking individual movements 
and population redistribution (e.g., using abundance data 
(Roques et al. 2011) or “mark recapture/sighting” techniques 
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in animal studies (Turchin  1998; Ovaskainen et  al.  2008; 
Southwood and Henderson  2009; Lagrange et  al.  2014)). 
However, such movement data are extremely challenging to 
collect, especially for endangered species or animals living 
in remote places on Earth. Genetic markers naturally present 
in populations offer unique opportunities to study dispersal 
(Nathan et  al.  2003; Hamrick and Trapnell  2011; Robledo-
Arnuncio  2012). However, such genetic methods (e.g., long-
term frequency-based approach using population structure 
described by the FST fixation index) estimate effective disper-
sal over several generations, rather than dispersal processes 
relevant for the temporal scales at which ecological and demo-
graphic processes occur.

Recently, many methods have been developed to assess the dis-
persal distance kernel over one generation based on genetic data, 
especially to estimate seed dispersal kernels (Robledo-Arnuncio 
and García 2007; Klein et al. 2013; Gelmi-Candusso et al. 2019). 
Although these methods are accurate (Jaquiéry et  al.  2011), 
they often rely on simple dispersal assumptions. For example, 
classical methods based on Euclidean distances or least-cost 
distances (e.g., in models of isolation by distance (Wright 1943; 
Rousset 1997; Broquet et al. 2006)) assume a single and optimal 
movement path for individuals, while individuals may change 
their route during dispersal (Stamps 2001; Clobert et al. 2009). 
Newer methods have been developed that are based on resis-
tance networks (McRae 2006; Graves et al. 2014). These meth-
ods consider the relative cost of dispersal in a specific landscape 
compared to a reference condition. However, their implemen-
tation is time-consuming and the estimation of dispersal pa-
rameters, for example, by maximum likelihood, generally lacks 
accuracy (Graves et al. 2013). Furthermore, genetic data alone 
may not provide enough information on demographic processes 
because dispersal processes may depend on the environment 
(Lowe and Allendorf  2010), the population sizes in different 
environments may vary, dispersal may occur at short or long 
distances and dispersal might also depend on individual choice 
(Jaquiéry et al. 2011).

Here, we integrate genetic methods with environment-dependent 
metapopulation models to develop a new likelihood function that 
quantifies dispersal rates, distances, and behaviors. This novel 
approach advances previous methods by linking movement and 
demographic patterns with genetic data (Roques et  al.  2016). 
Specifically, it is based on a mechanistic-statistical approach 
(Roques et  al.  2011; Ovaskainen et  al.  2008; Southwood and 
Henderson  2009; Berliner  2003; Wikle  2003; Soubeyrand and 
Roques 2014) in the framework of state-space models (Patterson 
et al. 2008; Durbin and Koopman 2012). It has been theoretically 
developed to characterize insect diffusion rates based on genetic 
data over a single generation (Roques et al. 2016), but it has yet to 
be applied to other species. In addition, this method has ignored 
reproductive and dispersal behaviors. The latter is particularly 
important, as some species use personal and social informa-
tion to decide whether to leave a natal or current breeding site 
and where to settle (e.g., (Doligez et al. 2002)). Such “informed 
dispersal” behavior (Clobert et al. 2009) enables individuals to 
settle in habitats of better quality, potentially improving their 
fitness, therefore increasing population viability and species 
persistence, especially in the face of global changes (Ponchon 
et al. 2015).

In this study, we present a likelihood function for a meta-
population mechanistic-statistical model that integrates 
reproductive and dispersal behaviors, including informed 
departure and settlement decisions. We apply this model to 
emperor penguins (Aptenodytes forsteri), an Antarctic seabird 
that is increasingly threatened by climate change (Jenouvrier 
et  al.  2021). Due to the logistical challenges of monitoring 
populations in extreme environmental conditions, very little 
is known about their dispersal behaviors. In fact, emperor 
penguins have only been marked at one site (Pointe Géologie 
(Barbraud and Weimerskirch  2001)), with no recaptures 
elsewhere. The recent advent of satellite telemetry tags has 
allowed for an enhanced understanding of the movement of 
emperor penguins on large spatial scales within a season. 
However, this approach is not suitable for determining dis-
persal between colonies due to the limited life span of these 
devices (Thiebot et al. 2013).

Like many seabirds, emperor penguins are considered highly 
philopatric (Mougin and Van Beveren  1979). However, this 
traditional view has been challenged by advances in genetic 
analyses and very high-resolution satellite imagery (VHR), 
suggesting that movements between colonies occur (LaRue 
et al. 2015). In fact, genetic studies have identified at least four 
distinct genetic clusters among emperor penguins (Younger 
et al. 2017). Each cluster is located in a different geographic 
region of Antarctica, some spanning thousands of kilometers 
of coastline and comprising multiple breeding colonies. While 
there is some degree of gene flow connecting these clusters, 
they remain genetically distinct from one another. However, 
within each cluster, the dispersal of individuals between 
breeding colonies is sufficient to maintain panmixia (Younger 
et  al.  2017). In addition, VHR satellite imagery has recently 
documented colony movements, disappearances, and reloca-
tions (Fretwell and Trathan  2021). For example, a dramatic 
decline in the world's second-largest emperor penguin colony 
occurred at Halley Bay, while the nearby Dawson-Lambton 
colony, 55 km to the south, saw a more than tenfold increase 
in penguin numbers during the same period (Fretwell and 
Trathan 2019). Halley Bay has suffered 3 years of almost com-
plete breeding failure caused by a change in the local environ-
ment and sea ice conditions, and those unfavorable conditions 
may have forced penguins to relocate to Dawson-Lambton 
(Fretwell and Trathan 2019). The colony had been present at 
Halley Bay since at least 1956, persisting for 60 years before 
the major environmental disturbance led to a massive popula-
tion decline and emigration event. This suggests that emperor 
penguin movements may be triggered by major environmental 
disturbances and that individuals leave their current breeding 
site using information about their habitat quality, such as the 
presence of a stable and suitable ice habitat to breed. These 
dispersal behaviors correspond to informed emigration.

Using a mechanistic-statistical approach, we have developed a 
likelihood function that links the demographic characteristics 
of the emperor penguin to genetic data. It enables us to: (1) de-
termine the most likely dispersal behaviors in emigration and 
establishment of emperor penguins (informed vs. random); (2) 
estimate the mean dispersal distance for this species and the 
emigration rates between colonies; (3) highlight environmen-
tal and demographic factors that drive emigration rates by 
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combining our approach with independent demographic and 
environmental data; and (4) project the global population of em-
peror penguin change into the future using the most recent large 
ensemble of climatic projection in Antarctica (CESM2-LENS 
(Rodgers et al. 2021)).

2   |   Material and Methods

The model presented in this study is based on the combina-
tion of a mechanistic metapopulation model that describes the 
population dynamics, and a stochastic model that accounts 
for the collection of genetic measurements based on the pop-
ulation dynamics (section “Mechanistic-statistical model”) 
(Soubeyrand et  al.  2009). A previous theoretical study has 
demonstrated the relevance of this approach for estimating 
dispersal parameters using genetic data (Roques et al. 2016). 
We begin by describing our case study, the emperor penguin 
(section “Case study: emperor penguin”). Then we present the 
available genetic data for emperor penguins (section “Genetic 
data”), followed by an explanation of our mechanistic-
statistical approach and the statistical inference of the model 
parameters (section “Statistical inference”). Finally, we com-
pare the different dispersal behavior (section “Comparison of 
dispersal behaviors”), we evaluate the impact of demographic 
and environmental factors on emigration rates (section 
“Impact of demographic and environmental factors on emi-
gration rates”) and project the future dynamics of the global 
emperor penguin population until 2100 (section “Forecasts of 
emperor penguin global population”).

2.1   |   Case Study: Emperor Penguin

Emperor penguins are seabirds that live in Antarctica. They 
breed annually during the Antarctic winter in one of the 66 
breeding colonies around Antarctica (see circles in Figure 1). 
In March, adults settle in a colony to mate, lay a single egg, 
and raise their chick until December. Adults and juveniles 
leave colonies in December/January and disperse into the 
Southern Ocean. After a northward migration following de-
parture from their natal colony, juveniles return close to the 
Antarctic sea ice in April/May (see (Prevost 1961) and obser-
vations from Argos tracking (Labrousse et al. 2019; Thiebot 
et al. 2013)). The first breeding starts at 3 years. During this 
period, from fledgling to first breeding, individuals can pros-
pect (Mougin and Van Beveren 1979; Prevost 1961) and even-
tually assess the habitat quality of a potential colony to settle 
and breed.

A recent genetic study identified four genetic clusters among 
emperor penguins that are significantly genetically differ-
entiated, with some degree of gene flow connecting these 
clusters (Younger et  al.  2017). Although genetic clustering 
(STRUCTURE) (Pritchard et  al.  2000) and FST analyses 
support the presence of four genetic clusters, genetic differ-
entiation between emperor penguin colonies is subtle and hi-
erarchical, and does not follow a typical isolation-by-distance 
(IBD) pattern of differentiation.

The four identified genetic clusters coincide with distinct geo-
graphical regions composed of several colonies: (WEDD) Weddell 

FIGURE 1    |    The four genetic clusters detected around Antarctica that characterize four geographic regions: (WEDD) Weddell Sea (Gould Bay to 
Halley Bay colonies) red dots, (MAWS) Mawson Bay (Fold Island to Cape Darnley colonies) purple dots, (AMPG) Amanda Bay to Pointe Geologie 
colonies, green dots and (ROSS) Ross Sea (Cape Washington and Cape Crozier colonies) blue dots. Gray and colored dots indicate all the 66 known 
emperor penguins colonies around Antarctica. The three gray regions corresponds to are without genetic characterization: (StoS) from Smith to 
Snowhill Island in the Weddell sea colonies, (StoK) from Stancomb to Kloa point colonies and (A–B Seas) Ledda bay to Rotschild colonies (Admunsen 
and Bellingshausen Seas). The white numbers indicated the number of individuals sampled from this colonies and the year of sample.
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sea (Gould Bay to Halley Bay colonies), (MAWS) Mawson Bay 
(Fold Island to Cape Darnley colonies), (AMPG) Amanda 
Bay to Pointe Geologie colonies, and (ROSS) Ross sea (Cape 
Washington and Cape Crozier colonies) (see Figure 1). However, 
these four geographical regions do not cover all the 66 colonies 
around Antarctica. Three geographical regions remain genet-
ically uncharacterized:(StoS) from Smith to Snowhill Island in 
the Weddell sea colonies, (StoK) from Stancomb to Kloa point col-
onies, and (A-B seas) Ledda bay to Rotschild colonies (Admunsen 
and Bellingshausen seas) (sees Figure 1). Although it is possible 
that there are more than four genetic clusters across the emperor 
penguin's range, a complete sampling of all colonies is logisti-
cally infeasible due to the remote distribution of the species in 
one of the harshest climates on Earth. This limitation is common 
in wildlife studies, where representative sampling is often the 
only viable option. Our estimations of dispersal parameters are 
therefore conditional on the assumption that the emperor pen-
guin population is structured into these four identified genetic 
clusters.

2.2   |   Genetic Data

We used genetic data collected from 1992 to 2013 in eight colo-
nies around Antarctica by (Younger et al. 2017) (see Figure 1). 
After filtering steps (Benestan et  al.  2016), 4.596 neutral 
genome-wide single nucleotide polymorphisms (SNPs) were re-
tained. Specifically, we here use only SNPs that are present in all 
sampled colonies (parameter-p 8 in the Stacks pipeline) and that 
are present in at least 80% of individuals per colony (parameter-r 
0.8 in the Stacks pipeline). We keep SNPs that are neutral and 
polymorphic at the metapopulation level. However, some allele 
frequencies in genetic clusters might be equal to 0 because some 
alleles are private in the sense that they appear only in one ge-
netic cluster. A total of 110 individuals (10–16 per colony) were 
successfully genotyped at these loci.

2.3   |   Mechanistic-Statistical Model

The mechanistic model characterizes the spatio-temporal 
changes of emperor penguin populations across the 66 colo-
nies in Antarctica. It combines a demographic model, describ-
ing the metapopulation dynamics and incorporating various 
parameters such as mean dispersal distance, emigration rates, 
and dispersal behaviors (section “Demographic model”), with a 
genetic population model projecting the number of individuals 
originating from one of the four genetic clusters for each year 
and in each colony (section “Genetic population dynamics”). 
The stochastic model, on the other hand, includes a probabilis-
tic sampling approach to estimate the likelihood of sampling an 
individual from a given genetic cluster (section “Probabilistic 
sampling model”) and a statistical genetic model that predicts 
the probability of observing a particular genotype based on the 
individual's genetic cluster of origin.

2.3.1   |   Demographic Model

We use the metapopulation model developed by (Jenouvrier 
et  al.  2017) to project the female population vector n, that 

comprises the female population size ni in each colony i, from 
year t  to year t + 1 (we only look at the female here):

It incorporates two phases of possibly different duration: a mo-
tionless density-dependent reproduction phase (F) followed by 
a dispersal phase including natal or breeding dispersal (D). 
The reproduction matrix F follows a Ricker model, where the 
intrinsic growth rate ri(t) of each colony varies in time due to 
sea ice concentration (SIC) variations, described by climatic 
projection in Antarctica (CESM2-LENS (Rodgers et al. 2021)), 
while carrying capacities of colonies are constant over time. 
The dispersal phase D comprises three stages: (1) emigrat-
ing from the resident colony at a rate mi(t), (2) searching for 
a new colony among other colonies with an average dispersal 
distance d (transfer), and (3) settling in a new colony. During 
the emigration and settling stages, two possible behaviors (in-
formed versus random) can occur:

•	 An informed emigration: individuals only leave poor-
quality breeding sites if habitat quality is no longer viable, 
that is, when population growth rate in the site ri is neg-
ative, ri(t) < 0. In this case, emigration occurs at a rate 
mi(t) =max

(
1 − ri(t)∕

((
1 − pmi

)
r∗c
)
, 1
)
, which depends on 

the current habitat quality relative to the worst possible 
quality. This is measured through the population growth 
rate ratio ri(t)∕r∗c , where r∗c < 0 represents the lowest growth 
rate. Additionally, the parameters pm =

(
pm1, … , pm7

)
 

quantify the sensitivity to poor-quality habitat and deter-
mine the intensity of emigration in each region. A value of 
pm close to 1 implies that even minor habitat degradation 
triggers a sharp increase in emigration rate, while lower 
values of pm lead to a more gradual response.

•	 A random emigration: individuals leave the colony regard-
less of the habitat quality at a fixed rate mi = pmi

. In this 
context, the parameter pmi

 represents the proportion of indi-
viduals that leave the colonies in region i;

•	 An informed establishment: individuals select the most 
suitable habitats (i.e., maximize intrinsic population 
growth) within their dispersal range of size d;

•	 Random establishment: individuals pick a colony in their 
dispersal range of size d randomly and regardless of the 
habitat quality of the colonies.

In our analysis, we only consider three dispersal behaviors: the 
random dispersal behavior (R) with random emigration and estab-
lishment; the semi-informed dispersal behavior (SI) with informed 
emigration but random establishment; and the informed dispersal 
behavior (I) with both informed emigration and establishment.

2.3.2   |   Genetic Population Dynamics

The population of emperor penguin comprises 4 genetic clusters 
characterized by their allele frequencies r� =

(
pr�a

)
a=1,…,A�

 at 
the sampled SNPs � (with possibly some allele frequencies equal 
to 0 due to the presence of private alleles in some genetic clus-
ters). The frequencies are assumed constant over the sampling 

(1)n(t + 1) = D[t,n(t)]F[t,n(t)]n(t)
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interval because they represent less than two generations for 
emperor penguins (which is 16 years) (Jenouvrier et  al.  2014). 
Our demographic model describes the survival, reproduction 
and dispersal of individuals regardless of their native genetic 
cluster. In order to track the native genetic cluster of individu-
als, we derive from the demographic model (Roques et al. 2012, 
2016), a genetic model that projects the population vector nr of 
individuals that originate from one of the four genetic cluster r. 
The vector nr comprises the number of individuals nr

�
(t) in each 

colony � originating from cluster r, and satisfies the following 
dynamics

Initially, we have the following repartition

where �r
i
 is the initial proportion of individuals native from 

genetic cluster r within the colony i (
∑R

r=1 �
r
i
= 1 for all i). We 

assume that for colonies belonging to a region where we have 
genetic information, the proportion is 1 if the geographical re-
gion of the colony matches the genetic cluster and 0 otherwise. 
For instance, if the colony i belongs to the region that matches 
genetic cluster 1, then

However, for the colonies belonging to the three geograph-
ical regions without genetic information, the parameters 
� =

(
�1
i
,�2

i
,�3

i
,�4

i

)
 are unknown parameters that we have to es-

timate. In order to simplify the estimate, we assume that � is the 
same among colonies of a geographical region. The genetic and 
demographic dynamics are linked by:

More precisely, since the set of SNPs in our genetic data is se-
lectively neutral, individuals within a colony share the same 
dispersal and reproduction characteristics independent of 
their genetic background. In particular, an individual within 
a colony � and originating from the genetic cluster r produces 
offspring at the same rate as any individual within the colony 
�. Although newborns result from the mating of a male and a 
female, we assume that they inherit the native genetic cluster 
of the female.

2.3.3   |   Probabilistic Sampling Model Associated With 
the Demographic Model

During the year t  that ranges from 1992 to 2013, individuals 
from colonies Jt were genotyped. The sampling of individuals in 
a given year t , in the colony � is random among the individuals 
observed at the colony. Given that our dataset has an average 
sample size per colony G� that is relatively small (10–16 individ-
uals per colony) in comparison to the typical population size of 
emperor penguin colonies (which ranged from 100 to 25,000 
individuals in 2009 (Fretwell and Trathan 2009)), the count of 

genotyped individuals in � originating from genetic cluster r fol-
lows a multinomial distribution characterized by the parame-
ters G�, the sample size, and 

(
�1
�
(t), … ,�R

�
(t)

)
, the proportions 

of individuals in colony � at time t , that originate from one of 
the four genetic clusters. The probability that a genotyped indi-
vidual i observed at time t  in colony �, originates from genetic 
cluster r, is

The proportion �r
�
 corresponds to the ratio between the number 

of individuals nr
�
(t), that originate from the genetic cluster r and 

the number n� (t) of individuals alive in the colony � projected by 
the metapopulation model.

2.3.4   |   Statistical Genetic Assignment Approach

Emperor penguins are diploid organisms, thus their genotypes 
write  =

{(
a1
�
,a2

�

)}
�=1,…,Λ

. As we use single-nucleotide poly-
morphisms (SNPs), each locus has two alleles, corresponding 
to the two possible nucleotide variations in the DNA sequence. 
Using the linkage equilibrium among loci and the Hardy–
Weinberg equilibrium assumption within a genetic cluster, the 
conditional probability for the genotype i� is:

where ki is the number of heterozygous loci in i,�, pr�a1 and pr�a2 
are the allele frequencies within the genetic cluster r of the al-
leles a1 and a2 of individual i at locus �.

2.4   |   Statistical Inference

2.4.1   |   Computation of the Likelihood Function

The unknown parameters Θ of our mechanistic-statistical model 
are the mean dispersal distance d, the emigration sensitivity pa-
rameters pm =

(
pm1

, … , pm7

)
 and the initial proportions of each 

genetic clusters, � =
(
�1
i
,�2

i
,�3

i
,�4

i

)
i∈{1,2,3}

. For the three differ-
ent dispersal behaviors (random, semi-informed or informed 
dispersal) and with unknown parameters Θ of our model, the 
likelihood function is:

where ℙ
(
i,�

)
 is the probability to sample the genotype i,� in col-

ony � at time ti, that can be decomposed as follows

For each dispersal behavior (random (R), semi-informed (SI) 
or informed (I)), we estimate the posterior distribution of the 

nr(t + 1) = D[t,n(t)]F[t,n(t)]nr(t).

(2)nri (0) = �ri ni(0), for all i ∈ {1, … , 66},

�1i = 1 and �2i = �3i = �4i = 0.

n� (t) =

4∑

r = 1

nr
�
(t).

ℙ( indiv. i originates from cluster r ) = �r
�
(t) =

nr
�
(t)

n� (t)
.

ℙ
(
i,� | indiv. i originates from r

)
= 2ki

Λ∏

�= 1

pr�a1pr�a2


(
Θ|i,�

)
=

2013∏

t = 1992

Jt∏

� = 1

G�∏

i= 1

ℙ
(
i,�

)

ℙ
(
i,�

)
=

4∑

r=1

ℙ
(
i,� | indiv. i originates from cluster r

)

× ℙ( indiv. i originates from cluster r )

 20457758, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71367 by C

ochrane France, W
iley O

nline L
ibrary on [07/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 17 Ecology and Evolution, 2025

parameters Θ using the likelihood function and an impor-
tance sampling algorithm with prior distribution of parame-
ters d and pm given by uniform distribution with the following 
constraints:

and prior of the parameter � given by a Dirichlet distribution of 
order R = 4 with parameters all equal to 1:

We performed the statistical inference with Matlab version 
R2021a. The code is available online at https://​github.​com/​garni​
eji/​EP_​demog​raphic_​genetic.

2.4.2   |   Confidence Intervals and Goodness-Of-Fit

The model's goodness-of-fit was evaluated by determining the 
95% confidence regions for the observed genotypes in each colony 
and year of observation. To do this, we calculated the probability 
of each possible observed genotype based on the frequencies of 
each genetic cluster predicted by the mechanistic model using 
the estimated parameters that maximize the likelihood function. 
We then checked if the observed genotypes fell within the 95% 
confidence regions that represent the most likely outcomes.

2.5   |   Comparison of Dispersal Behaviors

In order to determine the most probable dispersal behavior, 
we performed a model selection process using the Deviance 
Information Criterion (DIC), defined as:

where D̂ and � ((Θ)) are, respectively, the posterior mean 
and variance of the deviance, given by (Θ) = −2 log[(Θ)] . 
Minimizing the posterior mean ensures a good fit, while the 
posterior variance reflects the effective number of parameters 
in the model (Gelman et al. 2003). Although this criterion pro-
duces results similar to the Bayesian Information Criterion 
(BIC), which penalizes the maximum likelihood estimate 
based on the number of parameters, the Bayesian nature of 
the DIC criterion accounts for parameter uncertainty and cor-
relation when sampling from the joint posterior distribution 
(Ward 2008). In practice, the posterior mean and variance are 
estimated using their empirical values, computed from the 
weighted posterior sample 

{
Θm,wm

}
 obtained through our 

minimization algorithm.

2.6   |   Impact of Demographic and Environmental 
Factors on Emigration Rates

First, using the posterior distribution of emigration rates ob-
tained from our mechanistic-statistical model, we classified 

colonies into two categories each year: “No emigration” colo-
nies, where the emigration rate is zero, and “Emigration” colo-
nies, where the emigration rate is positive.

Next, to evaluate the influence of demographic and environ-
mental factors on emigration, we characterized emigration 
using two distinct metrics: (1) Annual emigration probability—
the probability that a colony falls into the “Emigration” category 
in a given year, and (2) Average emigration probability—the pro-
portion of years between 2009 and 2013 in which a colony was 
classified as “Emigration.” These two metrics offer insight into 
the propensity of individuals to leave their colony, respectively, 
in a given year or over a 5-year period.

Next, we examined various environmental and demographic fac-
tors that were independent of our metapopulation model and cor-
related to habitat quality of colonies which we assume strongly 
correlated to emigration rate. Environmental factors included 
zooplankton biomass (mmol C ∕m2) (Offredo and Ridoux 1986; 
Kirkwood and Robertson 1997; Cherel and Kooyman 1998) and 
the distance between the colony and the nearest edge of land-
fast sea ice (m) (Labrousse et al. 2023; Massom et al. 2009). The 
diet of emperor penguins varies by location and by season, but 
mainly consists of Antarctic krill (Euphausia superba), vari-
ous species of fishes (Antarctic silverfish, Pleuragramma ant-
arctica, Trematomus species, Pagothenia borchgrevinki, and 
Pleuragramma antarcticum), glacier squids (Psychroteuthis 
glacialis) and Antarctic neosquid (Alluroteuthis antarcticus) 
(Offredo and Ridoux  1986; Kirkwood and Robertson  1997; 
Cherel and Kooyman  1998). Although Antarctic zooplankton 
comprises many species, its local biomass could provide insight 
into the available resources for emperor penguins. As emperor 
penguins incubate and rear their chicks on landfast sea ice, 
its extent and the timing of sea ice breakup influence breed-
ing success and, consequently, the suitability of breeding sites 
(Labrousse et al. 2023; Massom et al. 2009).

Environmental data were obtained from novel landfast sea ice 
datasets (hereafter referred to as “fast ice”) at different scales 
(Fraser et al. 2021) and from unique sea ice and food web dynam-
ics variables derived from a forced ocean-sea ice (FOSI) config-
uration of the Community Earth System Model (CESM2) (Long 
et al. 2021). When applicable, we computed the average value of 
each environmental variable across different breeding periods: 
non-breeding (January to March), laying (April and May), incu-
bation (June and July), and chick-rearing (August to December).

Additionally, we considered three demographic factors: col-
ony size, growth rate per colony, and blinking frequency. 
From 2009 to 2018, the size and growth rate of each colony 
were computed annually based on population counts obtained 
from VHR satellite imagery (LaRue et al. 2022, 2024). The col-
ony size and growth rate per colony were defined as their aver-
ages over the 10-year period (2009–2018). Blinking frequency, 
derived from colony presence or absence data obtained via 
VHR satellite imagery, was defined as the proportion of years 
a colony was absent during the 2009–2018 period (LaRue 
et al. 2022, 2024).

We employed a random forest algorithm to assess the influence 
of environmental and demographic variables on emigration 

(
d,pm

)
∈ (250, 6500) × (0, 1)7

�r
h
∈ (0, 1)4 and

4∑

r = 1

�r
h
= 1 for all h ∈ {1, … , 66}.

(3)DIC = D̂ +
1

2
� ((Θ))
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(Strobl et al. 2007). Specifically, we used the R package “party” 
to fit conditional random forests (Strobl et al. 2007), while the 
“permimp” package (Debeer and Strobl  2020) computed vari-
able importance scores. The corresponding codes are available 
online at https://​github.​com/​bilge​cansen/​Emper​or_​dispe​rsal.

In analyzing annual emigration probability, we considered only 
the environmental variables around each colony. In contrast, 
when analyzing average emigration probability, we incorpo-
rated both environmental variables (averaged between 2009 and 
2013) and the three demographic factors.

2.7   |   Forecasts of Emperor Penguin Global 
Population

Coupling our new estimated dispersal parameters with the 
meta–population model developed by (Jenouvrier et  al.  2021), 
we project the total population size of emperor penguins over 
the century for different climate scenarios. Previous studies 
have provided a more detailed description of this forecasting 
approach, which yields a robust forecast by incorporating vari-
ous sources of uncertainties ((Jenouvrier et al. 2021, 2014, 2009, 
2017) for emperor penguins and (DuVivier et al. 2024; Iles and 
Jenouvrier 2019) for a general approach).

Climate scenarios, which are labeled based on the projected 
global warming increase (°C) above preindustrial levels, are dis-
cussed in greater depth in (Jenouvrier et al. 2020). These scenar-
ios include an increase of 4.3°C [RCP8.5], 2.6°C [new scenario], 
2.4°C [RCP4.5], 2°C [Paris 2°C] and 1.5°C [Paris 1.5°C]. The 
new scenario developed by (Jenouvrier et al. 2020) is intended 
to demonstrate probable effects on sea ice and therefore emperor 
penguins by 2100 if governments act now to control greenhouse 
gas emissions by 2050.

We compare the result of this updated model (semi-informed 
dispersal) with the projections of the model without disper-
sal (see Figure  5a). Finally, we compare projections for dif-
ferent dispersal behaviors and between climate scenarios (see 
Figure 5b,c).

3   |   Results

3.1   |   Goodness-of-Fit and Convergence

From the three dispersal behaviors (random (R), semi-informed 
(SI), and informed (I)), we obtained three different set of param-
eters that maximize the likelihood function. On average, 99% of 
the observed genotypes fell within the 95% confidence regions, 
indicating that models with different dispersal behaviors accu-
rately represented the data (109 of the observed genotypes over a 
total of 110). The three scenarios exhibited a peak in likelihood 
at the mean dispersal distance parameters, suggesting that these 
parameters optimize the likelihood for all three scenarios. With 
respect to the remaining parameters, that are the emigration 
sensitivity parameters pmi

 and the initial genetic cluster propor-
tions �r

i
, the likelihood function exhibits a smoother distribution 

around the optimized parameters, indicating that the likelihood 
is less responsive to changes in these parameters.

3.2   |   Dispersal Processes

3.2.1   |   Dispersal Behaviors

Based on our model selection, it is evident that the genetic data 
strongly suggest the prevalence of semi-informed dispersal be-
havior among emperor penguins (see Table  1). This behavior 
indicates that these penguins are more likely to leave colonies 
with unfavorable habitat conditions (i.e., with negative intrinsic 
population growth; informed emigration), but settle randomly 
into another colony (random establishment).

3.2.2   |   Dispersal Ranges

Figure 2a Shows the posterior distribution of the mean dispersal 
distance for the best supported model. It indicates a relatively 
short dispersal distance of approximately 414 km. This mean 
dispersal distance is modest compared to the potential move-
ment range derived from the tracking of juveniles and adults at 
sea (tracking studies report traveling distance from 2000 km to 
7000, with extreme distance of 9000 km) (Thiebot et  al.  2013; 
Goetz et al. 2018; Kooyman et al. 2004).

3.2.3   |   Dispersal Rates

Figure 2b Summarizes the predicted emigration rates across the 
continent. Dispersal events are generally rare, as indicated by a 
median emigration rate of zero, meaning that more than 50% of 
the calculated emigration rates are zero. However, some regions 
may experience massive emigration events, with emigration 
rates rising significantly above the average rate, which remains 
non-negligible at 15.7% per year (see Figures 2b and 3a).

Figure 3a shows the predicted rate of emigration per colony, or-
ganized into clusters based on regions. Furthermore, Figure 3b 
provides an overview of the average predicted emigration rate 
both within and between these regions. Emperor penguins move 
mainly to nearby colonies in the same regions with an average 
rate per year that varies between regions: 15% in colonies of the 
Amundsen and Bellingshausen seas (A-B seas) to 0.17% in col-
onies from Smith to Snowhill Island in the Weddell sea regions 
(StoS). However, massive emigration is also likely to occur be-
tween different regions, especially between the A-B seas regions 
and the StoS regions (11%–1.35%) and colonies from Stancomb 
to Kloa Point (StoKP) and Mawson bay (MAWS) (1.16%–0.21%).

TABLE 1    |    Model selection based on minimization of the deviance 
information criteria (DIC) defined by (3) for the three different 
dispersal behavior: random dispersal (random emigration and 
establishment), semi-informed dispersal (informed emigration but 
random establishment) and informed dispersal (informed emigration 
and establishment).

Dispersal 
behavior Random Semi-informed Informed

DIC criteria 
(Gelman 
et al. 2003)

684 −41 676

 20457758, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71367 by C

ochrane France, W
iley O

nline L
ibrary on [07/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/bilgecansen/Emperor_dispersal


8 of 17 Ecology and Evolution, 2025

3.3   |   Potential Drivers of Dispersion

3.3.1   |   Average Rate of Emigration

The zooplankton biomass in the non-breeding season (January 
to March) stands out as the primary factor influencing the aver-
age probability of emigration (the proportion of years with non-
zero median emigration rates between 2009 and 2013 in a colony) 

among all the evaluated environmental and demographic factors 
(see Figure 4d). Subsequently, the size of the colony was identified 
as the second most important factor influencing the average prob-
ability of emigration (Figure 4d). Both factors have a negative im-
pact on the rate of emigration (Figure 4a,c). Despite considerable 
uncertainties, colonies without emigration were found to have 
an average size almost twice as large as colonies with emigration 
(3741 penguins compared to 1880 penguins for emigration).

FIGURE 2    |    Posterior distributions of the mean dispersal distance d per individuals and the emigration rate per colony per year for the entire 
Antarctic continent. Plain lines are the mean of the distributions: (a) 414 km (blue) and (b) 0.157 (black).

FIGURE 3    |    Emigration rates per year per colony (panel (a)) and between and among the seven regions of Antarctica (panel (b)), from 2009 to 
2014: From Smith to Snowhill Island in the Weddell Sea (StoS), Weddell Sea (Gould Bay to Halley Bay colonies) (WEDD), from Stancomb to Kloa 
point (StoK), Mawson Bay (Fold Island to Cape Darnley colonies) (MAWS), from Amanda Bay to Pointe Geologie colonies (AMPG), the Ross Sea 
(Cape Washington and Cape Crozier) (ROSS) and Admunsen and Bellingshausen seas (Ledda bay to Rothschild Island) (A–B seas). In panel (a), white 
dots correspond to the median of the posterior distributions of the emigration rates per colony for each region, and the black line is the mean emigra-
tion rate for the entire Antarctic continent (0.157). In panel (b), the dots correspond to the 66 colonies of emperor penguins around Antarctica and the 
color shading indicate their geographical region. Gray dots indicate colonies without genetic information, while colored dots corresponds to the four 
genetic clusters detected by (Younger et al. 2017). The white numbers indicate the number of individuals sampled in colonies included in our study.
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3.3.2   |   Annual Emigration Probability

Next, we refine our analysis by focusing solely on the annual 
probability of emigration (the probability of observing a non-zero 
median emigration rate in a given year and colony). Our find-
ings indicate that proximity to the nearest fast ice edge positively 
affects the annual probability of emigration (refer to Figure 4b), 
ranking second in importance after zooplankton biomass.

3.4   |   Forecasts of Emperor Penguin Global 
Population

According to our predictions, the emperor penguins are most 
likely to disperse through semi-informed dispersal with a 
small mean distance of 414 km and small emigration rates. 
This dispersal process is estimated to result in a greater 
global population, up to 7%, compared to a scenario without 

FIGURE 4    |    Impact of environmental and demographic factors on emigration rates of emperor penguins: (a) Zooplankton biomass (mmol C ∕m2) 
during the non-breeding period (January to March) have a negative effect on annual emigration probability (probability of observing a nonzero median 
emigration rate in a given year and colony); (b) Distance to nearest fast ice edge (meters) has a positive effect. Lines at the top and bottom of the graphs show 
the presence (median emigration rate > 0) and absence (median emigration rate = 0) of emigration, respectively, in a given year and colony; (c) the colony 
size has a negative effect on the average probability of emigration (proportion of years with non-zero median emigration rates between 2009 and 2013 in 
a colony); (d) Conditional variable importance scores of random forests modeling average emigration probability. Only the top two variables are shown.
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dispersion when climate scenarios lead to significant popula-
tion declines (from scenario 4.3°C and scenario 2°C, as shown 
in Figure 5). However, under a climate scenario of 1.5°C [Paris 
1.5°C], which causes lesser declines, our newly estimated dis-
persal processes do not improve the global population size 
compared to a scenario without dispersion, but may actually 
reduce it. Ultimately, the impact of dispersal on future global 
population size is expected to be relatively small compared to 
the effects of climate change mitigation (Jenouvrier et al. 2021, 
2020) (Figure 5).

4   |   Discussion

Using an innovative mechanistic-statistical model that inte-
grates empirical demographic and genetic data, we (1) statisti-
cally inferred the most likely dispersal behavior used by emperor 
penguins to move between colonies across Antarctica, (2) math-
ematically quantified the mean dispersal distance at which indi-
viduals are predicted to settle in a new colony, and (3) estimated 
average emigration rates per colony. While individual dispersal 
events are not directly observed, the integration of real-world 

FIGURE 5    |    Projection of the total population size of the emperor penguin from 2009 to 2100 using the metapopulation demographic model (see 
defined by (1)) with different climate scenarios. In panel (a), the projected total population size without dispersal (dashed curves) and with semi-
informed dispersal with the most likely parameters provided by our analysis (plain curves); the gray regions correspond to the confidence intervals 
1% around the median. In panel (b), we present the percentage difference of population size between the projection with a semi-informed dispersal 
and the projection without dispersal for each climate scenario. In panel (c), we present the percentage difference of population size between the pro-
jection with the worst climate scenario, 4.3°C [RCP8.5] and the other scenarios.
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genetic and demographic data allows us to infer plausible pat-
terns of dispersion. Our model predicts that emperor penguins 
are more likely to leave colonies experiencing unfavorable con-
ditions and relocate randomly among other colonies. Although 
average emigration rates remain low, large-scale dispersal events 
may still occur locally under specific conditions. Inferred disper-
sal distances suggest movements over relatively short ranges. We 
discuss these novel estimations of dispersal processes in the con-
text of potential individual movements documented via satellite 
telemetry tags and colony movements captured via VHR satellite 
imagery. We note that neither satellite telemetry tags nor VHR 
satellite imagery allow direct characterization of dispersal rates, 
distances, and behaviors but are the only information available 
to date to speculate about dispersal processes. Unraveling those 
dispersal processes will also reduce uncertainties in future pop-
ulation projections of emperor penguins necessary for ongoing 
conservation and management actions. By incorporating this 
new understanding of dispersion mechanisms into projection 
models (Jenouvrier et al. 2017), the prediction of the global pop-
ulation trend for emperor penguins, under different climate 
scenarios, reveals that the influence of dispersion is minimal 
compared to the influence of climate change mitigation.

4.1   |   New Likelihood Function

The accuracy of inferring how landscape affects dispersal de-
pends on how different types of habitats or geographical el-
ements influence movement (Jaquiéry et  al.  2011). Classical 
genetic methods based on simple dispersal assumptions 
(e.g., Euclidean distances or least-cost distances approaches 
(Wright 1943; Rousset 1997; Broquet et al. 2006)) can provide re-
liable estimates when the landscape features present strong con-
trasts in permeability, even with limited sample sizes. However, 
as the landscape becomes more complex or when different fea-
tures have similar effects on movement, the power and accu-
racy of these methods diminish rapidly. In particular, genetic 
distance-based methods are more effective at detecting variables 
that impede dispersal (e.g., barriers) than those that facilitate it, 
as impeding variables create a stronger signal of reduced gene 
flow. Consequently, in complex landscapes with diverse en-
vironmental structures, combining genetic information with 
detailed demographic descriptions is crucial to accurately eval-
uate the impact of landscape variables on dispersal (Jaquiéry 
et al. 2011). This approach helps mitigate the limitations of ge-
netic methods alone, especially when there are low contrasts be-
tween landscape variables, which can obscure the true effects of 
the landscape on dispersal pathways.

Recently, new mechanistic-statistical approaches, including re-
production, have been developed to estimate the dispersion of pest 
species ((Roques et al. 2011) for processionary moths and (Roques 
et  al.  2021) for a bacteria) from genetic data. These approaches 
have the advantage of remaining relevant even if the degree of 
differentiation is low or the quantity of observed data is scarce 
(Roques et al. 2016). However, these approaches do not account 
for temporal variations or dispersal behaviors, which is particu-
larly important since some species use personal and social infor-
mation to decide whether to leave a natal or current breeding site 
and where to settle (e.g., (Doligez et al. 2002)). Such “informed dis-
persal” behavior (Clobert et al. 2009) enables individuals to settle 

in better quality habitats, potentially improving their fitness, thus 
increasing population viability and species persistence, especially 
in the face of global changes (Ponchon et al. 2015).

Here, we develop a novel likelihood function that incorporates 
informed departure and settlement behaviors, based on tempo-
ral and spatial variations in reproductive strategies and popula-
tion dynamics. To achieve this level of complexity, the model is 
conditional on the assumption of a metapopulation being com-
posed of four fixed genetic clusters at Hardy–Weinberg equilib-
rium, allowing us to focus solely on the evolution of the number 
of individuals within each cluster. However, we acknowledge 
that given our representative sampling approach, there could be 
more than four genetic clusters in the emperor penguin popula-
tion, and our framework is based on this set of conditions.

Alternatively, for other systems, it may be more appropriate 
to compute the dynamics of allele frequencies at any time and 
location, though this approach is more computationally inten-
sive. This dynamic can be modeled by adapting the methods 
of (Roques et al. 2012), but it requires simulating a system that 
scales with the total number of alleles in the population—an 
unfeasible task for our study. Another option is to use multi-
locus likelihoods for hybrids and backcrosses as developed by 
(Anderson and Thompson  2002), which involves tracking hy-
brid dynamics at each time step and computing the correspond-
ing likelihoods.

Therefore, while these alternative approaches offer more flexi-
bility with respect to population structure and do not necessar-
ily assume fixed genetic clusters, they come with their own set of 
assumptions and greater computational demands. It is import-
ant to note that all models, including ours, are simplifications of 
reality and are conditional on a set of assumptions tailored to the 
specific goals and limitations of the study. Our chosen approach 
balances complexity and feasibility, which is particularly suited 
for the current research context of data-sparse environments.

Our approach introduces a general, flexible, and efficient math-
ematical framework for inferring species' dispersal dynamics 
based on their demographic and genetic structure or dynamics. 
Beyond estimating dispersal patterns, this approach can also 
address broader questions in ecology and evolution. For exam-
ple, recent theoretical developments in evolution suggest that 
neutral genetic markers can provide insights into genealogy or 
ancestral lineages among populations under selection (Garnier 
et al. 2023). Extending our approach to these models could en-
hance our understanding of the genealogy of long-lived spe-
cies, such as the black-browed albatross, for which obtaining a 
pedigree is particularly challenging. Genealogical information 
is crucial for understanding species evolution. Although this 
approach has been applied to various ecological models, fur-
ther studies are needed to explore additional questions, apply 
it to more complex systems, and address the method's known 
limitations.

4.2   |   Four Genetic Clusters

Due to the species' breeding distribution across harsh and in-
accessible areas, complete genetic sampling of all colonies is 
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logistically infeasible. This limitation is not unique to emperor 
penguins, as restricted sampling is often the only viable option 
for studying the population genetic structure of many wild-
life species. Although additional genetic clusters may exist in 
unsampled regions, previous studies suggest that geographic dis-
tance alone is not a reliable predictor of genetic structure in em-
peror penguins (Younger et al. 2015) and more broadly Southern 
Ocean penguins (Cole et al. 2019). For instance, in emperor pen-
guin, Amanda Bay and Pointe Géologie, located 3200 km apart, 
belong to the same genetic cluster (Younger et al. 2017).

The observed genetic differentiation among the four detected 
genetic clusters in emperor penguins is likely explained by his-
torical factors rather than contemporary geographic barriers. 
Previous studies indicate that only three populations of emperor 
penguins may have survived during the Last Glacial Maximum 
(LGM), with the Ross Sea acting as a critical refuge (Younger 
et  al.  2015). The LGM has profoundly influenced the genetic 
structure of many penguin species (Cole et  al.  2019). Indeed, 
consistent genome-wide signatures of post-LGM expansion have 
been detected in penguin species that currently breed south of 
the LGM sea ice zone, suggesting that many Southern Ocean 
species retreated to ice-free refugia during the LGM and rap-
idly recolonized high-latitude shores as the ice receded (Cole 
et  al.  2019). These historical refugia have likely shaped the 
present-day genetic structure of several penguin species, includ-
ing emperor penguins (Younger et al. 2015).

We acknowledge that this representative sampling could be seen 
as a limitation for classical methods, such as BayesAss and co-
alescent models, which typically require extensive spatial sam-
pling and high genetic differentiation between populations to 
estimate dispersal rates accurately. Unlike traditional methods 
that indirectly infer dispersal from genetic structure, our ap-
proach explicitly models dispersal dynamics using a combina-
tion of a demographic model and a genetic population model. 
Our demographic model describes the dispersal of all individ-
uals across colonies, while the genetic population model tracks 
the lineage of individuals over time and assumes that a newborn 
inherits its genetic cluster from its mother. By integrating these 
demographic processes and focusing on the explicit movement 
of individuals, our model overcomes the limitations of tradi-
tional genetic methods that rely heavily on genetic differentia-
tion and extensive sampling.

By tracking the movement and lineage of individuals across 
colonies, our model offers a valuable tool to understand how 
these populations may respond to ongoing climate change with 
dispersal behaviors, despite the constraints of limited genetic 
sampling. This approach sheds light on the complex dispersal 
dynamics of emperor penguins across Antarctica, contributing 
to a more comprehensive understanding of their connectivity 
and resilience in the face of environmental change.

4.3   |   Dispersal Ranges

The posterior distribution of the mean dispersal distance for the 
best supported model, depicted in Figure  2a, suggests a short 
dispersal distance relative to the potential distance that tracked 
juveniles and adults cover after departing the colony (Thiebot 

et al. 2013; Kooyman et al. 2004). In fact, we found that the most 
likely dispersal distance of the emperor penguins is around 
414 km. Satellite telemetry studies have shown that penguins 
can cover incredible distances during their searching routes. 
In the Ross Sea, non-breeders can travel up to 9000 km (Goetz 
et al. 2018) to their wintering grounds, and after the molt, adults 
covered more than 2000 km on their return journey to their col-
onies (Kooyman et al. 2004). In East Antarctica, one juvenile 
covered more than 7000 km during the first 8 months after leav-
ing its natal colony in Terre Adélie (Thiebot et al. 2013).

However, the distance covered during the searching phase does 
not necessarily reflect the dispersal distance. In fact, individ-
ual potential dispersal can be reduced by specific behaviors. 
For example, seabirds exhibit specific behavioral traits, such as 
a high degree of philopatry (Aebischer and Coulson 1990) and 
the importance of social cues in the recruitment of new breeders 
(Reed et  al.  1999), which can reduce the dispersal distance of 
individuals relative to possible movement (Kildaw et  al.  2005; 
Matthiopoulos et  al.  2005). For example, the colonies in the 
Ross Sea are genetically distinct from the rest of the colonies 
(Younger et  al.  2015), suggesting that, despite their large dis-
persal potential during the non-breeding season, the dispersal 
distance of the emperor penguin could be somewhat limited. 
Additionally, after the demise of Halley Bay, many of the birds of 
Halley Bay may have relocated to the nearby Dawson-Lambton 
colony, while the formation of new colonies elsewhere or move-
ment to other locations of the colony further away is considered 
less likely (Fretwell and Trathan 2019).

4.4   |   Dispersal Rates

Previous studies have debated the magnitude of emigration 
rates in emperor penguins, with some studies arguing for large 
emigration rates (LaRue et al. 2015), while others argue for low 
emigration rates (Mougin and Van Beveren 1979; Prevost 1961). 
Although large-scale emigration events are possible, our re-
search indicates that these occurrences are rare.

Large emigration rates producing massive movements be-
tween colonies have been documented in the past two decades 
from satellite imagery: 1. Some colonies are known to ‘blink’ 
(disappear in some years, reappear in others) (Fretwell and 
Trathan 2021); 2. Others are known to relocate to icebergs or ice 
shelves during late sea ice formation in the autumn (Fretwell 
et  al.  2014); 3. Some colonies have shown dramatic declines, 
while nearby colonies have increased in size markedly (Fretwell 
and Trathan 2019). Although blinking, relocation, and massive 
movement events remain relatively infrequent, they may still 
have significant impact on local population dynamics or genetic 
mixing.

Spatially, 17% of the colonies are known to blink. In the past 
decade, certain colonies experienced intermittent periods of 
absence. Taking into account this fluctuation over time, the 
likelihood of a colony being absent in any given year is only 
4%. Furthermore, it is anticipated that emigration rates will be 
low due to the significant number of marked chicks that have 
been observed to return to Pointe Géologie (Mougin and Van 
Beveren 1979).

 20457758, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71367 by C

ochrane France, W
iley O

nline L
ibrary on [07/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



13 of 17

Nonetheless, it is crucial to establish the specific time and 
space frames in which these rates take place. In this study, we 
suggest that the overall yearly percentage of emperor penguins 
dispersing from one breeding site to another is relatively min-
imal. However, there might be instances of mass emigration 
occurring sporadically in certain locations (see Figure  3a). 
This pattern has been noticed in numerous species of seabirds 
and birds, and it aligns with the philopatric behavior exhib-
ited by these species. As an example, greater flamingos exhibit 
similar characteristics to emperor penguins in terms of their 
long lifespan and tendency to breed in one location (philopat-
ric). Generally, they have a low rate of emigration, but when 
the conditions for breeding are poor at their colony, such as 
when water levels are low, they relocate together to another 
breeding location (see (Nager et  al.  1996; Balkiz et  al.  2010; 
Johnson and Cézilly 2007)).

In addition, our framework focuses on emigration rates at 
the population level. However, in many vertebrate species, 
especially in seabirds, juvenile dispersal is greater than adult 
dispersal (Clobert et  al.  2004). For emperor penguins, mas-
sive emigration events are likely to consist mainly of adults in 
some regions, whereas the low background levels of emigra-
tion are likely dominated by juvenile dispersal. Further work 
should include this age structure in the dispersal demographic 
model to disentangle the dispersal rates of adults from those 
of juveniles. However, this would require understanding the 
detailed mechanisms of density dependence on those two age 
classes, which are unknown for emperor penguins (Jenouvrier 
et al. 2012).

Moreover, in cases where emigration and prospecting evolve 
simultaneously, the emigration strategy that emerges is one in 
which successful breeders consistently exhibit philopatry, while 
unsuccessful breeders are more inclined to emigrate, particu-
larly when the breeding success of conspecifics is low (Ponchon 
et al. 2021). This suggests that large-scale emigration events in 
emperor penguins may primarily involve unsuccessful breeders. 
Future research could incorporate a breeding stage structure 
into the dispersal demographic model to better understand the 
dispersal rates of both successful and unsuccessful breeders.

Finally, emigration rates vary substantially among regions. For 
example, the average annual emigration rate per colony between 
colonies in the A-B region is 15.7%. This high rate is likely driven 
by the lower habitat quality in the A-B region due to rapid de-
clines in SIC (Abram et al. 2010). The spring season of 2022 saw 
record low sea ice extent in Antarctica, with the greatest negative 
anomaly occurring in the central and eastern Bellingshausen 
Sea, west of the Antarctic Peninsula (Fretwell et al. 2023). Some 
areas experienced a 100% loss in SIC during November, lead-
ing to widespread breeding failure of emperor penguin colonies 
(Fretwell et al. 2023). These findings suggest that such extreme 
environmental changes are influencing movement patterns and 
demographic connectivity within this region.

This elevated emigration rate may suggest a genetically homo-
geneous population in the A-B region, potentially representing 
a new genetic cluster. However, due to the region's inaccessibil-
ity and the logistical challenges of sampling, genetic data are 
scarce, making it difficult to determine whether this population 

is part of one of the four known genetic clusters or constitutes a 
distinct cluster. This highlights the need for increased research 
efforts and enhanced sampling strategies in this understudied 
region to better understand the genetic structure and demo-
graphic connectivity of emperor penguins in the face of rapid 
environmental change.

4.5   |   Potential Drivers of Dispersal Rates

Zooplankton biomass serves as an indicator of the food sources 
available to emperor penguins and reflects the dynamics of 
the lower food web in the Antarctic ecosystem (Offredo and 
Ridoux  1986; Kirkwood and Robertson  1997; Cherel and 
Kooyman  1998). Our study revealed that it is the main factor 
that influences dispersion rates (Figure  4d). Specifically, we 
observed a negative relationship between zooplankton biomass 
during the nonbreeding period and the probability of annual 
emigration, as shown in Figure  4a. Consequently, when re-
sources are abundant before breeding, emperor penguins are 
less inclined to leave their colony.

Variables related to fast ice also play a significant role in deter-
mining the likelihood of emigration. Specifically, the annual 
probability of emigration is positively influenced by the dis-
tance to the nearest fast-ice edge (Figure 4b). Consequently, em-
peror penguins are more inclined to leave their colony when it 
becomes more challenging to access open water. This positive 
relationship between distance to the nearest fast-ice edge and 
emigration probability has also been documented in relation to 
breeding success (Labrousse et al. 2021).

On the other hand, we observed that demographic factors did not 
have a significant impact on the average probability of emigra-
tion, except for population size (Figure 4d). The larger colonies 
were found to have a lower average probability of emigration 
(Figure 4c) and an annual probability of emigration. Despite ex-
pectations, smaller, declining, and frequently blinking colonies 
do not necessarily have higher emigration rates.

Although more work is needed to elucidate the proximate fac-
tors of suitable habitat and emigration rates of emperor pen-
guins, our results suggest that massive emigration events occur 
in habitats with low food availability that cannot sustain large 
populations and in colonies that are distant from open water.

4.6   |   Dispersal Behaviors and Their Consequences 
for the Dynamics of the Global Population

Based on the predictions of our new model, emperor penguins 
tend to migrate from colonies with unfavorable habitats and 
randomly settle in a new colony, a behavior known as semi-
informed dispersal (Ponchon et al. 2021) (see Table 1).

Previously, (Jenouvrier et al. 2017) have shown that high emigra-
tion rates and long-distance dispersal accelerate the projected 
global population decline of emperor penguins and decrease the 
global population size by 65% by 2100 compared to a scenario 
without dispersal. However, here we show that high emigra-
tion rates and long-distance dispersal are unlikely for emperor 
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penguins. Our model suggested limited dispersal distances and 
low average emigration rates, leading to a slight increase in the 
global population compared to a scenario with no dispersal (see 
Figures 3 and 5a,b in (Jenouvrier et al. 2025)).

Nevertheless, the influence of dispersal behavior, distance, and 
emigration rate on the future global population size is rela-
tively insignificant compared to the influence of climate change 
mitigation (Jenouvrier et  al.  2020) (see Figure  5c). At the end 
of the century, there will be no suitable habitat if greenhouse 
gas emissions continue their current course, resulting in a large 
decline in the global population, regardless of dispersal pro-
cesses (Jenouvrier et al. 2020). To mitigate the rapid decline in 
its worldwide population, it is imperative to limit temperature 
increases to levels that are considerably below 2°C (Jenouvrier 
et al. 2021).

5   |   Conclusion

By developing a new likelihood function for an innovative 
model that integrates genetic information with metapopulation 
dynamics, we predicted and estimated previously unidentified 
dispersal patterns in emperor penguins using limited genetic 
data. The application of this modeling approach has the poten-
tial to be used in various species and data-limited systems to 
uncover dispersal processes. It has the ability to enhance our 
understanding of the ranges, speeds, and behaviors of dispersal.
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