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LCS Map: Ocean Model Example 

LCS = 
Lagrangian 
Coherent 
Structures 

What is 
this?!? 

Example based on a Gulf of Mexico implementation of HYCOM, run by NRL-Stennis. 



What are LCS? 

Lagrangian Coherent Structures, or LCS, partition a flow 
field into regions that undergo similar experiences.  This 
may mean any of the following: 

  Similar residence time within a region of interest 

  Similar origin or fate 

  Similar dispersion rates 

  Etc. 



Manifolds & Critical Trajectories 

  Flow regions with high dispersion are often organized 
like this:                  Such regions are termed hyperbolic. 

  The directions along which the flow converges, marked 
in , are inflowing manifolds. 

  The directions along which the flow diverges, marked in 
, are outflowing manifolds. 

  The manifolds intersect at a critical trajectory. 

  Manifolds are material curves: Nothing crosses them. 



Manifolds & Dispersion 

  Manifolds are difficult to find exactly, even with a 
perfectly known velocity field. 

  Instead they are approximated with diagnostics that are 
easier to compute. 

  Note: Particles that start near the  manifold 
will separate quickly, while those ending near the 

 manifold have come from disparate origins. 

 Areas around the  manifold exhibit high 
dispersion in  time; areas around  
manifolds exhibit high dispersion in  time. 



Dispersion & Lyapunov Exponents 

  Lyapunov exponents are a mathematical tool to describe 
dispersion characteristics.  They can be used to identify 
LCS. 

  In the context of ocean flows, which are not defined in 
infinite time or space, the quantities studied are 
typically Finite Space Lyapunov Exponents (FSLEs) or 
Finite Time Lyapunov Exponents (FTLEs), also called 
Direct Lyapunov Exponents (DLEs). 

  Fundamentally, both FTLEs and FSLEs measure 
separation time-scales of nearby particles. 



FTLEs in a Simple Stationary Flow 

Forward Time FTLE Backward Time FTLE 

Inflowing manifold Outflowing manifold 



Transport near LCS 

Large stretching along  manifold. 
Large differences in fates for nearby initializations near the  manifold. 



LCS in Time-Dependent Flows 

  LCS given by ridges in FTLE fields still approximate 
manifolds and show dispersion patterns. 

  Material will follow the evolving LCS. 

Oct 11, 1998 Oct 31, 1998 

Example based on a Gulf of Mexico implementation of CUPOM, run at the University of Colorado. 



Example from the Gulf of Mexico 

Oct 11, 1998 

Inflowing 
manifold 

Outflowing 
manifold 

Cyclones 

Anti-Cyclones 



Transport & LCS in an Ocean Flow 

10/11 10/15 10/19 

10/23 10/27 10/31 



Transport & LCS Animation 



Practical Application: Oil Spill 

Black:  Observed oil slick outline 
Green: Modeled oil slick outline 

Purple ovals: Hyperbolic regions, 
tracked from (a) to (b) 

Results from Huntley et al., 2011. 



Oil Spill Example: Analysis (I) 

Hyperbolic regions in ovals exhibit:   
Stretching along  ridge, away from intersection with  ridge 

Stretching to the SE was also observed;  
thin tendrils in the NW may have evaporated or not been visible. 



Oil Spill Example: Analysis (II) 

Hyperbolic region in oval exhibits:   
Transport along  ridge, away from intersection with  ridge, 
leading to consolidation of the oil patch 

Observations agree. 



Oil Spill Example: Analysis (III) 

Initial oil patch crosses  ridge  
  High sensitivity to initial conditions 
  High forecast uncertainty (& in this case error) 



Summary 

  Ridges in FTLE fields approximate manifolds. 

FTLE ridges (inflowing manifolds) show high 
initial-condition sensitivity and forecast uncertainty.  
(Forecast uncertainty is even greater, since the FTLE map 
itself is based on models with their own uncertainties.) 

FTLE ridges (outflowing manifolds) show 
directions of high stretching. 

  Regions away from FTLE ridges are relatively quiescent. 

  Edges of strong currents and eddies are typically marked by 
FTLE ridges. 



Some Warnings 

  FTLE (and FSLE) ridges are imperfect surrogates for the actual 
manifolds and, under certain conditions, do not align with the 
manifold structure and may permit material transport across 
them. 

  For a complete picture, both forward-time and backward-
time calculations are needed.  Especially the former may be 
subject to significant model forecast errors. 

  Hyperbolic regions may lose their hyperbolicity over time, so 
that it is not always possible to track a ridge intersection over 
time. 
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