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A versatile experimental testbed for 3D+1 mixing characterization.

Slices of in plane 2D velocity field
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The convergence of research and innovation.

Ergodic Quotient
d

T — K Each initial condition has an ergodic
N-—-1 . . . .
1 weak-x empirical measure associated to it.
— oT"™(x d
3 1 N-1
flz) = N Z foT"(z) By averaging a basis of continuous
n=0 functions on the state space manifold, we
can represent empirical measures in a
fr(z) = gi2n(kz)  p - 7d weak sense.
)

P ~ d : : :
r—[...,fr(x),...] Cle(Z?) We obtain representation of ergodic
measures in a sequence space.

Theorem. (Discrete topology) Ergodic quotient map separates the
ergodic partition, i.e., points x and y are in the same ergodic set iff

d(z) = P(y)

Ergodic partition is equivalent to the quotient of the state
space by level sets of all time-averaged functions




(o 3?153?3*‘&*3‘;?;“3 Mezi¢ Research Group

The convergence of research and innovation.

Metric Geometry

Ergodic Quotient §={P(z) :x e M} Cly
2 Endow the ambient space with a weighted
‘f )| Euclidean metric that corresponds to negative-

|pe — “y" = Z [1 + (27 ||k||)2] index Sobolev space of containing invariant
measures.

What can geometry of the ergodic quotient tell us about corresponding
state space structures?

/ \L/ K /

Sufficiently many local integrals of motion imply local continuity of
the ergodic quotient (can be formulated rigorously).

State
space
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Computational Geometric Analysis

Goal: detect locally connected subsets of EQ to identify trajectories
that lie within a regions with local integrals of motion.

_ _ Ergodic Quotient Ergodic Quotient Coherent
Trajectorie . . o :
(extrinsic coordinates) (intrinsic coordinates) Structures

Averaged Diffusion Level-sets/
observable Maps lusterin
s

Compute numerical diffusion modes on the ergodic quotient to
obtain low-dimensional representation of the ergodic quotient.

Geometric clustering, e.g., k-means, in diffusion space can then extract
connected subsets. Color trajectories based on the membership in clusters.



(N UC SANTA BARBARA

» engineering Mezi¢ Research Group

z Asinz + Ccosy
y| = | Bsinx + Acosz
z

ABC flow:

Global Structure Csiny+Bcosz| A—+3B=v2.C=1

State space clusters Ergodic Quotient
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(8) Six subselx in the state spaoe corresponding 1o =ix clusters (b) Propetion of ergodic quotient omto three oul of ten
of aggregation. Subeets contain primary vortices of the ABC diffusion coordinates used for clustering. Points were calored
Hor . The chaotic sea betwern vortices is the sesvoth cluster sooording to membership in clusters. The centeal clustes
and appears as the voiud betwoeen vortices. corresponds to the chaotic sea

FIG. 2: Six primary vortices extracted by k-means clustering (& = 7) of projection of ergodic quotient onto first 10
diffusion coordinate. ABC flow {10} was simulated with A = /3, B = /2, € = |, from N = 1000 initial conditions
uniformly distributed in basic periodicity cell [0, 1), with observables cut off at wavenumber K = 10, and
convergence tolerance ATOL =2 x 107°.
Monday, May 23, 2011 Marko Budi$i¢: Time Averages in Analysis of Dynamical Systems 7
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ation.

ABC Flow: Comparison

Theory:

Ergodic
Quotient

P

[Dombre et al.,1986] 2=

x

Finite-Time Lyapunov Exp.
Moz fecc’ Ly os rguees)

....
-
-

Ulam’ s Method

[Froyland, Padberg, 2009] - y e [Haller, 2001]
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System: Fluid-like, 3D+time flow

< Hill’ s Vortex Perturbation
v R 2Rz V2Rsin 6
2| = 1 —4R — 2?| +¢ \/;—Rsint? sin 27t
0 oy 2cos 0
Swirl (R,2,0) e Rt x Rx T

*Unperturbed: Hamiltonian at each slice § = const.
*\/olume preserving swirl and perturbation
*KAM behavior atsmall ¢ = ¢

Invariant sets (using EQ)
R

Two elliptic regions exist.

*Red, leftover from unperturbed elliptic
region;

*Blue, borne out of separatrix for
unperturbed case.

Canonical Angle
coordinates unraveled

Wed, Nov 30, 2011 Marko BudiSi¢: A Bifurcation In an Unsteady 3D Fluid Flow Found Using the Ergodic

Quotient
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Bifurcation uncovered using ergodic quotient
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Mezi¢ Research Group

The winding elliptic region replaces
the central elliptic region at the center
of the state space.

Conclusions:

*Ergodic quotient is useful for
discovering unknown features

*New bifurcation uncovered,
seemingly consistent with a saddle-
node collision mechanism for
periodic sets

*Similar phenomenon seen in 1:2
resonances for Hamiltonian

—0.05 .
N systems, e.g., spring-pendulum
- oscillator [Broer ’ 03]
0.2 0.22 024 026 0.28 0.3 0.32
R
Marko Budisi¢: A Bifurcation In an Unsteady 3D Fluid Flow Found Using the Ergodic 10

Quotient



Mesohyperbolicity in 2D

Notation:

o 7" (x0) : the map of A mapping the fluid particle starting at time o at
point Xg € R to its position x at time to + 1.

o D¢t (x¢) is the Jacobian matrix J(xo) = 9x/9%o.

Note:
v is volume-preserving so the eigenvalues A\; 2(x0) of J(x¢) satisfy

det(J(X())) — Al(XO))\Q(XO) = 1.

Thus, they are either real and

)\1(X0) = 1/)\2(X0) X0

or complex conjugate on the unit circle,

‘/\1,2(X0)| = 1. ,XU(

A trajectory starting at xg is
mesohyperbolic if A1 2(xg) are real and 3/ DA

mesoelliptic if the eigenvalues are complex conjugate.



Mesohyperbolicity in 2D

Theorem A trajectory is mesohyperbolic on interval [tg,tq + T'] provided
(T2 det Vv* (Xo, to, T) — 4) det VV*(XQ, to, T) >0
and mesoelliptic if

(T% det Vv*(xq,to, T) — 4) det Vv*(xq, tg, T) < 0

| mesohyperbolic ‘

AN

AN
0 4/T2 det Vv*

‘ mesoelliptic ‘
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Flow Structures in 2D
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Fig. 1. (A) A cellular, divergence-free welodty field described in Eq. 6. (B) Hypergraph map for the

velocity field shown in (A), for T = 0.94248. (C) Poincaré map for the time-periodic, divergence-free
perturbation of the velocity field shown in (A) by a vector field described in Eq. 7, with € = 0.1. (D)
Hypergraph map for the time-periodic velodty field whose Poincaré map is shown in (Q), for T = =x.

.M., S. Loire,
V. Fonoberov, P. Hogan, Science (2010)



Gulf Oil Spill Prediction

Hypergraph 5/25/2010 Observed oil spread 5/27/2010

Fig. 3. (A) Ocean hypergraph map in front of the Biloxi-Pensacola shoreline on 25 May, forecasting
strong oil incursion toward the coastline (circled) in the following 3 days. (B) NOAA's oil spread estimate
in front of the Biloxi-Pensacola shoreline on 27 May. The major directions of oil spread were predicted by
the hypergraph map 2 days earlier. The oil reached the shore several days later, on 2 June. (C) Ocean
hypergraph map in front of Pensacola on 8 June, forecasting a strong oil mixing event in front of the
shoreline and extension of the oil slick toward Panama City Beach in the following 3 days. (D) NOAA's oil
spread estimate on 10 June in front of Pensacola. The oil developed a large slick forecasted by the
hypergraph map 2 days earlier and continued to flow toward Panama City Beach.

Analysis based on

detVv*(x,)

In 2-D AND 3-D
3V ./
—\ -

a) b)
) .

— N~
A\ -7 N

Robust, hyperbolic behavior

.M., S. Loire,
V. Fonoberov, P. Hogan,
Science (2011)
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Finite-time flow map of a (nonautonomous) vector figld= f(t, m), r ¢ RP

Flow map Mesochronic vector field
to+T 1 fort
ol T@=a+ Tz [ S @) dr
0
—_
fr(z)

Hyperbolicity of the flow map can be inferred from the
eigenvalues/characteristic polynomial of Jacobian of
mesochronic vector field.

We are interested in capturing locations of eigenvalues of the
flow map, not necessarily its eigenvectors.
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Mesohyperbolicity for 3d incompressible flows

Real valued spectral tf(x) = tr[V f7](z) = > i),

characteristics of the Jacobian, . ~
evaluated without computing mf(:r) =tr Adj[V fr](z) = ), ]:[j-,é'i/\j (z),

eigenvalues. r3
df(z) = det[V fr](z) =[], Xi(z)
Incompressibility constraint: tf 4 Tmf +T2%d:=0
C+ = df- % O

Mesohyperbolicity conditions:

C_:= 3T3df+2T2mf— 8#0

Two quantities determine the character of
the mGSOhyperbO“C behavior: Elongating node A Z Elongating focus

> (df(a:), mi(z), T)
Rational function. ——b
Sign determines flattening/elongating — a4\ —\

character of flow map over — L
interval T at point x.

——) A

0 Flattening focus A
A (df(a:), m (), T)

Polynomial function.
Sign determines rotation: focal/nodal

character of flow map over
interval T at point x.
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Computlng the mesochronic Jacobian

Time-evolution method Direct finite difference method

1. Integrate the trajectory

t— (I)tn, Vit € [to,to -I—T]

2. Evaluate the instantaneous Jacobian

To(t) = (V1) [t, 8, (p)] , Vt € [to, 0 +T]

" . 8pa) — fr(p — 0p
3. Integrate evolution of the mesochronic Jacobian Bafr(p) = fr(p +9pa) %fT(p Pa)
ivaT(p) = %JP(T) +J, (T)VfT(p) _ %va (p) For nonlinear flows, direct method is

suspected to be inaccurate over longer
integration times.

Test: Direct vs. 1st vs. 2nd order forward-evolution ABC Flow, N=100 points, Incompressibility constraint: ideally, all points should be 0

Evaluate deviation from incompressibility condition: ¢ VfT + T tr adj VJFT (p) + T2 det va (p) =0

| Step h A Type 10? Step h L Type 10" Step h Type N=100
. ——1x10-% ——1x10°93 . 1st order —— x 10~ —— 1] x 10-03 """ 1st order —— 1 x 10" ——1] x 10-93 " 1st order
10 ——5 x 10~ ——5x 10-93 == =2nd orde —e— 5 % 100 ——— % 10-03 == =2nd orde ——5 % 10-04 —— 5 x 10792 == =2nd orde
> d — Direct o 2 i —Direct |9 10° 2 ? — Direct / a) b) C)
10
10 . -
= . = \ - ®
. 8 : 3 L1071 3 e 1
= 107 + * = " » =
3 PR E K
= Y L P 2 &
= 2107 il a
= 10°° el w ) — -
- *—mm - -——— e e A oo
e-=-=-- O======= O =mm—=—=- O - > ————— . > mmmm———— CER R Sl g
10° 1070 @ @ &----""" et B
e md e —————— —_-——————— il I P i
P 2 i T
m—————— Pemmcmen mmmm———— ————————— r .
107 107° 10°®
0 0 5 15 20 0 5 10 15 20 0 5 10 156 20 .
Averaging interval (T) Averaging interval (T) Averaging interval (T)
a) Median value of deviation b) Difference betw. lower and upper c) Difference betw. lower and upper

25%tile 10%tile
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ABC Flow

T Asinz + C cosy
y| = | Bsinz + Acosz
z Csiny + Bcosz

A?=3,B* =2 C?=1
6 vortices, separated by
a chaotic region

Cluster

6
| <,
K 1.00
IEB
2
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0.00
0.00

0.00 100
Top side of the 3d box (white is chaotic):

2.0)- g

0.0 ‘- ’ ‘

00 05 10 15 20
[

Timescales: vortex transport
along unit cube takes cca. T = 2

f research and innovation.

Mezi¢ Research Group

Mesohyperbolicity (vortex boundaries in white)

T'=1

z =000 7

I Facus

F-Nade

Non-hyp

T-Node

F-Hoeus

I Facus

F-Node

Non-hyp

T-Node

K- Hoeus

T'=5

z=000x

F Facus

F-Nade

Non-hyp

Fr:\-()('i("

K-Hooes

F Facus

F-Naode

Non-hyp

T-Node

K-Hoeus
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Space of quantifiers r € R3

Mapping 60 X 60 X 60

grid of initial conditions
to the space of spectral
quantifiers.

F-Focus
F-Node

E-Focus

S, 5 , : ;2
0 = (stability) 0o -2 = (stability)
A (character) A (character)
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Boundary behavior
1. Instantaneous limit:7" — ()

T—0 3D mesochronic criteria limit to 3D Okubo-Weiss
fT — f (instantaneous hyperbolicity types).

2. Asymptotic limit: T 3 oo

A = —4d4T° + (’)(T5) <0 Asymptotically, two possible types of behavior:
f 1)non-mesohyperbolic N
- _ _lT—3 N 2me_4 N (’)(T_S) o 2)(flattening) nodal mesohyperbolic .
3 Qdf
3. Degeneracy to a 2D flow (Mezic et al., Science, 2010)
—91 (33', y)- tf + Tmf»- - Tzd}g =tz + ng 2D incompressibility
i(ﬂl,y,Z)Z gz(-’E,y) Cy =0
0 D Degenerate flows are
- - C_ = 2(T2d§ . 4) _ 8—2 3D non-hyperbolic
tr=ts %
f—"g
m sz = dz Z — O 3D focal/nodal
f g indicator limits to
o A\ = d§D2 2D mesohyperbolicity
f 2D

mesohyperbolicity
indicator
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Numerical results for a large averaging interval T 50

e=10"3 e=10"4

Numerical tolerance to
mesohyperbolicity criterion:

|C+($7T)| > €
C_(z,T)| > ¢

F Facus

F Focus 20
Expected types of
behavior: 1.3
1)non-mesohyperbolic

F-Nade I3 F-Nade

2)(Flattening) NOdaI 0 Non-hyp X0 Non-hyp
mesohyperbolic = K =
0.3 T-Node 0.4 Ti-Node
0.1 - p— K-Koeus 0.1} e K-Koeus
0o 05 L0 00 05 Lo L5 20

x 7] 7 |7l



Mesohyperbolicity and optimal control
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Flow Structures in 3D

[op——
ol = e -

Mixing and transport dominated
by spiral-node fixed pts and
periodic orbits.

-0.26

Solomon, I.M. Nature (2003)



Koopman Mode Decomposition

() = N(0"(2). p) L |.M., Nonl.Dyn (2005)

1
vi(m) = Ul've(m) = v*(x) + Zk"fj(m)sj(,\) +[ exp(i2na) dE(a)v(x, m)
0

Spatial modes

051

0 | C
0.5 5
(-io'(l o ’7;;))
-1 - %‘7!3@#(@ 25"
-1 -0.5 0 0.5 !

C.W. Rowley (Princeton), . Mezic (UCSB),

S. Bagheri, P. Schlatter, and D.S. Henningson Royal Institute of Technology (KTH),  |.M. ANN REV. FLUID MECH (201
(Journal of Fluid Mechanics 2010)



Conclusions

- An experimental testbed fro 3D+1

-Extraction of flow features in 3-D time-independent and time-dependent flows.
-Mesohyperbolicity concept (introduced in Science paper) indicating robustness
of computed features extended to 3D.

-An intuitive algorithm for control in 3D obtained using only flow concepts —
simplifying optimal control computations.
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