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Ocean Dynamics

The ocean is a thin fluid envelope spread on a rapidly
rotating Earth. Dynamics are largely two-dimensional with
weak vertical flow.

Vortices are common in the ocean.

Goal: understand effect of weak 3D variation using
dynamically consistent models with weak vertical velocity

Use idealized vortices as model problems.
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Quasigeostrophic (QG) Equations

Boussinesq, hydrostatic. Constant f ,N.
Reduced equation of motion for Ro � 1.

ζ Vorticity
θ = f∂zψ Buoyancy (∼ density)

ψ Streamfunction

bulk ∂tζ = −J(ψ, ζ) + f∂zw
surface ∂tθ = −J(ψ, θ)− N2w

bulk q =

[
∂xx + ∂yy +

(
f
N

)2

∂zz

]
ψ

Pedlosky 1982
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Surface Quasigeostrophic Equations

Surface QG (SQG) assumes potential vorticity q = 0, so the
inherent dynamics are on the boundary

! !!!!!evolves!
on!the!surface!
θ = f ∂ψ

∂z

Mo0on!induced!
below!where!q=0!w=O(Ro))

Possible!second!
layer?!
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Interior Flow Field

We wish to determine the consistent velocity solution to O(Ro).
In the asymptotic procedure to obtain QG equations, begin by
defining and expanding potentials ψ,F ,G. v

−u
θ

 = ∇ψ +∇×

 F
G
0


ε = Ro

ψ ∼ ψ0 + εψ1 + ε2ψ2 + · · ·
F ∼ εF1 + ε2F2 + · · ·
G ∼ εG1 + ε2G2 + · · ·

Muraki et al. 1999
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Point Vortices

We want the simplest possible dynamically consistent flow field:

Three point vortices have regular motion but induce chaotic
flow. Followed analysis by Kuznetsov & Zaslavsky (1998) for
interaction of three vortices of equal strength.
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SQG Point Vortex at O(1)

Singular vorticity distribution at (xn, yn,0)

θs
0 =

∑
n

κnδ(x − xn)δ(y − yn)

∇2ψ0 = 0
∂ψs

0
∂z

= θs
0

ψ0 =
∑

n

κn

2π|~x − ~xn|

Dynamically (asymptotically) consistent
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Poincaré Maps at Various Heights

z = 0 z = −.25 z = −.5
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Arbitrary Strength

Following Aref (1979) use momentum conservation to define a
constant C and trilinear coordinates

κ1κ2l212 + κ2κ3l223 + κ3κ1l231 = 3κ1κ2κ3C

b1 =
l223
κ1C

, b2 =
l213
κ2C

, b3 =
l212
κ3C

From

H = − 1
4π

∑
α,β

κακβ
lαβ

= − κ1κ2κ3

2π|C|1/2

(
1

|b1κ1|1/2κ1
+

1
|b2κ2|1/2κ2

+
1

|b3κ3|1/2κ3

)
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Trajectory Curves
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κ = (2,1,3)
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O(Ro) Corrections

The point vortices prove problematic when we attempt to find
the O(Ro) velocities.

Consider

∇2F1 = 2J
(
∂ψ0

∂z
,
∂ψ0

∂x

)
ψ0 =

∑
n

κn

2π|~x − ~xn|

So the equation of motion of F1 involves multiplying derivatives
of a singular function!

Can only calculate w = −D0θ0

Dt
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Topological Entropy
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Topological Entropy

Literature is dense: based on mapping analysis

A single number for a given flow that doesn’t involve a
tracer advection equation

Braiding Entropy - code from Jean-Luc Thiffeault and
Marko Budisic

Built for 2D transport, but works for 3D trajectories (where z
component is ignored) - is info lost?
Well commented and documented, no additional
parameters
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Initial Findings: FTBE vs. H

κ = (1,1,1) κ = (2,1,3)
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Initial Findings: FTBE vs. depth

H = .53 H = .57
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FTBE Variance
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Dritschel Vortex

Dritschel (2011) described vortices that maintain their shape in
SQG. Start with an ellipsoid oriented along Cartesian axes that
contains a region of constant potential vorticity Q. In QG flow,
this ellipsoid will rotate as a rigid body.

Dritschel et al. 2004
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Limit to SQG

Take the limit as the vertical axis of the ellipsoid c → 0. We find
a buoyancy distribution

θs
0 = κ

√
1− x2/a2 − y2/b2

where κ is related to vortex strength.

This is continuous so the flow field is now finite and regular,
even at the edge.
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Streamfunction

The streamfunction is then calculated from ∇2ψ = 0 and
ψs

z = θs
0 (Dritschel et al. 2004)

ψ =
3κ
4

∫ ∞

λ

du√
(u + a2)(u + b2)u

(
1− x2

u + a2 −
y2

u + b2 −
z2

u

)

λ is the largest root of
x2

λ+ a2 +
y2

λ+ b2 +
z2

λ
= 1
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Vortex Interactions

Each vortex is represented by a set of
point vortices, the strengths and
positions of which are chosen to
match the spatial moments of the
initial elliptical vortex up to the desired
order (Dritschel et al. 2004)
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Simulation

a1/b1|t=0 = 2, a2/b2|t=0 = 1.5, R|t=0 = 10, κ1 = κ2 = 1
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Velocities: X-Y & X-Z slices

ε = 0.1
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Conclusions

SQG vortices constitute an interesting model system: 2D
dynamics and 3D transport.

Vortex motion is regular but transport can be chaotic.
Arbitrary vortex strengths introduce additional free
parameters.

Is it possible to reconcile singularities of point vortices to
get O(Ro) solution?
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Next Steps

Run diagnostic for Dritschel vortex solution & interactions –
use steady state solutions from Dritschel & Poje.

Include O(Ro) corrections and examine mixing
dependence on Ro.

At what time do the transport properties of the 3D model
deviate from 2D? O(1/Ro)?

What about a periodic domain? What if we add a second
boundary, providing a vertical length scale?
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Interior Flow Field

Our system is governed by

∇2ψ0 = 0
∂ψs

0
∂z

= θs
0

∇2F1 = 2J
(
∂ψ0

∂z
, v0

)
∇2G1 = 2J

(
∂ψ0

∂z
,−u0

)
(F1)

s = (G1)
s = 0

∇2ψ1 = q1 +

∣∣∣∣∇∂ψ0

∂z

∣∣∣∣2 (
∂ψ1

∂z

)s

= θs
1 = 0

where s indicates at the surface, z = 0.

Muraki et al. 1999
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Solving Poisson Equations

In 2002, Hakim et al. determined the particular solutions to the
QG+1 potentials. The resulting Laplace equation can be solved
in horizontal 2D Fourier Space. For example:

particular solution to Poisson F1 =
∂ψ0

∂y
∂ψ0

∂z
+ F̃1 ,

new gov’ing equations ∇2F̃1 = 0, F̃1
s
= −

[
∂ψ0

∂y
∂ψ0

∂z

]s

,

solution to Laplace ˆ̃F1 =
ˆ̃F s
1 eκz

And similarly for G1, ψ1
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Procedure

1 Specify θs
0 with θs

1 = 0

2 Solve ∇2ψ0 = 0 with ∂ψ0
∂z = θ0 at z = 0

3 Solve Laplace equations for F 1,G1, ψ1.

4 Obtain velocities from derivatives of potentials.

5 Advect one time step and iterate.
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Velocities

Now we have

u ∼ −∂ψ0

∂y
− ε
(
∂ψ1

∂y
+
∂F1

∂z

)
v ∼ ∂ψ0

∂x
+ ε

(
∂ψ1

∂x
− ∂G1

∂z

)
w ∼ ε

(
∂F1

∂x
+
∂G1

∂y

)
= −D0θ0

Dt

Dθ0

Dt
known from θ0 =

∂ψ0

∂z

Muraki et al. 1999
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