Breakout 4, Group 1

What are commonalities between the reports we heard this morning?

<u>Physics</u>: lateral exchanges, vertical, deep circulation, freshwater, sea ice, sea level, models

<u>Biogeochemistry:</u> **connectivity between basins**, controls on productivity, timing, elemental ratios, human pressures

<u>Foodweb and Community Structure</u>: multi-scales, **timing**, trophic linkage, **shifting biogeography**

<u>Ecosystem and Health</u>: changing biogeography, resource use, extreme events, carbon budget, assessment, human pressures

Two Possible Approaches

- "Top-Down" Choose a driver and see how it affects the key topics
 - Ex: Effect of sea-ice melt
- "Bottom-Up" Choose an intriguing observable and try to explain/predict it
 - Changing distribution of fish
 - Storage of anthropogenic carbon
 - Expanding O₂ minimum zones

 What do you need to know to understand biogeographic distribution of fish?

"Do you want a Eulerian Fish or a Lagrangian Fish?"

 Choose a fish – two regions: Norwegian and Irminger/Lab sea

 What do you need to know to understand biogeographic distribution of fish?

"Do you want a Eulerian Fish or a Lagrangian Fish?"

- Choose a fish two regions: Norwegian and Irminger/Lab sea
- Observe fish stocks (largely done), physical conditions, biogeochemical conditions

 What do you need to know to understand biogeographic distribution of fish?

"Do you want a Eulerian Fish or a Lagrangian Fish?"

- Choose a fish two regions: Norwegian and Irminger/Lab sea
- Observe fish stocks (largely done), physical conditions, biogeochemical conditions
- Process Studies: Links to zooplankton and phytoplankton to primary productivity, links to stratification (back to sea ice!), links to timing

 What do you need to know to understand biogeographic distribution of fish?

"Do you want a Eulerian Fish or a Lagrangian Fish?"

- Choose a fish two regions: Norwegian and Irminger/Lab sea
- Observe fish stocks (largely done), physical conditions, biogeochemical conditions
- Process Studies: Links to zooplankton and phytoplankton to primary productivity, links to stratification (back to sea ice!), links to timing
- Modeling: need very high-resolution models, want to be able to predict for next 20 years

Anthropogenic Carbon Storage

- Need to know about:
 - Phytoplankton, stratification, circulation, elemental ratios
 - Connectivity between basins; Freshwater Input

Link back to incorporate most of the major "commonalities" shown on the first slide

Breakout 4, Group 1

What are commonalities between the reports we heard this morning?

<u>Physics</u>: lateral exchanges, vertical, deep circulation, freshwater, sea ice, sea level, models

<u>Biogeochemistry:</u> **connectivity between basins**, controls on productivity, timing, elemental ratios, human pressures

<u>Foodweb and Community Structure</u>: multi-scales, **timing**, trophic linkage, **shifting biogeography**

<u>Ecosystem and Health</u>: changing biogeography, resource use, extreme events, carbon budget, assessment, human pressures