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Chaotic Advection 

•Stirring is controlled by long-lived coherent structures. 
  
•Chaotic parcel trajectories (rapid separation in time). 
 

•Not all trajectories are chaotic. Barriers separate chaotic and regular regions. 
 

•Extensive theory for flows that are 2D + time. 
 

•Nearly all ocean examples are 2D+time or quasi 2D+time: weak vertical 
motion. 

Do barriers and non-chaotic regions survive in 
flows that are fully 3D (have significant vertical motion)? 



Barriers are predicted 
by the KAM theorem. 

Every trajectory that lives on a closed streamline is  
time periodic, with period T(ψ).  
 
If the system is forced at period Tf, trajectories on the 
‘resonant’ streamlines 
 
  T(ψ)/Tf = m/n 
 
will become chaotic. 
 
Curves with ‘sufficiently’ irrational T(ψ)/Tf will survive. The 
 trajectories will remain quasi periodic. 



The breakup of resonant contours. 

(Ottino 1989) 



MURI objective: To use dynamical systems methodology to learn 
something about time-dependent, 3D motions in the ocean. 
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Main Issue: Do coherent structures exist in 3D?   
   (Energy cascade may be towards small scales.) 
 



‘Rotating Can’ Experiment 





Velocity Fields 

1) Kinematic (3d velocity non-divergent but no dynamics)  

E =
ν

ΩH 2 << 12)  Linear asymptotic solution with  

3) Nonlinear numerical model. 
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Steady Case with no θ-depedence 

(Quasi-Hamiltonian) 
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Action-Angle-Angle System 

Mezic and Wiggins, 1994;  Fountain, 2000 



Steady case with no θ-depedence. 



Add a steady, non-axisymmetric perturbation.  

Poincare' Section 

Ωφ

Ωθ

 =
m
n
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Examples of surviving tori.  



Numerical Simulation  



rc56, x0=-0.01 rc57, x0=-0.02 

rc64, x0=-0.05 
rc63, x0=-0.15 

Sensitivity to perturbation amplitude x0 for E=1/20 



Perturbation with θ-dependence and time-dependence. 

strobed trajectories Poincare' map in θ only 

Snap shot of time-dependent tori Double Poincare' map 

























Where is the Real Ocean? 

Mesoscale eddies?  Upwelling rates (7<w<40 cm/day) so 
overturning times are measured in years.  
 
Sub-mesoscale?  W is larger but do eddies live long enough 
For our mechanism to be relevant?  
 
Langmuir circulations?  
 
Hurricanes? 



dynamics and thermodynamics 

geometry 

template for stirring/mixing 

KAM theorem (resonance) 

Where are the dynamics in ‘dynamical’ systems?  



rc58,  x0=-0.02, T=1000  rc61,  x0=-0.15, T=1000  

Finite-Time Lyapunov Exponents: E=1/6.5, large Rossby #   

strong tilt weak tilt 



Breakup of torus with 
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 and n = 4.
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Steady Perturbation+Time-periodic perturbation 

Solomon and Mezic 2003: All barriers can be destroyed if forcing 
period is “close to typical circulation time”. 



Breakup of torus with 
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 and n = 4.



Steady flow with no dependence on azimuth θ. 



Each trajectory lives on a torus. 



A 3D View of Loop Current Ring 
Exchange 

(Branicki and Kirwan, 2010) 
Manifolds show mixing boundaries 
extending to depths of 200 meters 
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If 
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 (rational) the torus I = const  will break up.

Steady Perturbation 

If 
Ωφ

Ωθ

 is irrational the torus I = const  may survive.
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