# Impact of noise and subsampling on relative dispersion measurements

A. Haza, T. Özgökmen, A. Griffa et al.

MURI Feb 11-13 meeting, North Carolina.





## Motivation

SMS flows have an impact on tracer dispersion, oil spills.. etc. and require scale-dependent dispersion measurements (FSLE)

 Issues/constraints on position measurement errors and sampling frequency when the scales of interest are O(1m – 1km).

 Evidence of measurement bias in the latest FSLE measurements of the Gulf Stream surface circulation.

Raises the questions:

- Can the noise signal in the FSLE be isolated from the real signal?
- how does it respond to low-pass filters?

Simple method: Look at synthetic trajectories and corrupt them with noise.

## Relative dispersion from ocean models

(Poje et al., Ocean Modelling, 31 (2010) 36-50)



 $\delta$  (km)

Power-law at large scales is unchanged.

# Observed small scale trend (Gulf Stream)



Lumpkin & Elipot, 2010

#### CLIMODE project (2007)

- 60 satellite tracked drifters launched Feb-Mar 2007.

- Dt = 1-2 hr.
- Error ~ 700m



LAT Mix June 2011 experiment

- 20 drifters released in pairs, same type.

- Dt ~ 1.6 hr.
- $\boldsymbol{\lambda}$  computed from raw data set.

 $\rightarrow$  Recurrent  $\delta^{-1}$  regime at the smallest measured scales.

# Setting

- Synthetic trajectories from Gulf Stream HYCOM 1/12° simulation (weak exponential regime at SMS) assumed to be in-situ drifter trajectories.

- Add noise to each position (time interval Dt).







 $L_k$  = position error std. dW<sub>0</sub> = random component from normal distribution ( $\mu$  = 0,  $\sigma$  = 1)

## Equivalence position error – random walk



## Why do RW and position error yield similar FSLE?

Because of their averaged relative velocities:

$$\Delta V_{RW} \sim \sigma_u = \frac{L_K}{Dt}$$

also:

$$\Delta V_{RW} = \frac{(\alpha - 1)\delta}{\tau(\delta, \alpha)}$$

It follows that:

$$\lambda(\delta) \sim \frac{\log(\alpha)}{(\alpha - 1)Dt} \frac{L_K}{\delta}$$

which varies like  $\delta^{-1}$ .

In the case of noise from position unc<u>ertainty</u>:

$$\Delta V_{Cpt} = \frac{L}{T} \sim \frac{NL_K}{NDt} = \frac{L_K}{Dt},$$
  
and is the same as  $\Delta V_{RW}$ .



## How to evidence pure noise from $\lambda$ ?

1) **By sub-sampling** (SB) the trajectories, i.e. by increasing Dt.

Then re-compute  $\lambda$  and rescale by 1/Dt. If the curves collapse for  $\delta/L_K \le 2$  and  $\lambda \sim \delta^{-1}$ , then we have pure noise.





2) **By filtering** (LPt) the trajectories with a temporal-moving average of window  $T_{LPt}$ .

The resulting  $\lambda$  rescaled by  $1/T_{LPt}$  also yields a collapse for pure noise.

#### Low-pass (moving average) filter impact on noise

For each position of indice i (zonal),

$$x_{Cpt}^i = x^i + \frac{L_K}{\sqrt{2}} \, dW x^i.$$

The low-passed version is :

$$\widetilde{x_{Cpt}^i} \approx x^i + \frac{L_K}{\sqrt{2}} \widetilde{dWx^i}.$$

 $\Rightarrow$  new noise:  $\widetilde{dW^i}$ .

Original noise distribution:

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} exp \frac{(x-\mu)^2}{2\sigma^2},$$

with  $\sigma = \sigma_0 = 1$ . So if  $T_{LPt} = N \times Dt$ ,  $\sigma = \sigma_0 / \sqrt{N}$ , and:



#### Distribution for filter window T=N.Dt:



#### $\rightarrow$ Impact on $\lambda$ similar to subsampling.

## LAT-MIX comparison with HYCOM 1/48°+(1km,2h noise)



Rescaled  $\lambda$  of LAT-MIX and corrupted H1/48°:

> LAT-MIX  $\lambda$  can be reproduced with HYCOM1/48°+(1km,2hr) noise. > Indication of pure noise up to  $\delta$  = 3km.

## What if in-situ SMS and noise have same magnitude $\lambda$ ?



- 1) Real signal: HYCOM1/12° + Random Flight with small  $\tau$ . ( )
- 2) Add noise (1km, 2hrs). (-o-o-o-)
- 3) subsample both the real ( ) and corrupted ( -o-o-o- )signals.
- 4) compare to pure noise. ( - )

> There must be a significant difference between pure noise and filtered signal.

#### GLAD Noise impact (Near DWH site, Gulf of Mexico)



## GLAD noise & subsampling impact











# Summary

> Measurement noise has a distinct  $\delta^{-1}$  signature in the scale-dependent FSLE, and is proportional to the position error and sampling frequency.

➤ It implies a trade-off on the sampling time for designing SMS dispersion experiments.

> Low-passing or subsampling the trajectories reduces the noise signal and can be evidenced by rescaling  $\lambda$ .

➤ The real SMS signal is less sensitive to the low-pass filters, but it depends on the time-scale of the features controling the relative dispersion at a given scale.

➤ The recovered signal is obtained from the weakest low-passed trajectories necessary to distinguish noise from the real relative dispersion.