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m En-route LaDA
m Motivation and Lagrangian instruments
m Linearized shallow water

m Preliminary results and looking forward
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Lagrangian instruments

Argo float

®

m Goal — collect below-surface measurements to better
understand 3D dynamics and structures

m Lagrangian instruments collect data en route (temperature,
pressure, salinity)

m Observations depend on unknown drifter paths

m What to do with that data?
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Float depth profile

Cartoon: Argo float depth profile Cartoon: Argo float depth profile
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m 7-10 day float results in O(10)-O(100) km traveled

m high frequency data in dive/ascent just before surfacing in
water column beneath “surfacing location”

m low frequency en-route measurements at depth, no
latitude/longitude information

m en-route measurements averaged, not used in assimilation



Float depth and overview

Cartoon: Overview of surfacing |ocations

Cartoon: Argo float depth profile
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Lagrangian DA can help ascertain velocities w/o averaging
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Float depth and overview

Cartoon: Argo float depth profile
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Float depth and overview

Cartoon: Argo float depth profile Cartoon: Overview of surfacing |ocations
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m Can en-route observations help Lagrangian DA?
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Assimilated 3-D Lagrangian paths are (possibly) useful for

m aid in resolving Lagrangian structures

m assimilating data into high resolution models

m avoiding averaging via determining en-route data collection
locales along paths which cross multiple grid cells



Inviscid linearized Shallow Water Equations, periodic BCs

Non-dimensional velocity fields

Lagrangian trajectories
ou_ ,_0oh
ot ox x(t) = ulx(t), y (1), 1]
ov oh .
- = —y—- — ) =v|x(t),y(t),t
o U=y y(t) = vix(t), y (1), 1]
oh  Oou ov

ot~ 9x 9y

Decomposition into Fourier Modes

u(x,y,t) = —2rsin(2rx) cos(2ry)u, + cos(2ry)uq(t)
v(x,y,t) = 2w cos(2nx) sin(2ry)u, + cos(2my)v4(t)
h(x,y,t) = sin(2rx) sin(2ry)u, + sin(2ry)hy(t)
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flow field is

|fU1 =W =h1 :O,
constant & tracers stay w/in cells

Cellular flow field
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Vq (0) = hy (0) = O,X(O) =.2, y(O) =.3

Left: uq(0)

v1(0) = hy(0) = 0.5, x(0) = .2, y(0) = .3

Middle: uy(0)

1.4, x(0) = .51, y(0) = .498

, m(0) =
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0.2, Vq (0) =

Right: u4(0)
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Farticle filter for standard LADA

Test problem:
m u1(0) = v4(0) = h1(0) = 0.5, x(0) = .2, ¥y(0)=.3
m broad priors on (u1, vq, hy), tighton (x,y)att=0
m runto t = T (1 period of coefficients)

m 5 noisy observations of drifter
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Particle filter for standard LADA

Test problem:
m u1(0) = v4(0) = h1(0) = 0.5, x(0) = .2, ¥y(0)=.3
m broad priors on (u1, vq, hy), tighton (x,y)att=0
m runto t = T (1 period of coefficients)
m 5 noisy observations of drifter

Goal:

m learn about u;(0), v4(0), h1(0) from Lagrangian observations
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En route Lagrangian data — a test problem

m |dea treat height, h(x, y, uq, vy, hy), as proxy for
temperature — typical quantity measured en route
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m Changes the observation space, so nhow
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~log(g) = ==X Sy )2+1*Z(h(zk)—h2)2/205
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Farticle filter w/en route obs
“traditional” LADA:
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Farticle filter w/en route obs
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Characterizing improvement

Characterizing improvement:
compare covariance matrices of prior and posterior distribution

ds(t) = tr[l — Z2(t)(TE) ] (Zupanski, 2007)

r(t) = det(X(1))/det(k)
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Improvements w/assimilating en-route data

left column: center right column: saddle

3 4 5 0 1 2 3 4 5
time time

(S, Apte, Jones, submitted 2012)
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Looking forward

m Consider two-layer problem w/observable-at-depth,
spatially dependent variable

m collect en-route observations on bottom layer

m traditional Lagrangian observations, less frequent

m Improvements from en-route assimilation?
m Can we estimate Lagrangian paths at depth?

m How dependent is this on coupling strength?
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Bayesian view of DA

t, L, t, ty
\ update obs update
Bayes Bayes

X = state
Y =obs p(x|Y)«x p(Y [x)p(x)

Key question: how do we obtain the distributions on RHS?



Markov transitions via model

We're interested in the probability of a state X; as it evolves
over time. Recall, for independent random variables, we have

n

p(xo.n) = p(x0) [T P(xilx15-1)
j=1

For our case, we’ll have some distribution of initial conditions
1(Xo) (background) and a model to move our state forward in
time,

Xi|(Xj—1 = Xj—1) ~ m(x;|x;_1)
where m(x;j|x;_1) is the transition probability or the probability
that our model would take use from state x;_; to state x;.

Combining the ideas above gives us

n
p(x0:n) = u(xo) [ [ m(xilxi—1)
j=1



Observations and likelihood

Recall, our observations will be related to the state variable by
some observation function y = H(x). We can think of
observations as random variables distributed as

Yil(X; = x1) ~ g(y1x)-
Or, Y; = H(X))+"noise”.
g(y|x) is the likelihood — how likely was an observation given

the possible states?

With a whole set of observations {Y;} we can write down the
likelihood for the time-series of observations

n

p(yixiy) = TT 9(vklxx)
j—



Inference: goal for data assimilation

Given a background distribution of initial conditions, 1(xp), and
observations, Yi.,, we want to infer the distribution of physical

states Xp.p.
m Prior .
P(x0.) = p(%0) [ [ m(xi1x:-1)
j=1
m Likelihood

n

P(yralxin) = [ [ 9y = Hx)1x)
j=1

m Posterior, obtained by Bayes’ rule

P(Y1:nlX1:n)P(X0:n)
P(¥1:n)

recall, p(y1.n) fp Y1:n|X1:0)P(X0:n) dX1.n

p(X1 :n|Y1 :n) =



Sequential Monte Carlo

A Monte Carlo simulation or really sampling p(X1.n|Y1:n)

m takes a discrete set of samples from Xy ~ p(xo)

m moves them forward accord to the model, e.g. samples
Xo;j ~ p(Xj|x0;-1)

m evaluates likelihood between samples and observations

Note, after a few (say k = 2 or 3 observations) you will have
samples from Xp.x ~ p(Xo.x|Y1:x) but they will not be useful.



Sequential Monte Carlo with Importance Sampling (SIS)

Idea — normalize at every step, treat that posterior distribution
as an importance prior distribution for the next step.

Start with X, ~ p(x,), each particle X(Sk) has weight
W1(k) =1/N
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Sequential Monte Carlo with Importance Sampling (SIS)

Idea — normalize at every step, treat that posterior distribution
as an importance prior distribution for the next step.
Start with X, ~ p(x,), each particle X(Sk) has weight
k
w, ) =1 /N
Transition each Xék) forward, this gives sample
X{ ~ p(x11x0) = m(x1]xo)
Evaluate the likelihood function of each sample (“particle”)
X(k) against Yy, g(Y1|X] k))
Weight each particle by

k k
w9 _ 9(Y1|X( ))W(g )
S (Vi Xud

Repeat process transition from Xj_; to X; instead of 0 to 1.
k
m(x1Y15) = (x5 = X[, wik))
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Particle filters: from {i_1 fo

prediction step:
(x| Yo,j-1) = {x5, W (x) : w(x)) = w1 (xj_1) where x;_1 SDE X;}

discrete approx:

Particles are the 04 or

support of the 0.2 {(Monte-Carlo step) J

discrete | N e

approximations to = o e o I

these distributions 0ol 'g,(XjIYo ) analysis® att, |
) ] T . —"prediction” at t

Each particle is 082 03 04 05 06 07 08 0§ 1

associated with a x

weight, w;(x;)



FParticle filters: update/analysis at t = {;

Know (discrete approximation):

_~prediction/prior
Yo, 54

7(Xj| Yo,j—1) (from last page) °

025 03 035 04 0.45
X
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FParticle filters: update/analysis at t = {;

Know (discrete approximation):

7(Xj| Yo,j—1) (from last page)
Bayes:

(x| Yo7) oc g(YjX)m (x| Yo,-1)
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Yo, 54
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FParticle filters: update/analysis at t = {;

Know (discrete approximation):

7(Xj| Yo,j—1) (from last page)
Bayes:
m(Xj Yo,1) o< 9(Yjlxj)m(x;| Yo j-1)
Likelihood:

) Y \H(X)lz]
2 202

(recall x = {&, z1, 22}, but H(x) = &)

o(¥}x) = exp "

__—Pprediction/prior
Yo, 54

0.4 0.45

<//pred|E:t|on/pnor
04,14




FParticle filters: update/analysis at t = {;

Know (discrete approximation):

7(Xj| Yo,j—1) (from last page)
Bayes:
m(Xj Yo,1) o< 9(Yjlxj)m(x;| Yo j-1)
Likelihood:

) Y \H(X)lz]
2 202
(recall x = {¢, 21, 20}, but H(x) =€)
Update (discrete Bayes):

o(¥}x) = exp "

wi(x) o g(Y;lx) WP (x)

(x| Yo.1) = {x, wi(x)}

__—Pprediction/prior
Yo, 54

03 0.35 0.4 0.45
X

__—prediction/prior
Y0, 14

i

03 0.35 0.4 0.45
X

__—prediction/prior
L)

i
~—analysis/posterior{
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Problem with SIS and Solution: Resampling

With a large number of samples, SIS works pretty well on

moderate (small) dimensional deterministic (perfect model)
problems.

Problem:

m A significant problem, though, is that most (or all) of the
weight can be taken over by one particle

Solution:

m Resampling, e.g., bootstrapping
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Sequential

Strategy:

= Monitor weights, if problematic

m Resample or “bootstrap” by treating 7;(xo.x| Y1.x) as an
importance empirical distribution

m Set all weights to W =1/N

m Transition j + 1 step, repeating resampling as necessary

The strategy is referred to an SIR (sequential importance
resampling) filter and also goes by the names particle filter,
bootstrap filter, and sequential Monte Carlo.



Resampling

idea:
m pick subset of “best”
particlesk=1,.... M

m make my copies of each
particle where
My Wj(Xj(k)) where
Z me=N

reasonable:
m stochastic evolution to f;, 1 “spreads out” cloud

m add “itter” to each particle for deterministic evolution
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