Group II: Biogeochemistry

Original Question:

How will biogeochemistry of shelf and deep waters of the North Atlantic and Arctic respond to climate change and increasing human pressures?

Group II: Biogeochemistry

Original Question:

How will biogeochemistry of shelf and open ocean waters of the North Atlantic and Arctic respond to climate variability and increasing human pressures?

- Not just deep waters but all water depths
- Program may not be long enough to assess change
- Human pressures (other than increased CO₂) on different scale than open ocean processes
- Should we set physical boundaries, i.e. just subpolar Atlantic?

- Linkage between subpolar Atlantic and Arctic
- Linkage between surface and deep
- Linkage between physics and biogeochemistry

- Linkage between subpolar Atlantic and Arctic
 - How are changes in Arctic affecting subpolar N
 Atlantic (e.g. changing boundary condition)?
 Example: melting sea ice → increased
 productivity in Arctic → reduction in downstream
 nutrients
 - How do changes in subpolar N Atlantic affect Arctic?

- Linkage between subpolar Atlantic and Arctic
- Linkage between surface and deep
 - Upper 100 m most important for biological production
 - Depth at which remineralization occurs matters for nutrient fluxes
 - Transport at depth through the overturning circulation

- Linkage between subpolar Atlantic and Arctic
- Linkage between surface and deep
- Linkage between physics and biogeochemistry
 - How do changes in circulation and stratification affect fluxes of nutrients, oxygen and carbon? (perhaps covered by Group 1)
 - In particular, overturning flux vs. transport flux differences for biogeochemistry?
 - A "biogeochemical" OSNAP?

Shelf and Shallow Seas

- What is connection between shelf/shallow seas and open ocean?
- What are effects of human impacts (besides increased CO₂) on shallow seas and shelves?
 - River nutrient input
 - Atmospheric deposition (does it really matter?)