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Point-vortex systems: vortex motion

Consider m point vortices in the plane whose the equations of
motion of the k−th vortices are given by

dxk

dt
= − 1

2π

m∑
j=1
j 6=k

κj
yk − yj

(xk − xj)2 + (yk − yj)2

dyk

dt
=

1
2π

m∑
j=1
j 6=k

κj
xk − xj

(xk − xj)2 + (yk − yj)2 ,

where κj denotes the vortex strength.



Point-vortex systems: tracer motion

The motion of passive tracers (denoted by (x , y) without any
subscript) depends explicitly on time through the positions of
vortices. The velocity filed of the passive tracers are given by

dx
dt

= − 1
2π

m∑
j=1

κj
yk − yj

(xk − xj)2 + (yk − yj)2

dy
dt

=
1

2π

m∑
j=1

κj
xk − xj

(xk − xj)2 + (yk − yj)2 .



“True" and Forecast Models
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Truth and Model Forecast
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Figure: κ1 = κ2 = κ3 = 1, κj = 0.03 for j = 4, . . . ,30. The RMSEs for
the three vortices are 0.64, 0.43 and 0.44, respectively.



Lagrangian Data Assimilation

We do not want to rely only on the model forecasts to track
the large-scale vortices (i.e. estimate the "true" vortex
trajectories)
Suppose that we observe only (noisy) trajectories of
passive tracers (or drifters/floats)
Deployment strategy: Where should we initialize the
tracers?
Can we use some dynamical structures (e.g. LCS or
finite-time coherent sets) to aid the design of the launching
strategy?
Do (optimal) launching strategies depend on assimilation
methods?



Recursive Estimation

Given the data y1:t := (y1, . . . , yt), inference about xt is
carried out by

P(xt |y1:t) ∝ P(yt |xt , y1:t−1)P(xt |y1:t−1)

The normalization term is omitted here
Prior distribution: (deterministic/stochastic) model
containing uncertainties in model itself or initial conditions
or both
Likelihood: uncertainties in predicting yt from xt (e.g.
yt = Hxt+“noise")
Posterior distribution: “combined knowledge", saying
nothing about “truth"



Kalman Filtering

Optimal for“linear + Gaussian" assumption
KF: “linearly regresses" observation increments onto state
variable increments

xa(tk ) = x f (tk ) + K(tk )(yo(tk )− y f (tk ))

Pa(tk ) = (I− K(tk )H)Pf (tk )

y f (tk ) = Hx f (tk ) + ε(tk )

K(tk ) = Pf (tk )HT (HPf (tk )HT + R)−1

x f (tk ) and Pf (tk ) come from the model forecast
ε(tk ) is observation noise with known covariance R
Provide only mean xa and covariance matrix Pa (so-called
the “uncertainty")



Ensemble KF (ENKF) with perturbed obsevation

ENKF: use sample statistics to approximate Pa and Pf

Anomalies: X = [x1| . . . |xN ]/
√

N − 1

xa
i (tk ) = x f

i (tk ) + Ke(tk )(yo(tk ) + εi(tk )︸ ︷︷ ︸
yi

−Hx f
i (tk )︸ ︷︷ ︸

y f
i (tk )

)

Pf
e(tk ) = XXT , Pa

e(tk )→ (I− Ke(tk )H)Pf
e(tk )

Ke(tk ) = Xf (Yf )T (Yt(Yf )T + YYT )−1

Pa
e(tk ) converges to the desired form when N large and x f

and εi uncorrelated
Use the ensemble mean 〈xa

i 〉 as the state estimate



Important Sampling (IS)

Suppose we can draw x (i) i.i.d .∼ π(x),

Eπ[f ] =
∫

f (x)π(x)dx ≈ N−1
N∑

i=1

f (x (i))δ(x − x (i))

we have an empirical distribution

π̂ = N−1
N∑

i=1

δ(x − x (i))

IS: Suppose x (i) i.i.d .∼ π(x) is unavailable and π(x) can be
evaluated only up to a normalization constant so that
π(x) = π̃(x)/Zp

Choose “proposal density” q(x) = q̃(x)/Zq such that
π(x) > 0⇒ q(x) > 0



Important Sampling (IS)

Draw x (i) i.i.d .∼ q̃(x)

Eπ[f ] =
∫

f (x)
π(x)
q̃(x)

q̃(x)dx ≈
Zq

Zp

N∑
i=1

f (x (i))w̃ (i); w̃ (i) =
π̃(x)
q̃(x)

The normalization can be evaluated with the same x (i)

Zp

Zq
=

1
Zq

∫
π̃(x)

d
x =

∫
π̃(x)
q̃(x)

q̃(x)
Zq

dx ≈
N∑

i=1

w̃ (i)

The empirical distribution is now a weighted sum

π̂ =
N∑

i=1

w (i)δ(x − x (i)); w (i) =
w̃ (i)∑N
i=1 w̃ (i)

,

w (i) compensate the discrepancy between q(x) and π(x)



Sequential Important Sampling (SIS)

P(x0:t , y1:t) = P(x0)P(x1|x0)P(y1|x1) · · ·P(xt |xt−1)P(yt |xt)

Our target: P(x0:t |y1:t) (can be marginalized to P(xt |y1:t))

Choose q(x0:t |y1:t) such that x (i)
0:t can be drawn without

modifying the past trajectories x (i)
0:t−1

q(x0:t |y1:t) = q(x0:t−1|y1:t−1)q(xt |x0:t−1, y1:t)

= q(x0)
t∏

k=1

q(xk |x0:k−1, y1:k )

If x (i)
0:t−1 ∼ q(x0:t−1|y1:t−1) and x (i)

t ∼ q(xt |x (i)
0:t−1, y1:t), then

x (i)
0:t ≡ (x (i)

t , x (i)
0:t−1) ∼ q(x0:t |y1:t).



Sequential Important Sampling (SIS)

Choose x (i)
0 ∼ q0(x0) = P(x0) and x (i)

1 ∼ q(x1|x
(i)
0 , y1),

w (i)
1 =

P(x (i)
0:1|y1)

q(x (i)
0:1|y1)

∝
P(x (i)

0 )P(x (i)
1 |x

(i)
0 )P(y1|x

(i)
1 )

q0(x
(i)
0 )q(x (i)

1 |x
(i)
0 , y1)

w (i)
2 =

P(x (i)
0:2|y1:2)

q(x (i)
0:2|y1:2)

∝
P(x (i)

0:1|y1)P(x (i)
2 |x

(i)
1 )P(y2|x

(i)
2 )

q(x (i)
0:1|y1)q(x

(i)
t |x

(i)
0:1, y1:2)

= w (i)
1

P(x (i)
2 |x

(i)
1 )P(y2|x

(i)
2 )

q(x (i)
2 |x

(i)
0:1, y1:2)

; x (i)
2 ∼ q(x2|x

(i)
0:1, y1:2)

At time t :

w (i)
t = w (i)

t−1

P(x (i)
t |x

(i)
t−1)P(yt |x (i)

t )

q(x (i)
t |x

(i)
0:t−1, y1:t)

; x (i)
t ∼ q(xt |x (i)

0:t−1, y1:t)



“Standard” Particle filtering

Choose q(x (i)
t |x

(i)
0:t−1, yt) = p(x (i)

t |x
(i)
t−1). We get

w (i)
t ∝ w (i)

t−1p(yt |x (i)
t )

This is an easy choice, but not the “optimal" choice.
Then, the posterior density at n is

p(x0:t |y1:t) ≈
N∑

i=1

w (i)
t δ(x0:t − x (i)

0:t )

It is easy to marginalize

p(xt |y1:t) ≈
N∑

i=1

w (i)
t δ(xt − x (i)

t )

In practice, resampling is required



Truth and Model Forecast

Vortices: [x1, y1, . . . , xm, ym] ≡ xF

Tracers: [zx ,1, zy ,1, . . . , zx ,n, zy ,n] ≡ xD

State variable: (xF ,xD)

Model uncertainty: SDE with N(0,0.05I) for a model
forecast
Observation: (xD)+“noise"
Observation noise: Gaussian with zero mean and
covariance 0.05I



Truth and Model Forecast
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Results: ENKF



Results: PF
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