Development of Organic Molecule Imaging at the Louisiana Accelerator Center (OMILAC)

Harry J. Whitlow, Naresh Deoli, Armin de Vera

Louisiana Accelerator Center and Dept. of Physics
University of Louisiana at Lafayette
P.O. Box 43680
Lafayette, Louisiana, 70504, USA
Acknowledgements

Louisiana Accelerator Center
Nick Henderson
Dr. Robin Broussard
Prof. Paul Klerks
Dr. Karen M. Smith
Prof. François Villinger, NIRC

Students:
Abeda Sharma
Sajan Bandhari

Dept. Chemistry, Kasetsart University, Thailand
Assoc. prof. Orapin Cheienthavorn, Dr. "Bua" Chunhakorn, Dr. "Ying" Insuan

Dept. Applied Radiation and Isotopes Kasetsart University, Thailand:
Assoc. Prof. Wanwisa Sudrasert, Dr. Ridthee Meesat

Support:
- Ångströmlaboratoriet, Uppsala Universitet, Sweden
Outline

Organic molecule imaging using MeV SIMS

- Why image organic molecules in an MeV ion microprobe?
- How does MeV-SIMS work?
- A Second generation MeV SIMS instrument
- Practical details.
 - ToF-reflectron
 - Low noise Si p-i-n detectors
 - MCU-based electronics
- Where are we and where are we going?
Why MeV-SIMS?

- MeV ion microbeams have unique multi-modal imaging capabilities
- Inorganic materials have been the main study area
- Organic materials which include animals, plants, polymers, energy materials are largely ignored.
- Co-imaging of elements and specific biomolecules with structural features will give new science.

Co-imaging examples: µ-PIXE

1st generation MeV-SIMS

MCP stop detector

Linear ToF

Objective aperture

Collimator

Sample + 10 kV

$^{12}\text{C}^{4+}$
MeV-SIMS

OMILAC 2nd generation MeV-SIMS

Molecular ions ejected into backwards 2π sr.

- Ejection energy distribution width is ~ 20 eV.
- The wide energy span limits the resolution for linear ToF spectrometers according to:

$$\frac{dt}{dE} = -L \sqrt{\frac{M}{2E^{3/2}}}$$
Molecular ion Acceleration stage

Linear and Reflectron ToF dispersion

\[E = qeV_{acc} \]

Linear ToF

\[t = L \sqrt{\frac{M}{2E}} \]

\[\frac{dt}{dE} = -L \sqrt{\frac{M}{2E^{3/2}}} \]

Reflectron ToF

\[t_R = \frac{L_R}{U_mqe} \sqrt{2ME} \]

\[\frac{dt_R}{dE} = -\frac{L_R}{U_mqe} \sqrt{\frac{2M}{E}} \]

\[T = t + t_R; \quad \frac{dT}{dE} = 0; \quad U_mqe \rightarrow E \]

\[L_R = \frac{L}{4} \]
DIPLOMA Linear + Reflectron telescope

\[L = L_{L1} + L_{L2} \]

DIPLOMA ToF Reflectron

Photo: H.J. Whitlow

MeV ion microbeam

MeV ion microprobe for imaging at the Louisiana Accelerator Center

From: H.J. Whitlow (unpublished work)
MeV ion microbeam at the Louisiana Accelerator Center

Magnetic lenses

OMILAC Mass spectrometer

Beam Line

Analysis chamber

MeV ion microprobe electronics

Photo: H.J. Whitlow
Problem: Fast timing was difficult with standard Hamamatsu p-i-n diodes (S1223-01) due to ground loops and pickup.

- Need for noise-free signals from DC to about 1 GHz.
- Chamber was electrically isolated from beamline.
- Adequate for energy spectroscopy with time constants $\tau_{RC} \sim 5 \, \mu s$.
- Not adequate for fast timing with few ns τ_{RC}
Si - Start detector - II

- Kapton® tape
- Pre-amplifier ground
- Analysis chamber ground
OMILAC electronics configuration

- Fast HV switch
- Beam blanker
- Objective aperture
- Collimator
- ToF reflectron
- 12C4+ beam
- Si p-i-n diode start detector
- Gate pulse generator
- Multi-stop TAC
- Sequential DAC
- STM32 MCU
- Mass pulses
- OM-1000e ADCs
- OM DAQ3
- Trigger
- Spectroscopy Amplifier
- Direct-STIM signal
- Const. Fact. Disc.

- Mass pulses: 0 V to ±HV
- Gate pulse generator: 0 V to 3.3 V and 0 V to -120 V
- Objective aperture: 0 V
- Beam blanker: 0 V
- Collimator: 0 V
- ToF reflectron: ±HV
- 12C4+ beam: 0 V
- Si p-i-n diode start detector: 0 V
Challenges:

- Need to measure time differences up to ~50 µs with 15 ns resolution.
- DAQ system accepts only analogue pulses easily.
- Molecular fragmentation gives multiple mass pulses from a single start pulse.
- Conventional TACs cannot handle multiple stops.
- Provide TTL blanking pulse to fast beam-blanker.
Why multi-stop Time to Amplitude Converter

To measure high mass signals you need to veto light (= faster fragments) because they make single stop TAC blind.

Problem: Molecular fragmentation patterns carry important information
ARM-based 32-bit MCU approach

Beyond the Arduino....

- Low-Cost
- Lower learning threshold than FPGAs
- Dual fast comparators
- 50 – 480 MHz clock rates
- 1 MHz DAC for output
- Memory-mapped hardware device registers
- Full-speed USB
- Well developed integrated development systems
- Devices STM32G4, STM32H7, ESP32, PIC32CM MCUs

STM32G4 MCU on STM Nucleo32 prototype board.

Photo: H.J. Whitlow
ARM MCUs - "super-fast CAMAC on a chip"
MCU implementation of TAC/TDC-MCB

Start pulse -> Comparator -> Event

Stop pulse -> Comparator -> Event

Discriminator level

170 MHz clock

64-bit counter

DMA

Time stamp buffer

Beam blanking pulse

Analog pulses to OM-DAQ

To control PC

DAC

Sorting process

Multi channel buffer

FS-USB-VCP
Concluding remarks

- MeV-SIMS has great potential at MeV ion microbeam facilities because it allows co-imaging with µ-PIXE, RBS, off-axis and Direct-STIM, opening up the possibility to study a wide range of biomedical, environmental, geological, materials and even space science topics.
- A 2nd generation MeV-SIMS is under construction at the Louisiana Accelerator Center with \(M/\Delta M \approx 2000 \).
- The combination of a linear and reflectron ToF sections will cancel the energy broadening from sputter ejection.
- Efficiency maximised by measuring start pulses with a Si detector.
- ARM-based 32-buit MCU’s are sufficiently fast for pulse spectroscopy processing and could be developed to a flexible replacement of NIM electronics.
- CoViD-19 has been a real pain for the project....
Thank You for attending today’s presentation