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MULOGO

Outline

En-route LaDA

Motivation and Lagrangian instruments

Linearized shallow water

Preliminary results and looking forward
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Ocean “views”

Argo float glider

3 / 35



MULOGO

Lagrangian instruments
Argo float glider

Goal – collect below-surface measurements to better
understand 3D dynamics and structures

Lagrangian instruments collect data en route (temperature,
pressure, salinity)

Observations depend on unknown drifter paths

What to do with that data?
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MULOGO

Float depth profile
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Cartoon:  Argo float depth profile

7-10 day float results in O(10)-O(100) km traveled
high frequency data in dive/ascent just before surfacing in
water column beneath “surfacing location”
low frequency en-route measurements at depth, no
latitude/longitude information
en-route measurements averaged, not used in assimilation
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Float depth and overview
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Cartoon:  Overview of surfacing locations

Lagrangian DA can help ascertain velocities w/o averaging
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Float depth and overview
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Some possible Lagrangian paths
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Float depth and overview
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Cartoon:  Overview of surfacing locations

need path & speed for subsurface observation locations
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Float depth and overview
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Cartoon:  Overview of surfacing locations

Can en-route observations help Lagrangian DA?
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MULOGO

Assimilated 3-D Lagrangian paths are (possibly) useful for

aid in resolving Lagrangian structures

assimilating data into high resolution models

avoiding averaging via determining en-route data collection
locales along paths which cross multiple grid cells
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MULOGO

Inviscid linearized Shallow Water Equations, periodic BCs

Non-dimensional velocity fields

∂u
∂t

= v − ∂h
∂x

∂v
∂t

= −u − ∂h
∂y

∂h
∂t

= −∂u
∂x
− ∂v
∂y

Lagrangian trajectories

ẋ(t) = u[x(t), y(t), t ]

ẏ(t) = v [x(t), y(t), t ]

Decomposition into Fourier Modes

u(x , y , t) = −2π sin(2πx) cos(2πy)uo + cos(2πy)u1(t)

v(x , y , t) = 2π cos(2πx) sin(2πy)uo + cos(2πy)v1(t)

h(x , y , t) = sin(2πx) sin(2πy)uo + sin(2πy)h1(t)

11 / 35



MULOGO

Cellular flow field

If u1 = v1 = h1 = 0, flow field is
constant & tracers stay w/in cells
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MULOGO

A few trajectories

Left: u1(0) = v1(0) = h1(0) = 0, x(0) = .2, y(0) = .3

Middle: u1(0) = v1(0) = h1(0) = 0.5, x(0) = .2, y(0) = .3

Right: u1(0) = 0.2, v1(0) = 1.3, h1(0) = 1.4, x(0) = .51, y(0) = .498
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MULOGO

Particle filter for standard LADA

Test problem:

u1(0) = v1(0) = h1(0) = 0.5, x(0) = .2, y(0) = .3

broad priors on (u1, v1,h1), tight on (x , y) at t = 0

run to t = T (1 period of coefficients)

5 noisy observations of drifter

Goal:

learn about u1(0), v1(0),h1(0) from Lagrangian observations

0.3 0.32 0.34
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

x

y

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

u
1

v 1

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

h
1

v 1

14 / 35



MULOGO

Particle filter for standard LADA

Test problem:

u1(0) = v1(0) = h1(0) = 0.5, x(0) = .2, y(0) = .3

broad priors on (u1, v1,h1), tight on (x , y) at t = 0

run to t = T (1 period of coefficients)

5 noisy observations of drifter

Goal:

learn about u1(0), v1(0),h1(0) from Lagrangian observations

0.3 0.32 0.34
0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

x

y

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

u
1

v 1

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

h
1

v 1

15 / 35



MULOGO

Particle filter for standard LADA
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MULOGO

En route Lagrangian data – a test problem

Idea treat height, h(x , y ,u1, v1,h1), as proxy for
temperature – typical quantity measured en route

Sample height, ĥ(t) = h(xd (t), yd (t), t) + noise between
“surfacings”, e.g. traditional observation instants tj

Changes the observation space, so now
(z = {xd , yd ,u1, v1,h1} whole state)

H(z) =

{
(xd (t), yd (t)) for t = jTobs

ĥ(t) for t = tk , (j − 1)Tobs < tk < jTobs

Update Likelihood at “surfacing” time tj with data
{xo

j , y
o
j , ĥ

o
k=1...Nh

}

− log(g) =
(xd − xo)2 + (yd − yo)2

2σ2
d

+
1

Nh

∑
Nh

(h(zk )−ĥo
k )2/2σ2

h
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MULOGO

Center & Saddle — paths & height time series

ASSIMILATING EN ROUTE LAGRANGIAN OBSERVATIONS 13
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Figure 1. Top: Drifter paths for the center case (left) and the saddle case (right). Note in both cases a snapshot of the

corresponding velocity field is plotted at t = 0. Bottom: Height field evaluated along drifter paths corresponding to the fields
and trajectories shown directly above.

are linear with periodic solutions. Thus the samples of the prior distribution at t = 0 for

the flow field components, u1, v1, h1 will yield the same prior distribution at t = 1, 2, 3, 4, 5.

In contrast the evolution of the drifter state xD is strongly nonlinear, but as the drifter

state is observed, we take the variance of the prior distribution to equal the variance of the

observation noise. Thus for xD we have Σf
D = (0.01)2I. We consider a surfacing observations

period of To = 0.2 and height observation periods of To/10 and To/100. In all cases, Runge-

Kutta simulations use a numerical step size of δt ≈ 10−4, precisely δt = 10−4 · T where T is

the period of the of the time varying coefficients of the flow field.

4.1.2 Short time assimilation: smoothing As mentioned earlier, the exact sampling smooth-

ing method has problems with convergence of the Markov chain used to sample the posterior

and these problems are particularly severe for long, highly nonlinear, and infrequently ob-

served trajectories. Thus we use this method only for the case of a short trajectory in the

“center” case, and not for the “saddle” case. In particular, the same initial conditions as

c© 0000 Tellus, 000, 000–000
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MULOGO

Particle filter w/en route observations
“traditional” LADA:
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Particle filter w/en route observations
“traditional” LADA:
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MULOGO

Particle filter w/en route observations
“traditional” LADA:
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MULOGO

Characterizing improvement
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Characterizing improvement:
compare covariance matrices of prior and posterior distribution

ds(t) = tr [I− Σa
F (t)(Σf

F )−1] (Zupanski, 2007)

r(t) = det(Σa
F (t))/det(Σf

F )
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Improvements w/assimilating en-route data

left column: center right column: saddle16 SPILLER, APTE, JONES
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Figure 3. In all figures solid curves are the mean of assimilating 500 different sets of observations for the same initial condition

cases — left column is the center case, right column is the saddle case. In all cases, solid curves include en route observations
collected along the drifters path while dashed lines represent standard Lagrangian data assimilation. Top: ratio of determinants

of the posterior distribution to the prior distribution plotted against time. Bottom: ds = tr[I − Σa
F (Σf

F )−1] as a function of

time

and thus more certain estimates. Note that the K = 9 and K = 99 cases provide roughly

the same level of improvement.

A potential pit fall of a very tight posterior distribution is that the narrow support of

most of the mass may not include the truth. To monitor this, we calculate the fraction of

instances over the 500 experiments where the truth fell outside of a 95% confidence interval

using the posterior estimate of covariance, Σa at any point during the assimilation, 0 < t 6 5.

For both the center and saddle, even though standard LaDA posterior distributions were

not as tight, they had roughly twice the failure rate of identifying the truth. The failure

rate over all three cases (K = 0, K = 9, K = 99) is roughly a third smaller for the saddle

case, although this may be anticipated as the posterior distributions are not as tight for the

saddle case as they are for the center case. Specific values of these failure rates are listed in

the bottom three rows of the Table 1.

c© 0000 Tellus, 000, 000–000
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MULOGO

Looking forward

Consider two-layer problem w/observable-at-depth,
spatially dependent variable

collect en-route observations on bottom layer

traditional Lagrangian observations, less frequent

Improvements from en-route assimilation?

Can we estimate Lagrangian paths at depth?

How dependent is this on coupling strength?
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MULOGO

Bayesian view of DA
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Key question: how do we obtain the distributions on RHS?
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MULOGO

Markov transitions via model

We’re interested in the probability of a state Xj as it evolves
over time. Recall, for independent random variables, we have

p(x0:n) = p(x0)
n∏

j=1

p(xj |x1:j−1)

For our case, we’ll have some distribution of initial conditions
µ(x0) (background) and a model to move our state forward in
time,

Xj |(Xj−1 = xj−1) ∼ m(xj |xj−1)

where m(xj |xj−1) is the transition probability or the probability
that our model would take use from state xj−1 to state xj .

Combining the ideas above gives us

p(x0:n) = µ(x0)
n∏

j=1

m(xj |xj−1)
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Observations and likelihood

Recall, our observations will be related to the state variable by
some observation function y = H(x). We can think of
observations as random variables distributed as

Yj |(Xj = xj) ∼ g(y |xj).

Or, Yj = H(Xj)+“noise”.

g(y |x) is the likelihood — how likely was an observation given
the possible states?

With a whole set of observations {Yj} we can write down the
likelihood for the time-series of observations

p(y1:j |x1:j) =
n∏

j=1

g(yk |xk )
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MULOGO

Inference: goal for data assimilation

Given a background distribution of initial conditions, µ(x0), and
observations, Y1:n, we want to infer the distribution of physical
states X0:n.

Prior

p(x0:n) = µ(xo)
n∏

j=1

m(xj |xj−1)

Likelihood

p(y1:n|x1:n) =
n∏

j=1

g(y = H(xj)|xj)

Posterior, obtained by Bayes’ rule

p(x1:n|y1:n) =
p(y1:n|x1:n)p(x0:n)

p(y1:n)

recall, p(y1:n) =
∫

p(y1:n|x1:n)p(x0:n)dx1:n
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Sequential Monte Carlo

A Monte Carlo simulation or really sampling p(x1:n|y1:n)

takes a discrete set of samples from X0 ∼ p(x0)

moves them forward accord to the model, e.g. samples
X0:j ∼ p(xj |x0:j−1)

evaluates likelihood between samples and observations

Note, after a few (say k = 2 or 3 observations) you will have
samples from X0:k ∼ p(x0:k |y1:k ) but they will not be useful.
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MULOGO

Sequential Monte Carlo with Importance Sampling (SIS)

Idea — normalize at every step, treat that posterior distribution
as an importance prior distribution for the next step.

1 Start with Xo ∼ p(xo), each particle X (k)
o has weight

w (k)
1 = 1/N

2 Transition each X (k)
0 forward, this gives sample

X (k)
1 ∼ p(x1|x0) = m(x1|x0)

3 Evaluate the likelihood function of each sample (“particle”)
X (k)

1 against Y1, g(Y1|X (k)
1 )

4 Weight each particle by

w (k)
1 =

g(Y1|X (k)
1 )w (k)

0∑N
k=1 g(Y1|X (k)

1 )w (k)
0

Repeat process transition from Xj−1 to Xj instead of 0 to 1.
π(xj |Y1:j) = {xj = X (k)

j ,w (k)}
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Idea — normalize at every step, treat that posterior distribution
as an importance prior distribution for the next step.

1 Start with Xo ∼ p(xo), each particle X (k)
o has weight

w (k)
1 = 1/N

2 Transition each X (k)
0 forward, this gives sample

X (k)
1 ∼ p(x1|x0) = m(x1|x0)

3 Evaluate the likelihood function of each sample (“particle”)
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Particle filters: from tj−1 to tj

prediction step:

π(xj |Y0,j−1) = {xj ,w
p
j (xj) : wp

j (xj) = wj−1(xj−1) where xj−1 SDE−−→ xj}

discrete approx:

Particles are the
support of the
discrete
approximations to
these distributions

Each particle is
associated with a
weight, wj(xj)
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Particle filters: update/analysis at t = tj
Know (discrete approximation):

π(xj |Y0,j−1) (from last page)

Bayes:

π(xj |Y0,j) ∝ g(Yj |xj)π(xj |Y0,j−1)

Likelihood:

g(Y |x) = exp[
H(x) · Y

θ2 − |H(x)|2
2θ2 ]

(recall x = {ξ, z1, z2}, but H(x) = ξ)

Update (discrete Bayes):

wj(xj) ∝ g(Yj |xj)w
p
j (xj)

π(xj |Y0,j) = {xj ,wj(xj)}
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Problem with SIS and Solution: Resampling

With a large number of samples, SIS works pretty well on
moderate (small) dimensional deterministic (perfect model)
problems.

Problem:

A significant problem, though, is that most (or all) of the
weight can be taken over by one particle

Solution:

Resampling, e.g., bootstrapping
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Sequential

Strategy:

Monitor weights, if problematic

Resample or “bootstrap” by treating π̃j(x0:k |Y1:k ) as an
importance empirical distribution

Set all weights to w (k)
j = 1/N

Transition j + 1 step, repeating resampling as necessary

The strategy is referred to an SIR (sequential importance
resampling) filter and also goes by the names particle filter,
bootstrap filter, and sequential Monte Carlo.
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Resampling

idea:
pick subset of “best”
particles k = 1, . . . ,M

make mk copies of each
particle where
mk ∝ wj(x

(k)
j ) where∑

mk = N

reasonable:
stochastic evolution to tj+1 “spreads out” cloud

add “jitter” to each particle for deterministic evolution
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