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Motivation

I Data assimilation on glider location observations to help plan
flight paths

I Glider location data is used in two ways:
I Data is assimilated into a physical model of glider movement

through the fluid.
I Data is assimilated into a model of the background fluid flow.
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What Can Go Wrong

Figure : Example of a mismatch between planned flight path and true
glider trajectory. (taken from Smith 2011).
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Motivation

I Often data and control for Lagrangian instruments focuses
only on horizontal glider movement.

I Often researchers assume perfect control over glider
navigation (direction and velocity of flight).

I Our goal: explore assimilating glider location observations into
a physical model of glider control with unknown parameters
moving in a background flow with unknown parameters.

I How can we improve parameter estimates to help plan better
flight paths?
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Outline

I Glider model
I Equilibrium equations for buoyancy, lift, and drag

I Simulation and control framework
I Background flow

I Eckman layer model

I Data assimilation

I Future work
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Glider Model

Figure : Model of angle variables and lift and drag operating on the
glider. θ is the pitch angle. ξ is the glide angle. α is the angle of attack.
(taken from Leonard 2001).
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Glider Model

I We assume the glider can control pitch angle and ballast
mass.

I Pitch angle–with lift and drag–determine glide angle at
equilibrium.

I Ballast mass determines buoyancy force which plays a part in
determining velocity at equilibrium.

I Equilibrium equations of buoyancy, lift, and drag relate glider
control to velocity and flight direction (glide angle).

I The goal is to design a flight path by
I choosing a desired glide angle and desired velocity
I and computing the control that yields the desired glide angle

and velocity at equilibrium.
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Simulation Framework (for known background flow)

1. Given initial estimates of unknown parameters in glider model.

I Here, these are just lift and drag coefficients.

2. Determine flight path.
I Here, this is just the desired glide angle and velocity.

3. Compute glider control to yield the desired flight path.

4. Simulate true glider movement given control from step (3).
I This involves computing the true glide angle and velocity.
I Also involves the background flow’s effect on glider movement.
I Observe the glider’s location (possibly with noise).
I This is our data for assimilation.
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Computing Glider Control (3)

I Pitch angle at equilibrium is a function of the desired glide
angle and the angle of attack at equilibrium.

θ = ξd + αd

I Angle of attack at equilibrium is a function of the desired
glide angle and the lift and drag at equilibrium.

I Parameters involved in lift and drag approximations are
unknown, though an initial estimate is known (possibly an
estimate from a previous iteration of data assimilation).
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Computing Glider Control (3)

I We approximate the lift and drag operating on the glider as

L = (KL0 + KLα)V 2 (1)

D = (KD0 + KDα
2)V 2 (2)

I When we balance the forces at equilibrium in the x and z
directions we get

0 = [cos(ξ), sin(ξ)][D, L]T (3)

m0g = [− sin(ξ), cos(ξ)][D, L]T (4)

I m0 is the excess mass and m0g is the buoyancy force.
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Computing Glider Control (3)

I Equation (3) yields the following quadratic in α

0 = α2 +
KL

KD
tan(ξ)α +

1

KD
(KD0 + KL0 tan(ξ)) (5)

I Compute αd using equation (5), the desired glide angle, ξd ,
and the initial estimates of the lift and drag coefficients.

I Compute the pitch angle, θ,

θ = ξd + αd (6)
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Computing Glider Control (3)

I Let m be the mass of the displaced fluid, mb be the
controllable ballast mass, and mh be the remaining mass of
the glider hull. Then,

m0 = mb + mh −m (7)

I and equation (4) becomes

mb = (m−mh)+
1

g
(− sin(ξ)(KD0+KDα

2)+cos(ξ)(KL0+KLα)V 2

(8)

I Compute mb from equation (8) using ξd , Vd , αd , and the
estimates of the lift and drag coefficients.
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Simulate True Glider Movement (4)

I To simulate the true movement of the glider we need to
compute the true flight path, ξt and Vt , given the control
[θ,mb] and the true lift and drag coefficients.

I To find ξt we can substitute ξt = θ−αt into equation (5) and
solve for αt

0 = αt
2+

KL

KD
tan(θ−αt)αt +

1

KD
(KD0 +KL0 tan(θ−αt)) (9)

I To find Vt we can solve equation (8) for Vt with ξt and αt

now known.
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Simulate True Glider Movement (4)

I Let U(x , y , z , t) = [ux , uy , uz ]T be the background flow
velocity field.

I We simulate the true glider movement by evolving the glider
through time according to

d

dt

 x
y
z

 = U(x , y , z , t) + Vt (10)
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Simulate True Glider Movement (4)

Figure : Errors in the lift and drag parameter estimates can cause a
discrepancy between the desired glide angle and the true glide angle. The
same goes for the desired velocity and true velocity.
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Ekman Layer Model

I The Ekman layer is a model of the fluid velocity in the top
layer of the ocean caused by wind stress on the surface and
the Coriolis force.

I It is parameterized by the Ekman depth, d , which is the scale
of the depth at which the wind stress affects fluid flow (depth
of the boundary layer). Here it is considered unknown.

I The Ekman depth, d , is a function of the viscosity and
rotation of the system.

I The Ekman layer velocity field is z-dependent but has no
vertical velocity component.
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Ekman Layer Model

I Let u,v be the fluid flow velocity in the x ,y direction.

I Let ū,v̄ be the z-independent velocity of an underlying flow.

I Let τ/ρ be the wind stress per unit mass at the surface.

I Let f be the Coriolis parameter.

I The Ekman layer velocity field is

u = ū(x , y)+

√
2

fd
ez/d

[
τ x(x , y)

ρ
cos(

z

d
− π

4
) (11)

−τ
y (x , y)

ρ
sin(

z

d
− π

4
)

]
.

v = v̄(x , y)+

√
2

fd
ez/d

[
τ x(x , y)

ρ
sin(

z

d
− π

4
) (12)

+
τ y (x , y)

ρ
cos(

z

d
− π

4
)

]
.
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Ekman Spiral

Figure : Example velocity field for a column of water in the Eckman
layer. (Taken from ”Ekman Layer” on Wikipedia)
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Simulation Framework with Ekman Layer

1. Given initial estimates of unknown parameters in glider model
and background flow model.

I Here, these are just lift and drag coefficients for the glider
model

I and the Ekman depth for the Ekman Layer model.

2. Determine flight path.
I Here, this is just the desired glide angle and velocity.
I These will depend on the estimate of the background flow.

3. Compute glider control to yield the desired flight path.

4. Simulate true glider movement given control from step (3).
I Involves using the true background flow.
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Data Assimilation

I The (x , y , z) location of the glider’s path during the dive is
our observation data.

I The goal is to improve our estimates of the lift and drag
coefficients as well as our estimate of the Ekman depth.

I Can use many assimilation techniques.
I We use a simple implementation of a particle filter.

I Take a large number of random estimates of the unknown
parameters (‘particles’).

I Compute each particle’s (x , y , z) trajectory.
I Weight each particle’s parameter estimates according to the

likelihood of its trajectory yielding the observed data.
I These estimates, along with their associated weights, represent

an approximation to the posterior distribution of parameter
estimates.
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Particle Filter

Figure : True glider trajectory given in blue. 5 particles’ trajectories are
given in red.
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Results

Figure : Desired flight path given in cyan. True glider trajectory given in
blue. 5 best particles’ trajectories are given in red.
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Results
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Results

Figure : Distribution of KD0 parameter for 5000 particles. Distribution
mean given in black. True value of parameter given in red.
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Results

Figure : Distribution of KL parameter for 5000 particles. Distribution
mean given in black. True value of parameter given in red.
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Results

Figure : Distribution of Ekman depth parameter, d for 5000 particles.
Distribution mean given in black. True value of parameter given in red.
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Future Work

I Currently using whole glider trajectory for observations. Using
just the glider’s surfacing position is more realistic.

I Our current Ekman layer model is relatively simple and is only
a function of the depth of the glider. We are looking for a
more sophisticated model of the background flow.

I This could just be a 2-D horizontal flow model that sits
underneath the Ekman spiral caused by wind stress.

I Could be spatially or temporally varying flow.
I Could contain spatially or temporally varying wind speed.

I Using data assimilation to make better flight plans and keep
true trajectories closer to desired flight plans.
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Questions?

Thanks!
Any Questions... ?
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We’re interested in the probability of a state Xj as it evolves over
time. Recall, for independent random variables, we have

p(x0:n) = p(x0)
n∏

j=1

p(xj |x1:j−1)

For our case, we’ll have some distribution of initial conditions µ(x0)
(background) and a model to move our state forward in time,

Xj |(Xj−1 = xj−1) ∼ m(xj |xj−1)

where m(xj |xj−1) is the transition probability or the probability
that our model would take use from state xj−1 to state xj .

Combining the ideas above gives us

p(x0:n) = µ(x0)
n∏

j=1

m(xj |xj−1)
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Recall, our observations will be related to the state variable by
some observation function y = H(x). We can think of
observations as random variables distributed as

Yj |(Xj = xj) ∼ g(y |xj).

Or, Yj = H(Xj)+“noise”.

g(y |x) is the likelihood — how likely was an observation given the
possible states?

With a whole set of observations {Yj} we can write down the
likelihood for the time-series of observations

p(y1:j |x1:j) =
n∏

j=1

g(yk |xk)
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Given a background distribution of initial conditions, µ(x0), and
observations, Y1:n, we want to infer the distribution of physical
states X0:n.

I Prior

p(x0:n) = µ(xo)
n∏

j=1

m(xj |xj−1)

I Likelihood

p(y1:n|x1:n) =
n∏

j=1

g(y = H(xj)|xj)

I Posterior, obtained by Bayes’ rule

p(x1:n|y1:n) =
p(y1:n|x1:n)p(x0:n)

p(y1:n)

recall, p(y1:n) =
∫

p(y1:n|x1:n)p(x0:n)dx1:n
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A Monte Carlo simulation or really sampling p(x1:n|y1:n)

I takes a discrete set of samples from X0 ∼ p(x0)

I moves them forward accord to the model, e.g. samples
X0:j ∼ p(xj |x0:j−1)

I evaluates likelihood between samples and observations

Note, after a few (say k = 2 or 3 observations) you will have
samples from X0:k ∼ p(x0:k |y1:k) but they will not be useful.
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Idea — normalize at every step, treat that posterior distribution as
an importance prior distribution for the next step.

1. Start with Xo ∼ p(xo), each particle X
(k)
o has weight

w
(k)
1 = 1/N

2. Transition each X
(k)
0 forward, this gives sample

X
(k)
1 ∼ p(x1|x0) = m(x1|x0)

3. Evaluate the likelihood function of each sample (“particle”)

X
(k)
1 against Y1, g(Y1|X (k)

1 )

4. Weight each particle by

w
(k)
1 =

g(Y1|X (k)
1 )w

(k)
0∑N

k=1 g(Y1|X (k)
1 )w

(k)
0

Repeat process transition from Xj−1 to Xj instead of 0 to 1.

π(xj |Y1:j) = {xj = X
(k)
j ,w (k)}
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With a large number of samples, SIS works pretty well on moderate
(small) dimensional deterministic (perfect model) problems.

Problem:

I A significant problem, though, is that most (or all) of the
weight can be taken over by one particle

Solution:

I Resampling, e.g., bootstrapping
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Strategy:

I Monitor weights, if problematic

I Resample or “bootstrap” by treating π̃j(x0:k |Y1:k) as an
importance empirical distribution

I Set all weights to w
(k)
j = 1/N

I Transition j + 1 step, repeating resampling as necessary

The strategy is referred to an SIR (sequential importance
resampling) filter and also goes by the names particle filter,
bootstrap filter, and sequential Monte Carlo.
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idea:

I pick subset of “best”
particles k = 1, . . . ,M

I make mk copies of each
particle where

mk ∝ wj(x
(k)
j ) where∑

mk = N

reasonable:

I stochastic evolution to tj+1 “spreads out” cloud

I add “jitter” to each particle for deterministic evolution
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