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 25 

Abstract  26 

Responses of natural populations to climate change are driven by how multiple climatic and 27 

biotic factors affect survival and reproduction, and ultimately shape population dynamics. Yet, 28 

despite substantial progress to synthesize the sensitivity of populations to climatic variation, 29 
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comparative studies still overlook such complex interactions among drivers that generate 1 

variation in population-level metrics. Here, we use a common framework to synthesize how the 2 

joint effects of climate and biotic drivers on different vital rates impact population change, using 3 

unique long-term data from 41 species, ranging from trees to primates. We show that 4 

simultaneous effects of multiple climatic drivers exacerbate population responses to climate 5 

change, especially for fast-lived species. However, accounting for density feedbacks under 6 

climate variation buffers the effects of climate-change on population dynamics. In all species 7 

considered in our analyses, such interactions among climate and density had starkly different 8 

effects depending on the age, size, or life-cycle stage of individuals, regardless of the life-history 9 

of species. Our work provides the first general framework to assess how covarying effects of 10 

climate and density across a wide range of population models can impact populations of plants 11 

and animals under climate change.  12 

Significance statement: There is a growing consensus that complex interactions among vital 13 

rates and numerous abiotic and biotic drivers complicate simple predictions of climate-change 14 

impacts on plant and animal populations. Here, we use a unique dataset of some of the longest 15 

studied populations of 41 plant, bird, and mammal species to compare the effects of such 16 

complex mechanisms on population persistence. Despite the unique context of each study 17 

population, our results show remarkable generalizable patterns of population responses to climate 18 

variation. To advance future research, we provide fully reproducible models and an open-access 19 

data repository, enabling broad-scale integration of demographic responses to climate change.  20 

 21 
MAIN TEXT 22 
 23 
Introduction 24 
 25 
Among the multiple challenges for biodiversity conservation, the increasing severity of climate 26 

change, interacting with other global-change drivers, is of particular concern (1). Inferring general 27 

patterns of how populations of plants and animals respond to such complex interactions, beyond 28 

single case studies, is a priority for theoretical and applied research and management  (2). All 29 

populations in natural communities are structured by variation in genetic and phenotypic traits, 30 

and often also developmental stages, which determine how different rates of survival and 31 

reproduction are spread throughout the life cycle  (3). In structured populations, climatic effects on 32 

population abundances are then filtered by how different biotic and abiotic drivers (including 33 

climate) affect trait-, age-, or stage-specific survival and reproduction  (4-13). For instance, 34 
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population persistence may be particularly affected when several climatic factors simultaneously 1 

reduce survival and reproduction of several life-cycle stages, accelerating population decline  (5). 2 

In particular compound effects of hotter and drier climatic conditions on individuals are projected 3 

to increase under climate change and can have strong negative impacts on natural populations and 4 

communities (14,15), especially in combination with land-use change (16). However, populations 5 

may also be buffered from adverse climatic effect, when vital rates with higher impact on 6 

population growth, i.e., adult survival, exhibit the least temporal variability and thus stabilize 7 

population fitness (18, 22-24). Furthermore, a decrease in one vital rate under climate stress (e.g., 8 

recruitment) can be compensated with increases in other vital rates, such as survival of the 9 

remaining recruits or adults, under negative density feedbacks (6,7, 20). This occurs because, 10 

when individuals compete for resources, negative climatic effects on hetero - or conspecific 11 

abundance will also ease competition (6, 26), which can allow the populations to recover faster 12 

from or show higher resilience to adverse climatic effects  (27). The role of density dependence 13 

may be particularly important in assessing climate-change effects on population dynamics (26). 14 

Therefore, to broadly understand the impacts of climate change in complex natural systems, we 15 

need to understand how intrinsic and interspecific mechanisms interact to mediate such impacts 16 

on natural populations (28, 29). 17 

 18 

Despite substantial progress to synthesize the sensitivity of populations to climatic variation, 19 

comparative studies have largely overlooked complex mechanisms of interacting drivers and vital 20 

rates that generate variation in population-level metrics. For instance, previous studies have 21 

linked global indices of temperature and rainfall to abundances or population growth rates to 22 

show that terrestrial populations of plants and animals with shorter generation times are relatively 23 

more sensitive to climatic variation (21, 30). Despite producing important insights, such analyses 24 

have not investigated vital-rate responses to multiple climatic factors and did not consider biotic 25 

drivers such as density dependence. A recent study compared the relative effect on plant 26 

population growth rates of perturbing abiotic vs. biotic drivers, but did not assess how 27 

simultaneous effects of different drivers on different vital rates affect populations (31). This 28 

contrasts with the growing consensus that complex interactions among vital rates and biotic and 29 

climatic drivers complicate projections of persistence under climate change (28, 32 -36). 30 

 31 

We synthesize, for the first time, how interacting climatic and biotic drivers change population 32 

dynamics across taxa by affecting different vital rates such as reproduction and juvenile and adult 33 

survival. Given the evidence for the importance of the effects of multiple abiotic drivers and their 34 
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interactions with density feedbacks on population dynamics  (5-12), we hypothesized that, 1 

generally, the simultaneous effects of several climatic drivers in vital-rate models amplify 2 

population responses to climate change; but that climate-change impacts on populations are 3 

buffered when intra- or interspecific density dependence is incorporated in vital-rate models.  4 

We reviewed the ecological literature and identified studies that quantitatively linked at least two 5 

climatic drivers or one climatic and one biotic driver to at least two vital rates. Following (33), we 6 

defined climatic drivers as direct measures of temperature or precipitation, i.e., not drivers that 7 

affected climate indirectly, such as the Southern Annular Mode (i.e., Catharacta lönnbergi from 8 

(37); see Supplementary Materials for a complete list of selection criteria). Among the biotic 9 

drivers, we distinguished intraspecific interactions (e.g., density dependence, social interactions) 10 

and interspecific interactions (e.g., competition, food availability, predation, diseases). We then 11 

built structured population models and used them to compute sensitivities of population growth 12 

rates (38) to a given climatic driver, either accounting for simultaneous effects of all other drivers 13 

on vital rates or keeping other drivers fixed, thus reducing the complexity of environmental 14 

effects. We also compared the effects of perturbing different single vital rates to understand 15 

whether population-level sensitivities are driven by changes in specific vital rates across species. 16 

When testing our hypothesis, we controlled for potential confounding factors, most importantly 17 

the life-history strategy of populations, which has been shown to strongly mediate population 18 

responses to environmental change  (19, 21). We created a database making all data and code 19 

freely available online, to allow researchers to link age- or stage-specific vital rates to population 20 

responses under environmental change for further analyses such as forecasts.  21 

 22 
Results 23 
 24 

We extracted data from 23 studies including 41 species (15 birds, 8 mammals, and 18 plant 25 

species). Among these species, 18 matrix population models, eight integral projection models, 26 

five integrated population models, and 10 individual-based models were used, and vital rates 27 

were typically modeled using generalized linear models. Among biotic drivers, intraspecific 28 

density dependence was most commonly included as a driver in vital-rate models (i.e., in 13 29 

studies; four birds, six mammals, three plants), while interspecific interactions were considered in 30 

only four cases. For an overview of life-history strategies, covariates, and demographic status of 31 

the species included in this comparative study, see Table S7. For each species, we calculated the 32 

scaled absolute sensitivities (|S|), i.e., changes in the population growth rate, λ, to observed 33 

climatic variation (standardized differences between maximum and minimum climatic values) 34 
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(31). In most studies, we calculated λ for either a single (meta)population or a representative 1 

average population across the habitat range, as in the case of eight bird species (39) and 11 2 

Mediterranean tree species (40) – that is, vital-rate models did not distinguish populations 3 

explicitly. However, three studies (see Supplementary Materials) modeled vital-rate responses to 4 

climatic and biotic drivers that differed among populations. Here, we averaged sensitivities across 5 

populations to calculate species-specific average sensitivities to climate comparable across 6 

species (31). Additional analyses showed that such averaging did not affect results (Table S4). 7 

We also repeated analyses excluding these three studies altogether; this did not affect our results 8 

either (Table S5).  9 

 10 

We modeled the variation in |S| using a modified meta-regression approach (41), where we 11 

pooled the results from all studies into one generalized linear hierarchical model. Our model 12 

included average age at maturity, a proxy for the fast-slow continuum of life-history strategies 13 

(42). As expected, slower-paced species had lower absolute sensitivities of λ (|S|) to climatic 14 

drivers compared to faster-paced species (Fig. 1; Table 1; βMaturity = -1.13 ± 0.19). These patterns 15 

agree with theoretical expectations (i.e., demographic buffering hypothesis (18, 25)) and previous 16 

empirical studies (19, 21, 30, 43) and suggest that fast-paced life histories across taxa are more 17 

labile to, or track, climatic fluctuations, whereas slow-paced life histories buffer population 18 

dynamics from multiple climatic effects (18, 19, 21).  19 

 20 
Population responses to multiple climatic drivers and density dependence  21 
 22 
Across life histories, sensitivities |S| to changes in a focal climatic driver were consistently higher 23 

when covarying climatic drivers were also perturbed than when holding other climatic drivers 24 

constant (Table 1; βNoCovariation = -0.25 ± 0.11; Table 1; Fig. 1). Thus, synergistic effects of 25 

different climatic drivers can have a stronger impact on population dynamics than considering the 26 

effects of such drivers in isolation, as is typically done in sensitivity analyses. At the same time, 27 

|S| were lower for populations where intraspecific density dependence explicitly affected vital 28 

rates along with climatic drivers, as opposed to populations that did not consider how climatic 29 

drivers interact with density dependence (βDensityYes= -1.00 ± 0.56; Table 1; Fig. 1; Fig. S1). These 30 

differences in including vs. excluding density dependence in population models were strongest 31 

when we accounted for the full complexity of environmental effects in sensitivity analyses (Fig. 32 

S1). That is, |S| increased by holding density dependence constant when perturbing a climatic 33 

driver as opposed to adjusting for observed changes in intraspecific density when the focal 34 

perturbed climatic driver was at its minimum and maximum (βNoCovariation:Density = 0.40 ± 0.19). 35 
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This suggest that covariation between climate and density may be critical in moderating climate-1 

change impacts on populations across a wide range of taxa (5-12, 44, 45). Additional analyses 2 

further isolating the effects of density feedbacks vs. different biotic and abiotic drivers in vital-3 

rate models confirmed that covariation with density lowered |S| when climatic drivers were 4 

perturbed (Fig. S2).  5 

 6 

Demographic pathways of climate effects on populations 7 
 8 
We perturbed climatic drivers in each vital-rate model separately for 26 species to understand 9 

how different vital rates mediate the sensitivity of λ (|S|) to these drivers. For the remaining 10 

species, we could not perturb single vital rates due to the complexity of the models. A generalized 11 

linear regression model revealed that fast-paced life histories, i.e., ones with a lower age at 12 

maturity (43), were relatively more sensitive to climate perturbations in reproduction and survival 13 

of non-reproductive individuals than slow-paced life histories (Table 2; Fig. S5). This is to be 14 

expected as reproduction contributes relatively more to population dynamics of fast-paced species 15 

(19). Our results provide further evidence that fast-paced life histories buffer critical vital rates 16 

from climatic perturbations less than slow-paced ones (18, 19, 22,23), because they have a higher 17 

energy budget that they can invest into growth, reproduction, or dispersal after perturbations (46). 18 

However, a closer look at sensitivities of λ to vital-rate specific effects of climatic drivers 19 

revealed a complex picture (Fig. 2). Across life histories, λ can be equally affected by 20 

perturbations in several vital rates, and some vital rates showed strong responses to one 21 

environmental variable, but weak responses to other variables (Fig. 2; Figs. S9 – S38).  22 

 23 

Overall, our results showed that growth-rate sensitivities, |S|, varied substantially among 24 

species/studies (Table 1; Table 2). While the fixed and random effects in our GLMMs jointly 25 

explained > 80 % of the variance in |S|, the proportion of variance attributed to random effects 26 

was always relatively higher (see Tables S1-S5; Fig. S3). The effect of species explained > 50 % 27 

of the random variation in the model. We also note that while 20 studies included only one 28 

species, three modeled several species, and we could not completely separate species and study 29 

effect - attempting to do so resulted in overparameterized random effects. Although we accounted 30 

for potential variables that may have confounded our results, i.e., number of vital rates modeled 31 

and average number of parameters per vital rate, one reason for such high variance among species 32 

or studies may be the varying complexity among studies in model design or the specific climatic 33 

variable considered – complexity that we could not account for as independent covariates in our 34 
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analysis. On the other hand, high variability in responses to environmental drivers among species 1 

have also been observed in recent studies (30, 33, 47, 48). Thus, while we can discern 2 

generalizable patterns in population responses to climatic perturbations, only the inclusion of a 3 

wider range of future studies can disentangle the complex sources of context-dependent variation 4 

in population dynamics. 5 

 6 
Discussion 7 
 8 
Natural populations of plants and animals are increasingly affected by climate change worldwide 9 

(49, 50). By identifying under what context populations are more susceptible to negative effects 10 

of climatic drivers, we can prioritize conservation efforts and develop targeted strategies to 11 

mitigate adverse effects. Our comparative analyses shed light on some common demographic 12 

pathways through which populations of plants, mammals, and birds respond to complex 13 

interactions of climatic and biotic drivers. We show that simultaneous effects of multiple climatic 14 

drivers increase population sensitivity to climate change, while interactions between density 15 

dependence and climate can effectively lower such sensitivity. Our results thus have important 16 

implications for assessing how resilient populations are to climate change. They suggest that, in 17 

cases in which we know that multiple climate drivers influence vital rates, measuring the effect of 18 

only one of these climatic drivers on population dynamics likely overestimates its effects; while 19 

omitting how climate interacts with density feedbacks can substantially underestimate indirect 20 

effects of climate on populations.  21 

 22 
Recent studies have emphasized that future climate risks to natural populations and humans will 23 

be exacerbated by compound effects of climate drivers (1, 51). While previous research has 24 

focused on understanding such compound effects on single species or populations (e.g., reviewed 25 

in 30, 34, 52), our results provide the first comparative evidence across different contexts that 26 

synergistic effects of different climatic drivers can have a strong impact on population dynamics. 27 

Compound climatic effects, such as low rainfall and high temperature, often constitute climatic 28 

extremes, e.g., hot droughts (51) and are becoming increasingly common (1). Such extremes can 29 

have strong, non-additive effects on physiological processes of plants (53) and animals (54), 30 

negatively affecting population dynamics (5, 32, 55). In meerkats (Suricata suricatta), for 31 

instance, extreme heat in a relatively dry rainy season can lead to substantial loss of body mass 32 

and increased risks of deadly disease outbreaks (56). We note, however, that our study assessed 33 

changes in the magnitude, but not in the direction of population responses to perturbations in 34 

climate. Therefore, compound effects such as unusually warm and rainy reproductive seasons, 35 
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11 

may also lead to strong increases in population growth (56), particularly for fast life histories (25, 1 

57).  2 

 3 
Climatic factors do not affect populations in isolation; other abiotic and biotic factors also play a 4 

role, and their impacts vary among populations and individuals within those populations (34, 58). 5 

Our results suggest that across taxa, adverse climate effects can be buffered by decreasing the 6 

number of individuals in a population and thus easing the effects of intraspecific density, when 7 

present in populations (5, 7). In turn, for populations that increase in abundance under climate 8 

change, a resulting stronger effects of negative density dependence may increase population 9 

fluctuations under adverse environmental conditions (36). Other studies have also demonstrated 10 

the importance of density feedbacks in regulating population responses under land-use change 11 

(59) or disease outbreaks (60, 61), while populations of some social species that show non-linear 12 

responses to population densities may be particularly susceptible to climate change if adverse 13 

climatic effects reduce optimal densities (5). Similarly, climate change also affects populations 14 

through changes in interspecific interactions such as predation, competition, or facilitation (12, 15 

62). However, interspecific interactions are still very rarely explicitly modeled when projecting 16 

population dynamics (33), including in the studies used in our meta-analysis. 17 

 18 

Despite this growing evidence on the importance of assessing interactions of abiotic and biotic 19 

effects when quantifying population persistence under climate change (4, 5, 13, 31, 33), such 20 

assessments are challenging. Unlike climatic variables that are often included as continuous 21 

covariates in vital-rate models and are easily perturbed, interactions with individuals of the same 22 

population or even different species took on many complex forms in the population models we 23 

used in this study. Some studies only included indirect or static measures of biotic effects . For 24 

example, the tree species in our analysis had a colonization factor in their models, which was 25 

indirectly related to density, but was decoupled from climate variables in vital rates (40). 26 

Similarly, the models of Certhia familiaris, Linaria cannabina, Lophophanes cristatus, Prunella 27 

collaris, Prunella modularis, Pyrrhula pyrrhula, Sitta europaea, and Turdus torquatus did not 28 

contain density as a continuous driver in their vital-rate models (which was required for our 29 

sensitivity analyses), but density served as a fixed species-specific parameter affecting fecundity 30 

(39). Thus, we could only assess the effects of covariation between climate and density 31 

dependence in 13 of the 41 modeled species. Although they represented all three taxonomic 32 

groups and covered a wide range of life histories, resulting in an unbiased sample, understanding 33 

whether density feedbacks are a general mechanism that moderates population fluctuations under 34 
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climate change for a wider range of taxa requires broadening comparative analyses that can 1 

account for complex density effects. 2 

 3 

Density feedbacks are not equally important in all populations  (64), and their effects have been 4 

tested and considered to not substantially affect population dynamics in the case of Marmota 5 

flaviventer and Lavandula stoechas (see Supporting Materials). However, the potential effects of 6 

density feedbacks have not been tested in many recent population model (33), likely due to a 7 

combination of lack of data and model complexity. In addition, most frameworks to predict 8 

biodiversity loss under global change do not explicitly model dynamic interactions between 9 

density and global-change drivers (65). We thus emphasize that including density feedbacks in 10 

the climate-demography models, for instance using population density or population size as a 11 

covariate in models (12, 36), may be key to understand how resilient natural populations are to 12 

climate change. If such feedbacks are not included due to data limitations or modelling 13 

constraints, our results suggest that it is important to at least discuss the potential implications of 14 

such omissions (66).  15 

 16 
Ultimately, the effects of climate change on population dynamics are filtered by the strength and 17 

direction of driver effects on different vital rates, and how much the latter contribute to 18 

population dynamics (e.g., 4-13, 19, 22, 26, 32, 35-37). For any life history, even slow-paced 19 

ones where adult survival is the key vital rate driving population dynamics (19), changes in 20 

population growth were the results of complex effects of various drivers across different vital 21 

rates, showing high context dependence (13). Rainfall scarcity or extreme temperatures may 22 

differently affect individuals depending on the habitat, season, and life-cycle stage considered 23 

(e.g., 5, 32), or depending on how other species in a given community are responding to climate 24 

change (62). The complexity of the life cycle may also indicate how much a population is 25 

buffered from adverse environmental effects (52). Some species have dormant life-cycle stages 26 

that can protect populations from environmental fluctuations (62). Dispersal, which was modeled 27 

in some studies considered here (see Supplementary Materials), can stabilize decreasing 28 

populations and allow individuals to track new suitable habitats, and may itself be strongly 29 

mediated by climate (67). Therefore, from trees to primates, identifying how different abiotic and 30 

biotic factors impact populations across their full life cycle is key to be able to target conservation 31 

efforts towards certain factors during certain times of the life cycle.  32 

 33 
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Our work has advanced comparative demographic analyses in two important ways. First, we 1 

standardized sensitivity analyses across a wide variety of population models, ranging from classic 2 

matrix population models to integrated population and integral projection models, and individual-3 

based models. By including the experts for each study system, we ensured that our methods did 4 

not produce inadvertent errors. Second, we provide a freely accessible and dynamic (i.e., 5 

constantly updated) database of population models that was compiled for this study. This offers 6 

an ideal basis to expand the number of studies and analyses in the future – for instance, 7 

forecasting how changes of local climatic drivers may affect populations and whether such effects 8 

can be approximated by global climate indices  (68). We also recognize several limitations of our 9 

work. One limitation is that we could not account for taxonomic and geographical biases as we 10 

relied on available high-quality structured models that integrate multiple environmental factors 11 

(see Supplementary Materials for study-specific details). Such tailored models are available for 12 

specific terrestrial plants, mammals, and birds, but are still lacking for many invertebrate species 13 

(69,70), where relatively little is known on the demographic pathways through which climate 14 

change impacts abundance (71). We also have a geographic bias in our data as most study 15 

systems are from the Northern Hemisphere. Additionally, we only considered studies published in 16 

English. These types of biases can limit our ability to generalize patterns and employ 17 

conservation efforts based on comparative analyses (72, 73).  18 

When searching the literature for appropriate studies, we also discovered that reproducibility of 19 

ecological studies remains a problem. Of the 76 studies that met our search criteria, we could only 20 

replicate population models of 24 %. For the remaining studies, data and code to replicate 21 

analyses were not freely available and could often not be reproduced even when in contact with 22 

authors. Thus, we emphasize that making not just data but also code available is an important step 23 

towards reproducible comparative analyses in ecology (74).  24 

Our comparative analyses provide evidence that interactions among biotic and abiotic drivers, 25 

and the complex effects of such multiple drivers on different vital rates, hinder simplistic 26 

predictions of population persistence under climate change. We emphasize the need to recognize 27 

and incorporate interactions between climate and density dependence into full life-cycle models 28 

in order to understand and potentially mitigate the threat that climate change poses on natural 29 

populations.  30 

 31 
 32 
  33 
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Materials and Methods 1 
 2 
Literature search 3 
 4 
Our main objective was to collect code and data from studies which (i) modeled vital rates (e.g., 5 

survival, growth, reproduction) in natural populations as a function of at least two climatic 6 

variables or one climatic and one biotic variable; and (ii) constructed structured population 7 

models from which population growth rates could be obtained. We focused on studies where data 8 

were obtained in natural, unmanipulated populations (i.e., discarding experimental studies); and 9 

where the environmental variables were continuous so that we could calculate means and 10 

standard errors (see equation 1). We therefore excluded studies that constructed models for 11 

good/bad, dry/wet environments, etc. To obtain suitable studies, we performed a targeted review 12 

of the literature. We first considered a recent review, which revealed a lack of understanding 13 

regarding comprehensive demographic responses to climate change for terrestrial mammals 14 

including 87 species (33) From the publications in this review, we selected those that met our 15 

criteria. To supplement data from this list of studies, we conducted a Web of Science search using 16 

the search terms from (33) and also checked the Padrino database  (75) as well as (76) (Details in 17 

Supplementary Materials). To be included in our database, vital-rate models had to be 18 

reproducible, i.e., the regression models were fully reported, including their formula, coefficients, 19 

and standard errors. We were able to obtain data from 23 studies that met all these criteria.  20 

 21 
As the first step of the analysis, we prepared a standardized protocol to build and perturb different 22 

structured population models, to maximize the ease of comparison across studies 23 

(https://doi.org/10.5281/zenodo.16992231). For help with conducting these analyses for the 24 

selected models, we contacted the authors of relevant studies. We extracted regression 25 

coefficients from tables to rebuild vital-rate models when possible; alternatively, the latter were 26 

provided by the authors of a given study. We then reconstructed population models from these 27 

vital rates, and the authors from the original papers reviewed these models to ensure that they 28 

were correct. In some cases, authors already provided the R code to rebuild the population model 29 

(for more information see Supplementary Materials). The environmental covariate data were also 30 

obtained from the authors of the papers. All studies built structured population models based on > 31 

7 years of demographic data collection and/or using data across the distribution range of species, 32 

and the range of environmental covariate values was sufficient to robustly build and perturb 33 

structured population models (see Supplementary Materials on study-specific details). 34 

 35 
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Next, we compared among the species how perturbations in climatic variables affect long-term 1 

population fitness, λ, i.e., the sensitivity of λ to climatic drivers. For studies that provided matrix 2 

population models or integral projection models, we calculated λ as the annual asymptotic 3 

population growth rate using R package popbio (77) version 2.7. For studies that developed 4 

individual-based or integrated models, we calculated λ as the mean of annual growth rates over at 5 

least 50 years from at least 100 simulations (see Supplementary Materials for study-specific 6 

details; Figs. S38-S52). The approach of how λ was calculated did not affect our results (Table 7 

S3; Fig. S6). To obtain sensitivities of λ to climatic drivers, we calculated λ under minimum and 8 

maximum values of a climatic driver while (i) accounting for the actual observed values of other 9 

drivers when the focal driver was at its minimum or maximum (sensitivities with covariation) or 10 

(ii) holding the other drivers constant at their average values (sensitivities without covariation). 11 

When studies modeled random year effects consistently across vital rates, we set the years to ones 12 

where a climatic driver was at its minimum or maximum in analyses. We then calculated the 13 

scaled sensitivities according to Morris et al. (31) for each population and driver (Equation 1):  14 

 15 
 16 

|𝑆| = |
𝜆𝑚𝑎𝑥−𝜆𝑚𝑖𝑛

(𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛) SD𝑑⁄
|   Equation 1 17 

 18 
The driver values dmax and dmin produced the population growth rates when the driver was set to 19 

its maximum value (λmax) and its minimum value (λmin). The denominator of the scaled sensitivity 20 

|S| is the difference in the driver levels in standard deviation (SD) units. The scaled sensitivity 21 

makes it possible to compare |S| across different studies and driver types (31). We calculated |S| 22 

for each climatic driver in vital-rate models (see Sensitivity Analyses in Supplementary 23 

Materials). We tested the robustness of the sensitivity metric by comparing |S| to the most 24 

common type of metric for summarizing outcomes in ecological meta-analyses: log response 25 

ratios (see Alternative sensitivity parameterizations in Supplementary Materials; Figs. S7-S8; 26 

Table S6).  27 

 28 

We accounted for uncertainties around all |S| estimates by resampling parameters from vital-rate 29 

models and recalculating λ and |S| each time. More specifically, if a study reported the standard 30 

errors of the regression coefficients, we simulated the parameter distributions and sampled 31 

parameters from it, whereas in the case of Bayesian regressions, we sampled parameters from the 32 

MCMC posteriors. We produced 100 |S| estimates for most species but had to use fewer samples 33 

in some cases due to computational limits (see species-specific details in Supplementary 34 
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Materials). In three cases, we averaged |S| over different populations to get species-specific 1 

results. However, this averaging did not affect our overall conclusions (see Table S4).  2 

 3 

Further, we perturbed the climatic drivers in each vital rate separately whenever possible (Figs. 4 

S12 – S38 for the specific vital rates in each species’ model), in the same manner as above, to get 5 

vital-rate specific |S|. In this case, all environmental driver values covaried with the focal driver in 6 

the perturbed vital-rate but were held at their average values in other vital rates. Lastly, for 7 

populations (n =13) where intraspecific density dependence was explicitly considered as a driver 8 

in vital-rate models, we performed additional perturbations: We accounted for the actual observed 9 

values of other climatic or biotic drivers when perturbing a focal climatic driver (sensitivities with 10 

covariation), but held densities constant (i.e., did not account for covariation with density). We 11 

did this to test how much |S| depended on density dependence moderating the effects climatic 12 

changes. 13 

 14 
 15 
Statistical analyses 16 
 17 

We used a generalized linear mixed model (GLMM), assuming a Gamma distributed response 18 

under a log link function, to understand the underlying mechanisms influencing population-level 19 

sensitivities |S| to climate change. We chose the Gamma distribution because the scaled 20 

sensitivities were positive values larger than zero. The resulting model fit well to observed data 21 

(Fig. 1), and model fit was substantially better than using a log-normal distribution, based on AIC 22 

and residual plots (78). We included log(age at sexual maturity) as a continuous covariate for the 23 

effect of life-history speed on |S|. To test whether covariation among climatic drivers and lambda 24 

changed |S|, we incorporated as predictor variables: covariation with other drivers when λ was 25 

calculated under minimum/maximum values of a focal climatic driver (categorical; accounted for 26 

or not), intraspecific density effects (categorical; incorporated or not in vital-rate models), and the 27 

interaction between the two. We focused on intraspecific density effects to analyze the role of 28 

biotic interactions in population dynamics because this was the most common type of biotic 29 

variables included in vital rate models across species (see Table S7). We also controlled for a 30 

potential effect of model complexity on |S|, by including the log(number of vital rates) and 31 

log(mean parameters per vital rate) in each population model. Taxonomic groups and species 32 

were integrated as nested random effects on the model intercept to account for non-independent 33 

species-specific perturbations of different climatic drivers in vital-rate models. To account for 34 

differences among taxonomic groups and species in how much driver covariation affects |S|, the 35 
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same nested random effects were also applied on the slope of the covariation variable. We also 1 

assessed whether |S| differed depending on which type of climatic driver was perturbed in vital-2 

rate models (temperature vs. rainfall) by fitting another GLMM akin to the main analysis but 3 

including climatic driver as a covariate (Table S2; Fig. S4).  4 

 5 

To better understand which vital rates were driving |S|, we repeated the GLMMs using |S| 6 

calculated by perturbing climatic drivers in single vital rates. To facilitate comparisons among 7 

species, we grouped the vital rates of each species into three main types: survival of non -8 

reproductive individuals (including juveniles), survival of reproductive individuals, and 9 

reproduction (including reproductive success and recruitment). We excluded trait change 10 

(including growth and maturation) as a vital rate, as it was only modeled in four species: 11 

Marmota flaviventer, Rhabdomys pumilio, Suricata suricatta, and Protea repens. The resulting 12 

GLMM had a similar structure as the one for the global |S|, with two differences. First, as we 13 

calculated vital-rate specific |S| without simplifying driver covariation in specific vital rates, 14 

covariation was not included in the model. Second, as we held variables constant in non -15 

perturbed vital rates, we simplified the model structure further by excluding whether species 16 

included or excluded density feedbacks in vital-rate and population models. We included main 17 

vital-rate type as a covariate and tested whether the climatic effects of different vital rates on |S| 18 

differed among life histories, via the effects of log(age at maturity), and used an interaction term 19 

of vital rate and age at sexual maturity.  20 

 21 

We calculated marginal and conditional R2 for all GLMMs to quantify the variance in the data 22 

explained by the fixed effects and random and fixed effects, respectively  (79). We made all the 23 

data and code available online, along with the templates, ensuring that future analyses follow the 24 

same structure (https://doi.org/10.5281/zenodo.16992231).  25 

 26 
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Table 1. Output of model assessing how age at sexual maturity, covariation with other 1 
drivers, presence of density feedbacks in vital-rate models and other covariates affected 2 
scaled sensitivities of population growth rates to changes in climate, |S|.  3 

A Fixed Effects Coefficient SE P 

Intercept -3.085 0.945 0.001 

Covariationno -0.250 0.112 0.026 

Densityyes -1.004 0.556 0.070 

Age at sexual maturity -0.991 0.200 <0.001 

Number of vital rates -0.221 0.501 0.660 

Parameters per vital rate 0.760 0.497 0.127 

Covariationno:Densityyes 0.470 0.192 0.014 

B Random Effects Variance SD Prop. variance 

Species/Group (Intercept) 1.738 1.318 0.633 

Species/Group Covariationno 0.241 0.473 0.088 

Group (Intercept) <0.001 <0.001 <0.01 

Group Covariationno <0.001 <0.001 <0.01 

Residual 0.767 0.757 0.279 

Marginal R2 (variance explained by fixed effects): 0.300 

Conditional R2 (variance explained by fixed and random effects): 0.829 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma 4 
log link are shown here. The coefficient, standard error (SE), and p-value are reported for each 5 
fixed effect, whereas variance and standard deviation (SD) are reported for each random effect, as 6 
well as prop. variance, which indicates the proportion of the total random-effect variance 7 
explained by different grouping variables. Nested random effects were incorporated due to 8 
multiple observations within species and groups (n samples = 17’240, nspecies = 41, ngroups = 3). nsamples 9 
reflects all resampled |S| for each perturbation scenario and species to account for parameter 10 
uncertainty. Bold p-values indicate statistical significance (α = 0.05).  11 
 12 

  13 
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Table 2. Output of model assessing how age at sexual maturity, vital-rate type, presence of 1 
density feedbacks in vital-rate models, and other covariates affected scaled sensitivities of 2 
population growth rates to changes in climate, |S|, calculated by perturbing individual vital 3 
rates. 4 

A Fixed Effects Coefficient SE P 

Intercept -3.324 1.143 0.003 

Vital ratenon-reproductive survival -0.620 0.385 0.107 

Vital ratereproductive survival 0.030 0.363 0.936 

Age at sexual maturity -2.157 0.529 <0.001 

Number of vital rates -0.738 0.564 0.191 

Parameters per vital rate 0.850 0.541 0.117 

Age at sex. mat.:vital ratenon-

reproductive survival 

1.412 0.596 0.012 

Age at sex. mat.:vital ratereproductive 

survival 

1.097 0.491 0.025 

B Random Effects Variance SD Prop. variance 

Species/Group (Intercept) 2.057 1.434 0.272 

Species/Group Vital ratenon-reproductive 

survival 

2.336 1.528 0.283 

Species/Group Vital ratereproductive 

survival 

2.078 1.442 0.264 

Group (Intercept) <0.001 <0.001 <0.01 

Group Vital ratenon-reproductive survival <0.001 <0.001 <0.01 

Group Vital ratereproductive survival <0.001 <0.001 <0.01 

Residual 0.957 0.998 0.180 

Marginal R2 (variance explained by fixed effects): 0.271 

Conditional R2 (variance explained by fixed and random effects): 0.878 

The fixed effects (A) and random effects (B) of the generalized linear mixed model with gamma 5 
log link are shown here. The coefficient, standard error (SE), and p-value are reported for each 6 
fixed effect, whereas variance and standard deviation (SD) are reported for each random effect, as 7 
well as prop. variance, which indicates the proportion of the total random-effect variance 8 
explained by different grouping variables. Nested random effects were incorporated due to 9 
multiple observations within species and groups (n samples = 13’040, nspecies = 26, ngroups = 3). nsamples 10 
reflects all resampled |S| for each perturbation scenario and species to account for parameter 11 
uncertainty. Bold p-values indicate statistical significance (α = 0.05). Note that while perturbing 12 
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one vital rate at a time, we accounted for covariation with other factors in the focal rate but set the 1 
covariates in the other vital-rate models to their mean values. 2 

 3 

Figure 1 
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