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MULOGO

Gliders

Instrument Profile

collect standard (salinity, temperature, pressure) data

can be fit with chemical/optical/biological sensors

guided/steered by manipulation of buoyancy and battery
location on pre-programmed flight plan, uc
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MULOGO

Gliders

Instrument Profile

dx/dt
dy/dt
dz/dt

 = u(x , y , z) + uc
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MULOGO

Gliders

Instrument Profile

good kinematic model of motion (Leonard & others)
based on balancing forces during equilibrium glide
velocity field uncertainty >> glider model uncertainty
path estimates available via dead reckoning – small
velocity errors get integrated into large position errors
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MULOGO

Challenges and objectives
Targeted vs actual surfacings

(Smith et al 2011)

Challenges

glider path semi-Lagrangian

ocean velocity, u(x , y , z), needed
to plan flight

data collected along
unknown/poorly estimated paths

Data assimilation objectives:
probabilistic description of glider paths

better estimates of glider paths and uncertainty

update estimates of u(x , y , z) for next flight planning
parameterization of model

model discovery
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MULOGO

Test problem – Ekman Layer

d – Ekman layer depth (unknown, a priori)
ū, – background ocean velocity
τ/ρ – surface wind stress
f – Coriolis parameter
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Figure: (Taken from Cushman-Roison ‘Introduction to Geophysical Fluid Dynamics’) 6 / 61



MULOGO

Ekman test prob (ongoing/short term): experiment & goals

Experiment:

twin-experiments, observe “true” surfacing location

assimilate using particle filter

use assimilated parameterization of velocity field to guide
next flight

Goals:

posterior distributions of parameters in velocity model

probabilistic description of 3D glider paths

improve glide path and velocity estimates

reduce and accurately describe uncertainty in those
estimates
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MULOGO

Particle filters: from tj−1 to tjData Assimilation in Predictive Mode

Model + observations prediction

obs update
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discrete approx:

Particles are the support of the
discrete approximations to
these distributions

Each particle is associated with
a weight, wj(xj)
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MULOGO

Particle filters: update/analysis at t = tj
Know (discrete approximation):

π(xj |Y0,j−1) (from last page)

Bayes:

π(xj |Y0,j) ∝ g(Yj |xj)π(xj |Y0,j−1)

Likelihood:

g(Y |x) = exp[
H(x) · Y

θ2 − |H(x)|2
2θ2 ]

Update (discrete Bayes):

wj(xj) ∝ g(Yj |xj)w
p
j (xj)

π(xj |Y0,j) = {xj ,wj(xj)}
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MULOGO

Glider DA
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MULOGO

Glider DA
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MULOGO

Glider DA
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MULOGO

Glider DA
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MULOGO

Assimilated Ekman depth
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quantify uncertainty in parameterization of u(x , y , z)

iterate, posterior of first dive becomes prior of second

reduced uncertainty/improved accuracy of glider paths in
subsequent dives

use estimates of u to help choose uc
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MULOGO

Glider DA: experiments & objectives

twin-experiments

observe “true” surfacing location

observe vertical, z(t), paths

spatially or time varying background velocity
and/or wind stress

use LADA with model-discovery to determine distribution
of most-likely velocity fields

probabilistic description of 3D glider paths
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MULOGO

En-route data assimilation
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MULOGO

Lagrangian instruments

Argo float

Lagrangian instruments collect data en
route (salinity, temperature, pressure)

Observations depend on unknown
drifter paths

What to do with that data?
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MULOGO

Float depth profile

2
0

0
0

 m

7−10 days

Cartoon:  Argo float depth profile

2
0

0
0

 m

7−10 days

Cartoon:  Argo float depth profile

7-10 day float results in O(10)-O(100) km traveled
high frequency data in dive/ascent just before surfacing in
water column beneath “surfacing location”
low frequency en-route measurements at depth, no
latitude/longitude information
en-route measurements averaged, not used in assimilation
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MULOGO

Float depth and overview

2
0

0
0

 m

7−10 days

Cartoon:  Argo float depth profile

east

n
o
r
t
h

Cartoon:  Overview of surfacing locations

Lagrangian DA can help ascertain velocities w/o averaging

22 / 61



MULOGO

Float depth and overview

2
0

0
0

 m

7−10 days

Cartoon:  Argo float depth profile

east

n
o
r
t
h

Cartoon:  Overview of surfacing locations

Some possible Lagrangian paths
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MULOGO

Float depth and overview

2
0

0
0

 m

7−10 days

Cartoon:  Argo float depth profile

east

n
o
r
t
h

Cartoon:  Overview of surfacing locations

need path & speed for subsurface observation locations
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MULOGO

Float depth and overview

2
0

0
0

 m

7−10 days

Cartoon:  Argo float depth profile

east

n
o
r
t
h

Cartoon:  Overview of surfacing locations

Can en-route observations help Lagrangian DA?
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MULOGO

Assimilated 3-D Lagrangian paths are (possibly) useful for

aid in resolving Lagrangian structures

assimilating data into high resolution models

avoiding averaging via determining en-route data collection
locales along paths which cross multiple grid cells
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MULOGO

Inviscid linearized Shallow Water Equations, periodic BCs

Non-dimensional velocity fields

∂u
∂t

= v− ∂h
∂x

∂v
∂t

= −u− ∂h
∂y

∂h
∂t

=−∂u
∂x
− ∂v
∂y

Lagrangian trajectories

ẋ(t)=u[x(t), y(t), t ]
ẏ(t)=v [x(t), y(t), t ]

Decomposition into Fourier Modes

u(x , y , t)=−2π sin(2πx) cos(2πy)uo +cos(2πy)u1(t)
v(x , y , t)=2π cos(2πx) sin(2πy)uo +cos(2πy)v1(t)
h(x , y , t)=sin(2πx) sin(2πy)uo +sin(2πy)h1(t)
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MULOGO

Cellular flow field

If u1 =v1 =h1 =0,
flow field is constant & tracers
stay w/in cells
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MULOGO

Cellular flow field

If u1 =v1 =h1 =0,
flow field is constant & tracers
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0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

x

y

otherwise,

u̇o =0
v̇1 =−u1−2πh1

u̇1 =v1
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MULOGO

A few trajectories

Steady
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MULOGO

Particle filter for standard LADA

Test problem:

u1(0)=v1(0)=h1(0)=0.5, x(0)= .2, y(0)= .3

broad priors on (u1, v1,h1), tight on (x , y) at t =0

run to t =T (1 period of coefficients)

5 noisy observations of drifter

Goal:

learn about u1(0), v1(0),h1(0) from Lagrangian observations
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MULOGO

En route Lagrangian data – a test problem

Idea treat height, h(x , y ,u1, v1,h1), as proxy for
temperature – typical quantity measured en route

Sample height, ĥ(t)=h(xd (t), yd (t), t) + noise between
“surfacings”, e.g. traditional observation instants tj

ASSIMILATING EN ROUTE LAGRANGIAN OBSERVATIONS 13
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Figure 1. Top: Drifter paths for the center case (left) and the saddle case (right). Note in both cases a snapshot of the

corresponding velocity field is plotted at t = 0. Bottom: Height field evaluated along drifter paths corresponding to the fields
and trajectories shown directly above.

are linear with periodic solutions. Thus the samples of the prior distribution at t = 0 for

the flow field components, u1, v1, h1 will yield the same prior distribution at t = 1, 2, 3, 4, 5.

In contrast the evolution of the drifter state xD is strongly nonlinear, but as the drifter

state is observed, we take the variance of the prior distribution to equal the variance of the

observation noise. Thus for xD we have Σf
D = (0.01)2I. We consider a surfacing observations

period of To = 0.2 and height observation periods of To/10 and To/100. In all cases, Runge-

Kutta simulations use a numerical step size of δt ≈ 10−4, precisely δt = 10−4 · T where T is

the period of the of the time varying coefficients of the flow field.

4.1.2 Short time assimilation: smoothing As mentioned earlier, the exact sampling smooth-

ing method has problems with convergence of the Markov chain used to sample the posterior

and these problems are particularly severe for long, highly nonlinear, and infrequently ob-

served trajectories. Thus we use this method only for the case of a short trajectory in the

“center” case, and not for the “saddle” case. In particular, the same initial conditions as

c© 0000 Tellus, 000, 000–000
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MULOGO

Particle filter w/en route observations
“traditional” LADA:
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MULOGO

Particle filter w/en route observations
“traditional” LADA:
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MULOGO

Characterizing improvement
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Characterizing improvement:
compare covariance matrices of prior and posterior distribution

ds(t) = tr [I− Σa
F (t)(Σf

F )−1] (Zupanski, 2007)

r(t) = det(Σa
F (t))/det(Σf

F )
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MULOGO

Improvements w/assimilating en-route data

left column: center right column: saddle16 SPILLER, APTE, JONES
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Figure 3. In all figures solid curves are the mean of assimilating 500 different sets of observations for the same initial condition

cases — left column is the center case, right column is the saddle case. In all cases, solid curves include en route observations
collected along the drifters path while dashed lines represent standard Lagrangian data assimilation. Top: ratio of determinants

of the posterior distribution to the prior distribution plotted against time. Bottom: ds = tr[I − Σa
F (Σf

F )−1] as a function of

time

and thus more certain estimates. Note that the K = 9 and K = 99 cases provide roughly

the same level of improvement.

A potential pit fall of a very tight posterior distribution is that the narrow support of

most of the mass may not include the truth. To monitor this, we calculate the fraction of

instances over the 500 experiments where the truth fell outside of a 95% confidence interval

using the posterior estimate of covariance, Σa at any point during the assimilation, 0 < t 6 5.

For both the center and saddle, even though standard LaDA posterior distributions were

not as tight, they had roughly twice the failure rate of identifying the truth. The failure

rate over all three cases (K = 0, K = 9, K = 99) is roughly a third smaller for the saddle

case, although this may be anticipated as the posterior distributions are not as tight for the

saddle case as they are for the center case. Specific values of these failure rates are listed in

the bottom three rows of the Table 1.

c© 0000 Tellus, 000, 000–000

(S, Apte, Jones, submitted 2012)
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MULOGO

Looking forward

Consider two-layer or 3D model w/observable-at-depth,
spatially dependent variable

collect en-route observations on bottom layer

traditional Lagrangian observations, less frequent

Improvements from en-route assimilation?

Can we estimate Lagrangian paths at depth?

How dependent is this on coupling strength?
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Conclusions and Connections
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MULOGO

Observing unknown locations: en-route assimilation
“traditional” LADA:
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MULOGO

Observing unknown locations: en-route assimilation
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Figure 3. In all figures solid curves are the mean of assimilating 500 different sets of observations for the same initial condition

cases — left column is the center case, right column is the saddle case. In all cases, solid curves include en route observations

collected along the drifters path while dashed lines represent standard Lagrangian data assimilation. Top: ratio of determinants

of the posterior distribution to the prior distribution plotted against time. Bottom: ds = tr[I − Σa
F (Σf

F )−1] as a function of

time

and thus more certain estimates. Note that the K = 9 and K = 99 cases provide roughly

the same level of improvement.

A potential pit fall of a very tight posterior distribution is that the narrow support of

most of the mass may not include the truth. To monitor this, we calculate the fraction of

instances over the 500 experiments where the truth fell outside of a 95% confidence interval

using the posterior estimate of covariance, Σa at any point during the assimilation, 0 < t 6 5.

For both the center and saddle, even though standard LaDA posterior distributions were

not as tight, they had roughly twice the failure rate of identifying the truth. The failure

rate over all three cases (K = 0, K = 9, K = 99) is roughly a third smaller for the saddle

case, although this may be anticipated as the posterior distributions are not as tight for the

saddle case as they are for the center case. Specific values of these failure rates are listed in

the bottom three rows of the Table 1.
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developed strategies which fully exploit data collected at
unknown locations

marked improvement over assimilating only instrument
location data
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Subsurface data via controlled vehicles: gliders
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MULOGO

Subsurface data via controlled vehicles: gliders
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probabilistic description of 3D glider paths

improve glide path and z-dependent velocity estimates

reduce and accurately describe uncertainty in those
estimates
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MULOGO

Vertical information propagation

Ambiguity resolved by
more observations and, in
some cases, uncertainty,
but generally not
inaccuracy

Baroclinic perturbations to
barotropic flow are not
easily resolved by
observations on more
layers
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MULOGO

Connections: between DA projects

  

 

Observations at 
unknown locations

Vertical information 
propagation

Subsurface data 
collected by 

controlled vehicles
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MULOGO

Connections: vertical information and Koopman operator

Identified relationship
between
accuracy/uncertainty and
complexity of coherent
sets as encoded in
Koopman eigenfunctions

Need to further explore
and understand this this
relationship
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MULOGO

Connections: complexity measures & Lagrangian DA

three different trajectories, each
w/different ergodicity defect

lower values mean greater information content through DA

how does complexity of trajectories relate to information
gain through assimilation?
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MULOGO

Connections: Rotating can as testbed for model error DA

Two models:
kinematic
3D velocity non-divergent but no dynamics
CFD
nonlinear numerical model, Navier-Stokes equations

Strategy:
treat CFD as “reality” and take observations
treat kinematic model as “model”

Problem:
kinematic model can’t reproduce CFD trajectories even
with “best” choice of parameters

Assimilate:
data from CFD to “discover” model bias

uCFD(x , y , z) = uKM(x , y , z) + uB(x , y , z)
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MULOGO

Rotating can: comparison of velocity fields
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MULOGO

Rotating can: comparison of velocity fields
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MULOGO

Rotating can: comparisons of trajectories

Kinematic model

dx
dt

= uKM ,
dy
dt

= vKM ,
dz
dt

= wKM

CFD model

dx
dt

= uCFD,
dy
dt

= vCFD,
dz
dt

= wCFD

Bias corrected kinematic model (labeled RF)

dx
dt

= uKM + ûB,
dy
dt

= vKM + v̂B,
dz
dt

= wKM + ŵB
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MULOGO

Rotating can: comparison of trajectories
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MULOGO

Proof of concept: Poincaré Sections, bias corrected model
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what are we seeing on the right?
lots of computational experiments to be done
what is we move to non-steady case?
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