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Instrument Profile

‘\-:— E—

m collect standard (salinity, temperature, pressure) data
m can be fit with chemical/optical/biological sensors

m guided/steered by manipulation of buoyancy and battery
location on pre-programmed flight plan, u¢
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Instrument Profile

dx/dt
dy/dt| =u(x,y,z)+ Uc
dz/dt
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Instrument Profile

o

m good kinematic model of motion (Leonard & others)
based on balancing forces during equilibrium glide

m velocity field uncertainty >> glider model uncertainty

m path estimates available via dead reckoning — small
velocity errors get integrated into large position errors
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Challenges and objectives

Targeted vs actual surfacings Challenges

m glider path semi-Lagrangian

m ocean velocity, u(x, y, z), needed
to plan flight

m data collected along
unknown/poorly estimated paths

(Smith et a/2011)

Data assimilation objectives:
m probabilistic description of glider paths
m better estimates of glider paths and uncertainty

m update estimates of u(x, y, z) for next flight planning
m parameterization of model

m model discovery
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Test problem — Ekman Layer

m d — Ekman layer depth (unknown, a priori)
m U, — background ocean velocity

m 7/p — surface wind stress

m f— Coriolis parameter

u(Xa}/,Z)ZD(X,J/)-I-\f/déez/d{ ()p( V) ¢ (——%)—Ty(x -Y) sm(g
V(XaY,Z)ZV(X,Y)+f£5eZ/d {T)((?y) sin(é—)+7y(; .Y) cos(g

4

Wind siress ~
=0

Sea surface

Figure: (Taken from Cushman-Roison ‘Introduction to Geophysical Fluid Dynamics’)
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Ekman test prob (ongoing/short term): experiment & goals

Experiment:
m twin-experiments, observe “true” surfacing location
m assimilate using particle filter

m use assimilated parameterization of velocity field to guide
next flight

Goals:
m posterior distributions of parameters in velocity model
m probabilistic description of 3D glider paths
m improve glide path and velocity estimates

m reduce and accurately describe uncertainty in those
estimates
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Particle filters: from {i_1 fo

Model + observations «———— prediction
to model model tN
\ update obs update
assimilation assimilation
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FParticle filters: update/analysis at t = {;

Know (discrete approximation):

7(Xj| Yo,j—1) (from last page) 0

0.25 03 035 0.4 0.45
x
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FParticle filters: update/analysis at t = {;

Know (discrete approximation):

7(Xj| Yo,j—1) (from last page) 0

Bayes:

/predlctlon/pnur
. Yy )
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FParticle filters: update/analysis at t = {;

Know (discrete approximation):

7(Xj| Yo,j—1) (from last page)
Bayes:

(x| Yo7) oc g(YjX)m (x| Yo,-1)

Likelihood:

(x) Y [HX)
0

g(Y‘x):exp[H > 202 ]

prediction/prior
1Y )
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FParticle filters: update/analysis at t = {;

Know (discrete approximation):

7(Xj| Yo,j—1) (from last page)
Bayes:

(x| Yo7) oc g(YjX)m (x| Yo,-1)

Likelihood:

(x) Y [HX)
0

g(Y‘x):exp[H > 202 ]

Update (discrete Bayes):

wj(x;) o g(Yj|x)wP (x))

(x| Yo, ) = {X, wi(%)}

prediction/prior
1Y )

12/61



Glider DA

Enoute- Frior En route-Frir

Glider Trajectories
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Glider DA

Enroute-Frior o Surtacing location - rior
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Glider DA

Enroute-Frior o Surtacing location - rior
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Glider DA
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Assimilated Ekman depth
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m quantify uncertainty in parameterization of u(x, y, z)
m iterate, posterior of first dive becomes prior of second

m reduced uncertainty/improved accuracy of glider paths in
subsequent dives

m use estimates of u to help choose u¢
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Glider DA: experiments & objectives

= twin-experiments

m observe “true” surfacing location

m observe vertical, z(f), paths

m spatially or time varying background velocity
and/or wind stress

m use LADA with model-discovery to determine distribution
of most-likely velocity fields

m probabilistic description of 3D glider paths
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En-route data assimilation



Lagrangian instruments

Argo float

Mo
= .
. :
-
ks

m Lagrangian instruments collect data en
route (salinity, temperature, pressure)

m Observations depend on unknown
drifter paths

m What to do with that data?

20/61



Float depth profile

Cartoon: Argo float depth profile Cartoon: Argo float depth profile

2000 m
2000 m

7-10 days 7-10 days

m 7-10 day float results in O(10)-O(100) km traveled

m high frequency data in dive/ascent just before surfacing in
water column beneath “surfacing location”

m low frequency en-route measurements at depth, no
latitude/longitude information

m en-route measurements averaged, not used in assimilation
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Float depth and overview

Cartoon: Overview of surfacing |ocations

Cartoon: Argo float depth profile

north
-

2000 m

7-10 days

east

Lagrangian DA can help ascertain velocities w/o averaging
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Float depth and overview

Cartoon: Argo float depth profile

2000 m

7-10 days

Car t oon:

Overvi ew of surfacing |ocations

north
)

m Some possible Lagrangian paths
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Float depth and overview

Cartoon: Argo float depth profile

2000 m

7-10 days

Overvi ew of surfacing |ocations
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need path & speed for subsurface observation locations

24/61



Float depth and overview

Cartoon: Argo float depth profile Cartoon: Overview of surfacing |ocations

______ LR

north

2000 m

7-10 days

m Can en-route observations help Lagrangian DA?
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Assimilated 3-D Lagrangian paths are (possibly) useful for

m aid in resolving Lagrangian structures

m assimilating data into high resolution models

m avoiding averaging via determining en-route data collection
locales along paths which cross multiple grid cells
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Inviscid linearized Shallow Water Equations, periodic BCs

Non-dimensional velocity fields

Lagrangian trajectories

ou__oh

ot OX x(t)=ulx(t), y (), 1]
ov oh .

ov_ . on y(t)=v[x(t),y(1),1]
at Yoy

Oh_ _9u_ov

ot Ox Oy

Decomposition into Fourier Modes

u(x,y,t)=—2rsin(2rx) cos(2my)u,+cos(2ry)u4(t)
v(x,y,t)=2mr cos(2nx) sin(2ry)u+cos(2my) vy (t)
h(x, y, t)=sin(2rx) sin(27y)uo+sin(2ry)hy (1)
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Farticle filter for standard LADA

Test problem:
m u1(0)=v1(0)=hy(0)=0.5, x(0)=.2, y(0)=.3
m broad priors on (u1, vq, hy), tighton (x,y) at t=0
m runto f=T (1 period of coefficients)

m 5 noisy observations of drifter
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Farticle filter for standard LADA

Test problem:
m u1(0)=v1(0)=hy(0)=0.5, x(0)=.2, y(0)=.3
m broad priors on (u1, vq, hy), tighton (x,y) at t=0
m runto f=T (1 period of coefficients)
m 5 noisy observations of drifter
Goal:

m learn about u;(0), v4(0), h1(0) from Lagrangian observations
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Particle filter for standard LADA

Test problem:
m u1(0)=v1(0)=hy(0)=0.5, x(0)=.2, y(0)=.3
m broad priors on (u1, vq, hy), tighton (x,y) at t=0
m runto f=T (1 period of coefficients)
m 5 noisy observations of drifter
Goal:

m learn about u;(0), v4(0), h1(0) from Lagrangian observations
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En route Lagrangian data — a test problem

m Idea treat height, h(x, y, uy, vy, hy), as proxy for
temperature — typical quantity measured en route
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En route Lagrangian data — a test problem

m Idea treat height, h(x, y, uy, vy, hy), as proxy for
temperature — typical quantity measured en route

= Sample height, h(t)=h(x9(t), y9(t), t) + noise between
“surfacings”, e.g. traditional observation instants ¢
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En route Lagrangian data — a test problem

m Idea treat height, h(x, y, uy, vy, hy), as proxy for
temperature — typical quantity measured en route

= Sample height, h(t)=h(x9(t), y9(t), t) + noise between
“surfacings”, e.g. traditional observation instants ¢

height
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Farticle filter w/en route obs
“traditional” LADA:
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Farticle filter w/en route obs
“traditional” LADA:
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article filter w/en route observat
“traditional” LADA:
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Characterizing improvement

Characterizing improvement:
compare covariance matrices of prior and posterior distribution

ds(t) = tr[l — Z2(t)(TE) ] (Zupanski, 2007)

r(t) = det(X(1))/det(k)
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Improvements w/assimilating en-route data

left column: center right column: saddle

3 4 5 0 1 2 3 4 5
time time

(S, Apte, Jones, submitted 2012)
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Looking forward

m Consider two-layer or 3D model w/observable-at-depth,
spatially dependent variable

m collect en-route observations on bottom layer

m traditional Lagrangian observations, less frequent

m Improvements from en-route assimilation?
m Can we estimate Lagrangian paths at depth?

m How dependent is this on coupling strength?
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Conclusions and Connections



“traditional” LADA:
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Observing unknown locations: en-route assimilation

m developed strategies which fully exploit data collected at
unknown locations

m marked improvement over assimilating only instrument
location data

45/61



Subsurface data via controlled vehic
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Subsurface data via controlled vehicles: gliders

o
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m probabilistic description of 3D glider paths
m improve glide path and z-dependent velocity estimates

m reduce and accurately describe uncertainty in those
estimates
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Vertical information propagation

core Bigloop jet
| | |
| w | w |
o 2 i a 2 i 0 2 i
| |
| W | w |
0 2 4 o 4 0 2 4+
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2 4 -] g 2 4 [ ] 2 4 8 a8
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m Ambiguity resolved by
more observations and, in
some cases, uncertainty,
but generally not
inaccuracy

m Baroclinic perturbations to
barotropic flow are not
easily resolved by
observations on more
layers
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Connections: between DA projects

Vertical information
propagation

Subsurface data
collected by
controlled vehicles

\/

Observations at
unknown locations
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Connections: vertical information and Koopman operator

core Bigloop jet
| | |
w | [y | w |
i A i
, : , m |dentified relationship
“I ok Yl ek “l between
S accuracy/uncertainty and
| l | complexity of coherent
| L | L sets as encoded in

Koopman eigenfunctions

A i L
m Need to further explore
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Connections: complexity measures & Lagrangian DA

/

o High Ergodic Defect

Mid and Low Ergodic Defect

2 4 6

time

8

three different trajectories, each
w/different ergodicity defect

m lower values mean greater information content through DA

m how does complexity of trajectories relate to information

gain through assimilation?
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Connections: Rotating can as testbed for model error DA

Two models:

m kinematic
3D velocity non-divergent but no dynamics

m CFD
nonlinear numerical model, Navier-Stokes equations
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Connections: Rotating can as testbed for model error DA
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Strategy:
m treat CFD as “reality” and take observations
m treat kinematic model as “model”
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Connections: Rotating can as testbed for model error DA

Two models:

m kinematic
3D velocity non-divergent but no dynamics

m CFD
nonlinear numerical model, Navier-Stokes equations

Strategy:
m treat CFD as “reality” and take observations
m treat kinematic model as “model”

Problem:

m kinematic model can’t reproduce CFD trajectories even
with “best” choice of parameters

Assimilate:
m data from CFD to “discover” model bias

uCFD(X,y,Z) = uKM(vavz) + UB(X,y,Z)

55/61



Rotating can: comparison of velocity fields

m CFD field and“best fit” Kinematic field
m (u, v) projection of top of can, z > 0.8
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Rotating can: comparison of velocity fields

Bias Corrected
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m CFD field and bias corrected kinematic field
m (u, v) projection of top of can, z > 0.8

57/61



Rotating can: comparisons of trajectories

m Kinematic model

R
at — UKM, dt = VKM, dt — WKMm

Kby ar
at — UCFD; at = VCFD;, dt = WCFD

m Bias corrected kinematic model (labeled RF)

az

— = Vkm + Vs, E:WKM-‘FWB

@y + 0 4
at KM B, at
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Rotating can: comparison of trajectories

Trajectory ID: 100 Trajectory ID: 150

. KM Trajectory
i 1 e [-0.10031]
CFD Trajectory
0.8 0.8

— RF Trajectory

o 06 KM Trajectory

<

F o4 * [-040058

N CFD Trajectory
0.2 [ = RF Trajectory
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Proof of concept: Poincaré Sections, bias corrected mode

kinematic model bias corrected
1 . e 1
L1, 0.8
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X X
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Proof of concept: Poincaré Sections, bias corrected model

kinematic model bias corrected

x
x

m what are we seeing on the right?
m lots of computational experiments to be done
m what is we move to non-steady case?
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