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Outline: 
 Rotating can flow 

 Steady symmetric background 

 Steady symmetry-breaking disturbance 

 chaotic stirring over parameter ranges 
appropriate for ocean eddies  

 Unsteady disturbance 

 barriers, manifolds, resonances 

 weakly nonlinear resonance analysis 

 Geometry of the flow near resonances 

 Summary and conclusions 
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Dimensionless parameters: 

For ocean eddies 

 Linear analytical solution  
exists but has problems in corners 

 Phenomenological model 
 Full numerical solution 
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Steady axially-symmetric background 
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Steady symmetric flow (background flow)



Steady perturbation 
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We break the symmetry, but the flow is still steady
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Some trajectories become “chaotic” (red) but others don’t (central region) + there are new structures formed (islands), which were not present in the steady background flow. Islands are produced by the break-up of periodic trajectories of background flow



Analysis of the flow near resonances 
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Main contribution is from 

Linearized system 
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shallow 
eddies 

deep 
eddies 
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We mapped out the phase space over the parameter range relevant for the ocean. 



Presenter
Presentation Notes
The bottom picture is a snapshot of a dye in the full numerical solution of NS equations. The islands are clearly visible. 



Unsteady perturbation 
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Now let’s add time-dependence by shifting the lid back and forth



Time-periodic disturbance 
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Presentation Notes
Same types of structures: unbroken tori, resonances, chaotic trajectories, but all oscillating in time. 

We can gain some insight about the new resonant objects by playing the same game of linearizing the flow near a resonant torus
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The highlighted equation is the resonance condition – it predicts which tori will stay unchanged and which will break down producing new structures. It is similar to the steady perturbation case but before only periodic trajectories of the background flow were resonant. Now, on the other hand, non-periodic trajectories could also become resonant.

Furthermore, for any given trajectory, we can have 3 possible cases: it can be non-resonant, i.e., highlighted eq is nonzero for all nml’s;  or forcing could be resonant with either Omega_phi or Omega_theta but not with both (single-resonance); or sigma can be resonant with both Omega_phi and Omega_theta (double resonance).
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Linearized system 
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We can estimate resonance width 
 
 
and we can map out the flow geometry near resonances  
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We can then go ahead and write the linearized system near a resonant torus, where only the important resonant terms are kept and all others are discarded. It looks similar to the steady perturbation case with 2 differences: 1) it is not Hamiltonian and 2) it can have 2 resonant eta’s.

It also can be used to predict the geometry of the flow around these new structures and the transport barriers that will appear.




Need to convert from {      } to {x,y,z}. 
 
Assume nested horizontal tori with 
circular cross-section: 
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Double resonance geometry 
 
 
 

            - tori 
   - pretzels 
   - spheres 

{n1,m1,l1}={1,0,1} 
{n2,m2,l2}={0,1,1} 
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Steady symmetric background 

Steady symmetry-breaking disturbance 

1) T=1: non-resonant 
2) T=4.5: {2,0,1} 
3) T=11:   {0,1,1} 
 

Phenomenological  
model 



1) T=1: non-resonant 
 



1) T=4.5: {n,m,l}={2,0,1} 
 



1) T=11: {n,m,l}={1,0,1} 
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Steady symmetric background 

1) T=14.5 non-resonant 
2) T=16.35: {1,0,1} 
 

Full numerical  
solution 

Steady symmetry-breaking disturbance 



{1,0,1} 

Non-resonant 



Dye release experiment 

Non-resonant Resonant 



• Studied chaotic advection in steady and 
nonsteady 3d rotating can flow 

• Resonances affect barriers and flow geometries 

• Developed theoretical framework for describing 
flows near resonances  

• Mapped out possible Lagrangian geometries 

• Tested theoretical predictions using both 
phenomenological model and full numerical 
solution 

• Resonances have strong influence on dye and 
other tracers 

 

Summary 
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