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Differences in winter mean sea-level pressure averaged from 1979 to 2002
for nine CMIP5 global climate models versus ERA-40
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September mean sea ice thickness (m) averaged over 20002004
from CMIP5 and NAME models.
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MODEL LIMITATIONS AND BIASES
CONTRIBUTING TO UNCERTAINTY

There are many arctic physical processes and feedbacks
not, or poorly, represented in state-of-the-art ESMs, including:

= sea ice thickness distribution, deformation and export, fast ice,
snow cover, melt ponds and surface albedo, permafrost,

= oceanic eddies, tides, surface/bottom mixed layer, buoyancy-
driven coastal and boundary currents, fronts, cold halocline,
upper ocean heat content, dense water plumes and convection,

= atmospheric modes of circulation, clouds, aerosols, fronts,

= ice-sheets/ocean, fjord-shelf-basin, wave-ice and air—sea-ice
interactions and coupling.

Realistic representation of such processes/feedbacks
should reduce uncertainty and improve prediction!
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- Surface monthly-mean heat fluxes in excess of 350 W/m? along the marginal ice zone



Modeled changes in (a) heat content (T)) at depth 33-120 m and (b) sea ice
thickness (m) between the mean of 1979-1998 and the mean of 1999-2004.
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Increasing heat content due to local insulation, advection of warm water from
shelves, anticyclonic eddies, slope upwelling or advection

(Maslowski et al, 2014)



Arctic — North Atlantic Communication

The total volume flux through the Canadian Arctic Archipelago
should match the net volume flux through Davis Strait.

(McGeehan and Maslowski 2012)



EKE comparison in the Labrador Sea
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Plate 3. Horizontal distribution of eddy kinetic energy (cm?s?) in the Labrador Sea. (a) 1993-1997 annual mean, 0-5 m (model
level 1) calculated from daily model output. EKE contours 100, 200, 300, 400, 500, 600, 700, and 800 cm?s? in black. (b) Eddy
kinetic energy deduced from surface drifter data released in North Atlantic Ocean and Labrador Sea in during 1993-1997. (After
Figure 7 from Cuny et al. [2002].) (Maslowski et al., 2008)
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Arctic — North Atlantic Communication

West Greenland Across Shelf Volume Flux Annual Cycle
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The exchange through the Canadian Arctic Archipelago is in part
controlled by eddies generation along the West Greenland Current.

(McGeehan and Maslowski 2012)



How can coupled regional system models help
understand uncertainty & improve prediction?

|. By resolving unresolved or under represented
processes in individual system components.

2. By addressing inadequacies along coupling channels
between different system components

3. By exploring space-dependent sensitivities in the
parameter space

4. Through a hierarchical modeling approach using both
regional and global models

Maslowski et al. 2012




RASM wiring diagram
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RASM Domains for Coupling and Topography

Pan-Arctic region to
include:
- all sea ice covered
ocean 1n the NH
- Arctic river drainage
- critical inter-ocean
exchange and transport
- large-scale
atmospheric weather
patterns (AO, NAO,
PDO)

- WRF and VIC model
domains cover the
entire colored region
- POP and CICE
domains cover the
inner colored region



RASM-H sea ice analyses with observations

RASM 1979-1999 mean sea ice concentration and sea ice extent (black) vs SSM/I extent (green)
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Summary

Regional Arctic and global climate predictive models need:

® Resolve critical processes (e.g. eddies, coastal currents, sea ice
deformation, melt ponds) and feedbacks (air-ice-sea interaction)

® Represent Arctic - North Atlantic exchanges (via Fram Strait and
Canadian Arctic Archipelago)

® Validation Data (e.g. eddy kinetic energy, mixed layer depth,

upper ocean (0-150m) hydrography, air-sea fluxes)
Process studies (e.g. subsurface heat content and entrainment

into the surface mixed layer, seasonal pycnocline, marginal ice
zone (MIZ), air-sea fluxes, ice-wave interaction)

RASM - a tool to:

(i) Resolve / understand processes and feedbacks,
(i) Reduce uncertainty and

(iii) Improve prediction






Evaluation Metrics for Polar Models

Observations currently do not close surface energy budgets in the
Arctic

State variables may be “correct’, though different terms in the model
energy budget have opposing errors

By contrast, fully coupled polar models are strongly dependent upon
variability and sensitivities deriving from feedbacks. (e.g. surface-cloud
radiative feedbacks)

There is a need for evaluation metrics that target constraining sign and
magnitude of key feedbacks in the Arctic system

This requires constraining energy terms rather than state variables.



7 G-case semi-optimized sea ice thickness distribution at 1/12° in
i March (top) and September (bottom) 1985 (left) / 2007 (right)
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1983 Annual mean velocity at 0-223 m 1n the Nordic Seas
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Table 2. Eddy Kinetic Energy (cm/s) Statistics for the 0- to 45-m Regional Snapshots Presented in Plates 4 and 5

Model Labrador Sea EKE Nordic Seas EKE
Maximum Mean Std Dev Maximum Mean Std Dev
PCAPS58 132.50 4.90 0.20 269.40 4.70 13.30
PIPS 39908.00 70.40 203.70 4959.00 43.50 142.70

(Maslowski et al.,2008b)



Physically consistent sea ice assimilation
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Time series of monthly mean sea ice volume.

¢ October-November means estimated from lceSat are

~ shown with red asterisks with equivalent model values
shown by color dots for comparison.
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1979-2009 mean September sea ice thickness distribution from 4 G-ensembles.
The green contour represent the 1979-2009 mean 15% ice extent from satellites.
(Osinski et al.in review) Observed sea ice extent is not a sufficient model constraint!



