Motivation
 Derivation
 Motion of 3 vortices
 Tracer
 Conclusions and Future Work
 References

 00
 00
 00000
 0000000
 0

Dynamically consistent weakly 3D transport using SQG

> Stefan Llewellyn Smith Cecily Keppel

Department of Mechanical and Aerospace Engineering UCSD

May 1, 2013 MURI Review Dynamical Systems Theory and Lagrangian Data Assimilation in 3D+1 Geophysical Fluid Dynamics

イロト イヨト イヨト イヨト

Stefan Llewellyn Smith, UCSD

Motivation ●○	Derivation	Motion of 3 vortices	Tracer 00000	Conclusions and Future Work	References o
Why C	QG?				

- The ocean is a thin fluid envelope on a rapidly rotating Earth. Dynamics are largely two-dimensional with weak vertical variation.
- Behavior is governed by the dimensionless Rossby number Ro = U/Lf, ratio of local vorticity to planetary vorticity. Small for large-scale motions.
- Leading-order asymptotic prognostic equations are the Quasi-Geostrophic equations. Conserve QGPV. Vertical velocity is O(Ro) and dynamically related to buoyancy.

Motivation ○●	Derivation	Motion of 3 vortices	Tracer 00000	Conclusions and Future Work	References o
Why S	SQG?				

- Ocean 3D+1 is investigating transport in 3D+1. Obtaining dynamically consistent 3D+1 velocity fields is generally expensive and time-consuming.
- SQG provides a system with dynamically consistent velocity fields that obeys a 2D equation for buoyancy on the boundary but have O(Ro) vertical velocity in the interior.
- Can use existing simple dynamical models such as point vortices, moment truncations, etc... or move to turbulence in a periodic square/cube.

 Motivation
 Derivation
 Motion of 3 vortices
 Tracer
 Conclusions and Future Work
 References

 oo
 oo
 ooooo
 ooooo
 oooooo
 oo
 o

Quasigeostrophic (QG) Equations

Reduced equation of motion for $Ro \ll 1$

 $\begin{aligned} \zeta & \text{Vorticity} \\ \theta &= f \partial_z \psi & \text{Buoyancy} (\sim \text{density}) \\ \psi & \text{Streamfunction} \end{aligned}$ $\begin{aligned} \text{bulk} & \partial_t \zeta &= -J(\psi,\zeta) + f \partial_z w \\ \text{surface} & \partial_t \theta &= -J(\psi,\theta) - N^2 w \\ \text{bulk} & q &= \left[\partial_{xx} + \partial_{yy} + \partial_z \left(\frac{f}{N} \right)^2 \partial_z \right] \psi \end{aligned}$

Pedlosky (1982)

・ロ・・ (日・・ (日・・ 日・・

2

Stefan Llewellyn Smith, UCSD

Surface Quasigeostrophic Equations

Surface QG (SQG) assumes potential vorticity q = 0 in the interior, so the dynamics are governed by the boundaries (usually just the surface).

Some $\theta = f \frac{\partial \psi}{\partial z}$ distribution on the surface

Motion induced below by *q*=0

Stefan Llewellyn Smith, UCSD

Understanding Vortex Behavior

Three classical point vortices (which have regular motion) induce chaotic motion in passive scalars. Look at transport properties of SQG point vortices.

Stefan Llewellyn Smith, UCSD

Motivation	Derivation	Motion of 3 vortices	Conclusions and Future Work	References
		0000		

Equations of Motion on the Surface

$$\theta_0 = \sum_n \kappa_n \delta(\mathbf{x} - \mathbf{x}_n) \delta(\mathbf{y} - \mathbf{y}_n)$$
$$(\dot{\mathbf{x}}_n, \dot{\mathbf{y}}_n) = \sum_{m \neq n} \frac{\kappa_m}{2\pi} \frac{1}{|\mathbf{x}_n - \mathbf{x}_m|^3} (-\mathbf{y}_n + \mathbf{y}_m, \mathbf{x}_n - \mathbf{x}_m)$$

Hamiltonian system:

$$\psi_0 = \frac{1}{2\pi |\vec{x} - \vec{x}_n|}$$
$$\vec{u}_0 = \sum_n \frac{\kappa_n}{2\pi |\vec{x} - \vec{x}_n|^3} (-y + y_n, x - x_n, 0)$$

イロト イヨト イヨト イヨト

크

Dynamically (asymptotically) consistent

Stefan Llewellyn Smith, UCSD

Motivation	Derivation	Motion of 3 vortices	Tracer 00000	Conclusions and Future Work	References o

Change of Variables

Aref & Pomphrey (1982) and Kuznetsov & Zaslavsky (1998)

$$z_j = \frac{1}{\sqrt{3}} \sum_{n=1}^2 \sqrt{2J_n} e^{i\theta_n} e^{-2i\pi n(j-1)/3}$$

$$I = \left(\frac{J_2 - J_1}{J_2 + J_1}\right)^2 = 16A^2/3L^4 \qquad \phi = \theta_2 - \theta_1$$

A is the area of the vortex triangle, $L^2 = \sum |z_j|^2$, a constant of motion.

$$H = \frac{1}{2\pi} \sum_{i < j} \frac{1}{|z_j - z_i|} = f(I, \cos(3\phi)) \qquad \dot{I} = \frac{16I}{L^4} \frac{\partial H}{\partial \phi} = g(I, \sin(3\phi_1))$$

Using the system of equations, we numerically determine I(I) and find the potential function $-I^2$.

Stefan Llewellyn Smith, UCSD

Motivation	Derivation	Motion of 3 vortices	Conclusions and Future Work	References
		00000		

Potential Well

◆□ > ◆□ > ◆ □ > ◆ □ > ・

E 990

Stefan Llewellyn Smith, UCSD

Motivation	Derivation	Motion of 3 vortices	Conclusions and Future Work	References
		00000		

Vortex Motion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Stefan Llewellyn Smith, UCSD

Motivation	Derivation	Motion of 3 vortices	Tracer ●oooo	Conclusions and Future Work	References o

First Order Expansion

We wish to determine the vertical velocity

 $\epsilon = Ro$

$$u \sim -\frac{\partial \psi_0}{\partial y} - \epsilon \left(\frac{\partial \psi_1}{\partial y} + \frac{\partial F_1}{\partial z} \right)$$
$$v \sim \frac{\partial \psi_0}{\partial x} + \epsilon \left(\frac{\partial \psi_1}{\partial x} - \frac{\partial G_1}{\partial z} \right)$$
$$w \sim \epsilon \left(\frac{\partial F_1}{\partial x} + \frac{\partial G_1}{\partial y} \right) = -\frac{D_0 \theta_0}{Dt}$$

F, G: associated potentials.

Muraki et al. (1999)

2

Stefan Llewellyn Smith, UCSD

Motivation	Derivation 00	Motion of 3 vortices	Tracer o●ooo	Conclusions and Future Work	References o

3D Transport

For now take w_1 but not u_1 , v_1 :

$$w_1 = 3z \sum_n rac{\kappa_n}{2\pi} rac{\left(ec{u}_0 - \dot{ec{x}}_n
ight) \cdot (ec{x} - ec{x}_n)}{|ec{x} - ec{x}_n|^5}$$

- We then compute Poincaré maps for particles advected by the flow and project the maps to the x-y plane.
- By comparing the plots created by particles at different heights, we observe the effect of 3D motion on the paths.

Motivation	Derivation	Motion of 3 vortices	Tracer	Conclusions and Future Work	References
			00000		

Particle Movie

 $\epsilon = 0.1$

Stefan Llewellyn Smith, UCSD

Motivation	Derivation	Motion of 3 vortices	Tracer	Conclusions and Future Work	References
			00000		

Poincaré Plot in 3D

 $\epsilon = 0.1$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

Stefan Llewellyn Smith, UCSD

otivation Deriv

Motion of 3 vort

Tracer oooo● Conclusions and Future Work

References

Poincaré 2D Projections at Various Heights

Stefan Llewellyn Smith, UCSD

Conclusions and Future Work

- SQG vortices is a useful system for Ocean3D+1: 2D dynamics with 3D transport
- Fundamental question: at what time does the 3D model deviate from 2D? O(Ro⁻¹)?
- Point vortex and other reduced systems provide a testbed for developing tools to look at 3D+1 transport.

Motivation	Derivation	Motion of 3 vortices	Tracer 00000	Conclusions and Future Work	References o

O(Ro) corrections

- Need to add u₁ and v₁ corrections. Technically lengthy.
- Using analytical flow fields extremely useful in developing approach for the more general case (multiple Poisson problems to solve).
- Interesting as pure GFD problem: linked to issues of slaving and slow manifolds.
- Very few explicit calculations have been carried out.

Motivation	Derivation	Motion of 3 vortices	Tracer 00000	Conclusions and Future Work	References o
Finite d	lenth				

- Point vortices are in a sense self-similar. Add a lower surface to introduce a vertical scale.
- This can be viewed as a crude model of a mixed layer with a thermocline.
- Background flow leads to an interesting stability problem coupling barocliinc instability with surface ML instabilities. Could be used as dynamically constistent extension of classical LCS jet model?
- Can also add (weak) topography on one boundary.

Motivation	Derivation	Motion of 3 vortices	Tracer 00000	Conclusions and Future Work	References o

Moment model

- Useful to obtain model with less singular velocity fields than point vortices.
- Typical way is to desingularize point vortices into e.g. vortex patches.
- Resulting contour dynamics is still complex. Simplify to SQG analog of 2D moment model.
- Transport properties of two patches using moment model have been investigated in 2D by Rizzi & Cortelezzi (2011). Examine in SQG.

Motivation

Motion of 3 vo

Tracer 00000 Conclusions and Future Work

References

2D moment transport picture

・ロ・・日・・日・・日・ つくぐ

Stefan Llewellyn Smith, UCSD

Motivation	Derivation	Motion of 3 vortices	Conclusions and Future Work	References
			0000000	

Collaborations

- Jones, Spiller: share dynamically consistent velocity fields for use in LA.
- Kirwan: compare 2D/3D FTLE calculations in SQG with model fields (ABC) and model output.
- Poje: examine vertical velocities for QG ellipsoids.

Work with Rodolphe Chabreyrie (now at GWU)

- Solomon and Mezić roll model. Two fast variables and one slow variables: KAM-like tori.
- Long-time behavior: widespread mixing
- Short-time behavior: alternation between horizontal and vertical mixing
- Similarities between 2D+1t and 2D+1t+1D

Motivation	Derivation	Motion of 3 vortices	Tracer 00000	Conclusions and Future Work	References

References

Aref, H. & N. Pomphrey 1982 Integrable and chaotic motions of four vortices: I. The case of identical vortices. *Proc. R. Soc. Lond.*, A **380**, 359–387.

Kuznetsov, L. & G. M. Zaslavsky 1998 Regular and chaotic advection in the flow field of a three-vortex system. *Phys. Rev. E*, **58**, 7330–7349.

Muraki, D. J., C. Snyder & R. Rotunno 1999 The next-order corrections to quasigeostrophic theory. *J. Atmos. Sci.*, **56**, 1547–1560.

Pedlosky, J. 1982. *Geophysical fluid dynamics*. Springer-Verlag, New York.

Rizzi, F. & L. Cortelezzi, 2011 Stirring, stretching and transport generated by a pair of like-signed vortices. *J. Fluid Mech.*, **674**, 244–280.

Stefan Llewellyn Smith, UCSD