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Why QG?

m The ocean is a thin fluid envelope on a rapidly rotating
Earth. Dynamics are largely two-dimensional with weak
vertical variation.

m Behavior is governed by the dimensionless Rossby
number Ro = U /Lf, ratio of local vorticity to planetary
vorticity. Small for large-scale motions.

m Leading-order asymptotic prognostic equations are the
Quasi-Geostrophic equations. Conserve QGPV. Vertical
velocity is O(Ro) and dynamically related to buoyancy.
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Why SQG?

m Ocean 3D+1 is investigating transport in 3D+1. Obtaining
dynamically consistent 3D+1 velocity fields is generally
expensive and time-consuming.

m SQG provides a system with dynamically consistent
velocity fields that obeys a 2D equation for buoyancy on the
boundary but have O(Ro) vertical velocity in the interior.

m Can use existing simple dynamical models such as point
vortices, moment truncations, etc... or move to turbulence
in a periodic square/cube.
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Quasigeostrophic (QG) Equations

Reduced equation of motion for Ro <« 1

¢  Vorticity
0 =10, Buoyancy (~ density)
P Streamfunction

bulk a¢ = —-J,¢)+fow
surface X0 = —J(¢,0) —Nw

f 2
bulk q = Oxx + ayy + 0, <N> 82] (0

Pedlosky (1982)
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Surface Quasigeostrophic Equations

Surface QG (SQG) assumes potential vorticity g = 0 in the
interior, so the dynamics are governed by the boundaries
(usually just the surface).

Some 0 = f
W distribution on
the surface

Motion induced
below by g=0
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Motion of 3 vortices
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Understanding Vortex Behavior

Three classical point vortices (which have regular motion)
induce chaotic motion in passive scalars. Look at transport
properties of SQG point vortices.

1 0 1

1 0 1

xr
Kuznetsov & Zaslavsky (1998)
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Motion of 3 vortices
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Equations of Motion on the Surface

0o = Zf@nfs(x —Xn)6(Y — ¥n)
(Xn, Yn) ZZW\X - ’3( Yn + Ym; Xn — Xm)
m=n n

Hamiltonian system:
1

2m|X — Xn|

. Rn

Ug = = S A5 \— ,X—X 70
0 ;27T|X—Xn|3( Y +VYn n,0)

Dynamically (asymptotically) consistent
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Motion of 3 vortices
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Change of Variables

Aref & Pomphrey (1982) and Kuznetsov & Zaslavsky (1998)

2
1 . o
7 — } : /2] eIGnefZITrn(jfl)/S
: \@nzl "

Jz — Jl 2
| = = 16A2 3L4 (b =0,—0
(Jz +Jl> / 2 !

Ais the area of the vortex triangle, L2 = " |z|2, a constant of motion.

1 1 . 161 OH _
H =5 Zq: e f(I,cos(3¢))  |= T4 06— g(l,sin(3¢1))

Using the system of equations, we numerically determine i(l)
and find the potential function —12.
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Motion of 3 vortices
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Potential Well
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Motion of 3 vortices
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Vortex Motion

Vartexhiolion
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First Order Expansion

We wish to determine the vertical velocity

e =Ro
O (OY1  OF1
Y Ty 6<ay " az)
0o oY1 9G,
Y ax e < ox 0z )
OF1 , 9G1) _ Dofl
“\ox gy ) Dt

F,G: associated potentials.

Muraki et al. (1999)
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3D Transport

m For now take wy but not uq, vq:

i (o= %) - (X = Xn)

— 21 IX — Xn|°

wi = 3z

m We then compute Poincaré maps for particles advected by
the flow and project the maps to the x-y plane.

m By comparing the plots created by particles at different
heights, we observe the effect of 3D motion on the paths.
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Particle Movie

e=0.1

Particle Motion
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Poincaré Plot in 3D
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Poincaré 2D Projections at Various Heights
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Conclusions and Future Work
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Conclusions and Future Work

m SQG vortices is a useful system for Ocean3D+1: 2D
dynamics with 3D transport

m Fundamental question: at what time does the 3D model
deviate from 2D? O(Ro~1)?

m Point vortex and other reduced systems provide a testbed
for developing tools to look at 3D+1 transport.
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O(Ro) corrections

m Need to add u; and v; corrections. Technically lengthy.

m Using analytical flow fields extremely useful in developing
approach for the more general case (multiple Poisson
problems to solve).

m Interesting as pure GFD problem: linked to issues of
slaving and slow manifolds.

m Very few explicit calculations have been carried out.
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Finite depth

m Point vortices are in a sense self-similar. Add a lower
surface to introduce a vertical scale.

m This can be viewed as a crude model of a mixed layer with
a thermocline.

m Background flow leads to an interesting stability problem
coupling barocliinc instability with surface ML instabilities.
Could be used as dynamically constistent extension of
classical LCS jet model?

m Can also add (weak) topography on one boundary.

Stefan Llewellyn Smith, UCSD
SQG transport



Conclusions and Future Work
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Moment model

m Useful to obtain model with less singular velocity fields
than point vortices.

m Typical way is to desingularize point vortices into
e.g. vortex patches.

m Resulting contour dynamics is still complex. Simplify to
SQG analog of 2D moment model.

m Transport properties of two patches using moment model
have been investigated in 2D by Rizzi & Cortelezzi (2011).
Examine in SQG.
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2D moment transport picture
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Collaborations

m Jones, Spiller: share dynamically consistent velocity fields
for use in LA.

m Kirwan: compare 2D/3D FTLE calculations in SQG with
model fields (ABC) and model output.

m Poje: examine vertical velocities for QG ellipsoids.
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Work with Rodolphe Chabreyrie (now at GWU)

m Solomon and Mezi¢ roll model. Two fast variables and one
slow variables: KAM-like tori.

m Long-time behavior: widespread mixing

m Short-time behavior: alternation between horizontal and
vertical mixing

m Similarities between 2D+1t and 2D+1t+1D
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