The Drone Tug and Its Applications in Marine Transport

Clifford A. Goudey
Founder & Engineer

C.A. Goudey & Associates
Offshore farm systems are being developed to exploit the vast U.S. EEZ.

Seaweed transport to shoreside processing plants looms as a dominant energy need.

Efficiency of low-speed transport possible $D \leftrightarrow V^2$

Autonomy enables low speed

Drone Tug emerges

- Low speed
- Large diameter, slow turning
- Ultra-efficient
- Remote control/autonomy

ARPA-E concept paper Jan. 2017
Autonomous Tow Vessels for Offshore Macroalgae Farming

The Project Team:

C.A. Goudey & Associates
Project management, design, integration, testing, market development.

Response Marine
Naval architecture, CAD, construction supervision

Robotic Marine Systems
Electronics, sensor integration, autonomy, telemetry

Hydrocomp, Inc.
Propeller analysis, propulsion optimization

Woods Hole Oceanographic Institution & Marine Biological Laboratory
Farm integration, outreach

Massachusetts Institute of Technology
Route optimization
Technical path

1. Prototype 1 design – April to August
 • Robust and self righting
 • Using off-the-shelf components

2. Fabricate – July to November
 • Water-jet cut aluminum
 • Steel keel & thruster wings

4. Sea trials – Feb 23 - 28

2019 CMR Entrepreneur Forum
July 17-18, 2019
Woods Hole Oceanographic Institution
Sea Trials Boston Harbor Feb 23-28, 2019
Sea Trials Boston Harbor Feb 23-28, 2019
Drone Tug Opportunities

- Improve propulsion performance – using HydroComp simulations.
- Consider all-electric propulsion that meets mission requirements. Include tidal-power extraction.
- Other maritime applications
 - Harbor tug – swarm of drones under pilot control
 - Coastal trade – last-100-mile container delivery.
 - Fresh water transport
 - Commercial fishing – pair trawling
 - Oil spill cleanup
 - Rescue towing
 - Ocean Cleanup
 - Rescue towing
 - Naval logistics?

A pair of autonomous tugs are positioned at each end of the system. Their prop wash encourages debris to move to the center for clean up allowing a wider gape.
The Naval Architect’s Conundrum:
Limited propeller aperture
The Problem

- Draft limitations
- Cavitation
- Fixed shaft position
- Wide operating range
- Tradition

The Solution

- Pod propulsion
- Variable depth
- Adjustable position
- Focused design
- Innovation

To date, pod propulsion has not been fully exploited.

Drone Tug’s propulsion principles have broad application.
Most ships would benefit from larger propellers

- Retractable, ultra-efficient propellers for open water

- Large-diameter, slow-turning propellers require far less power for a given amount of thrust.

- There are numerous ways to implement pivoting, retractable thrusters.
Thank you for your attention

Any questions?

Please contact us at:

cliff@cagoudey.com
dom@cagoudey.com