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Why QG?

The ocean is a thin fluid envelope on a rapidly rotating

Earth. Dynamics are largely two-dimensional with weak

vertical variation.

Behavior is governed by the dimensionless Rossby

number Ro = U/Lf , ratio of local vorticity to planetary

vorticity. Small for large-scale motions.

Leading-order asymptotic prognostic equations are the

Quasi-Geostrophic equations. Conserve QGPV. Vertical

velocity is O(Ro) and dynamically related to buoyancy.
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Why SQG?

Ocean 3D+1 is investigating transport in 3D+1. Obtaining

dynamically consistent 3D+1 velocity fields is generally

expensive and time-consuming.

SQG provides a system with dynamically consistent

velocity fields that obeys a 2D equation for buoyancy on the

boundary but have O(Ro) vertical velocity in the interior.

Can use existing simple dynamical models such as point

vortices, moment truncations, etc... or move to turbulence

in a periodic square/cube.
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Quasigeostrophic (QG) Equations

Reduced equation of motion for Ro � 1

ζ Vorticity

θ = f∂zψ Buoyancy (∼ density)

ψ Streamfunction

bulk ∂tζ = −J(ψ, ζ) + f∂zw

surface ∂tθ = −J(ψ, θ)− N2w

bulk q =

[
∂xx + ∂yy + ∂z

(
f

N

)2

∂z

]
ψ

Pedlosky (1982)
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Surface Quasigeostrophic Equations

Surface QG (SQG) assumes potential vorticity q = 0 in the

interior, so the dynamics are governed by the boundaries

(usually just the surface).

Some%%%%%%
distribu-on%on%
the%surface%

θ = f ∂ψ
∂z

Mo-on%induced%
below%by%q=0%
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Understanding Vortex Behavior

Three classical point vortices (which have regular motion)

induce chaotic motion in passive scalars. Look at transport

properties of SQG point vortices.

Kuznetsov & Zaslavsky (1998)
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Equations of Motion on the Surface

θ0 =
∑

n

κnδ(x − xn)δ(y − yn)

(ẋn, ẏn) =
∑
m 6=n

κm

2π

1

|~xn − ~xm|3 (−yn + ym, xn − xm)

Hamiltonian system:

ψ0 =
1

2π|~x − ~xn|
~u0 =

∑
n

κn

2π|~x − ~xn|3 (−y + yn, x − xn,0)

Dynamically (asymptotically) consistent
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Change of Variables

Aref & Pomphrey (1982) and Kuznetsov & Zaslavsky (1998)

zj =
1√
3

2∑
n=1

√
2Jneiθne−2iπn(j−1)/3

I =

(
J2 − J1

J2 + J1

)2

= 16A2/3L4 φ = θ2 − θ1

A is the area of the vortex triangle, L2 =
∑ |zj |2, a constant of motion.

H =
1

2π

∑
i<j

1

|zj − zi |
= f (I, cos(3φ)) İ =

16I

L4

∂H

∂φ
= g(I, sin(3φ1))

Using the system of equations, we numerically determine İ(I)
and find the potential function −İ2.
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Potential Well
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Vortex Motion
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First Order Expansion

We wish to determine the vertical velocity

ε = Ro

u ∼ −∂ψ0

∂y
− ε
(
∂ψ1

∂y
+
∂F1

∂z

)
v ∼ ∂ψ0

∂x
+ ε

(
∂ψ1

∂x
− ∂G1

∂z

)
w ∼ ε

(
∂F1

∂x
+
∂G1

∂y

)
= −D0θ0

Dt

F ,G: associated potentials.

Muraki et al. (1999)
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3D Transport

For now take w1 but not u1, v1:

w1 = 3z
∑

n

κn

2π

(
~u0 − ~̇xn

)
· (~x − ~xn)

|~x − ~xn|5

We then compute Poincaré maps for particles advected by

the flow and project the maps to the x-y plane.

By comparing the plots created by particles at different

heights, we observe the effect of 3D motion on the paths.
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Particle Movie

ε = 0.1
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Poincaré Plot in 3D

ε = 0.1
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Poincaré 2D Projections at Various Heights

ε = 0.1
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Conclusions and Future Work

SQG vortices is a useful system for Ocean3D+1: 2D

dynamics with 3D transport

Fundamental question: at what time does the 3D model

deviate from 2D? O(Ro−1)?

Point vortex and other reduced systems provide a testbed

for developing tools to look at 3D+1 transport.
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O(Ro) corrections

Need to add u1 and v1 corrections. Technically lengthy.

Using analytical flow fields extremely useful in developing

approach for the more general case (multiple Poisson

problems to solve).

Interesting as pure GFD problem: linked to issues of

slaving and slow manifolds.

Very few explicit calculations have been carried out.
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Finite depth

Point vortices are in a sense self-similar. Add a lower

surface to introduce a vertical scale.

This can be viewed as a crude model of a mixed layer with

a thermocline.

Background flow leads to an interesting stability problem

coupling barocliinc instability with surface ML instabilities.

Could be used as dynamically constistent extension of

classical LCS jet model?

Can also add (weak) topography on one boundary.
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Moment model

Useful to obtain model with less singular velocity fields

than point vortices.

Typical way is to desingularize point vortices into

e.g. vortex patches.

Resulting contour dynamics is still complex. Simplify to

SQG analog of 2D moment model.

Transport properties of two patches using moment model

have been investigated in 2D by Rizzi & Cortelezzi (2011).

Examine in SQG.
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2D moment transport pictureStirring, stretching and transport generated by a pair of like-signed vortices 277

(a) (b)

Figure 24. (Colour online) (a) Initial configuration of two vortex pairs (black) with initial
aspect ratio λ=0.40, separated by a dimensionless distance d = 7. The grey region shows
the overlapping of the recirculation regions of the two vortex pairs. (b) Snapshot of the
concentration field after one period of co-rotation of the vortex pairs. The domain has radius
R = 11 and the initial concentration field is delimited by the line y =0.

observations that stretching is not a reliable diagnostic of stirring in the cases when
stretching is not uniform over the domain, i.e. in most practical cases.

We quantified the effects of the angular impulse, σ , on the stirring performance
of the vortex system. For all values of the angular impulse considered, we used the
same domain, the smaller subdomain containing the outer separatrices of the vortex
system with the highest angular impulse. Surprisingly, stretching presented a sharp
maximum at about σ = 30 indicating a high sensitivity to changes in the angular
impulse, while the mix-norm exhibited a weaker minimum at about σ = 33 indicating
a smaller sensitivity. This result indicates that there is an optimal angular impulse
which maximizes stretching and minimizes the mix-norm. We argued that this is due to
the coupling of two mechanisms: the angular velocity of the vortices, which increases
with increasing values of the angular impulse, and the amplitude of oscillations of
the eigendirections of the manifolds at the saddle point located at the joint centre
of vorticity, which decreases as the angular impulse increases. For 30 ! σ ! 33, the
coupling appears to be the most effective.

In conclusion, the vortex system considered does not stir efficiently most of the
fluid contained in the outer recirculation regions and the outer flow. This seems
to conflict with the experimental evidence that two-dimensional turbulent flows stir
very efficiently. The conflict, however, is only apparent in our opinion. We envision
that efficient stirring in two-dimensional turbulent flows is mainly generated by the
interaction between pairs of vortices with single vortices or with other vortex pairs,
interactions that destroy the outer recirculation regions of the vortex pairs and stir
the outer fluid. Figure 24 supports this interpretation. For the sake of the argument,
we consider two vortex pairs having in common an outer recirculation region and,
consequently, bound to interact. The initial concentration field is subdivided by a
horizontal interface, y =0, which crosses the elliptic points located at the centre
of the ‘ghost vortices’. Figure 24 shows that over one period of co-rotation, the
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Collaborations

Jones, Spiller: share dynamically consistent velocity fields

for use in LA.

Kirwan: compare 2D/3D FTLE calculations in SQG with

model fields (ABC) and model output.

Poje: examine vertical velocities for QG ellipsoids.
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Work with Rodolphe Chabreyrie (now at GWU)

Solomon and Mezić roll model. Two fast variables and one

slow variables: KAM-like tori.

Long-time behavior: widespread mixing

Short-time behavior: alternation between horizontal and

vertical mixing

Similarities between 2D+1t and 2D+1t+1D
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