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Point-vortex systems: vortex motion

Consider m point vortices in the plane whose the equations of
motion of the k—th vortices are given by
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where r; denotes the vortex strength.



Point-vortex systems: tracer motion

The motion of passive tracers (denoted by (x, y) without any
subscript) depends explicitly on time through the positions of
vortices. The velocity filed of the passive tracers are given by
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“True" and Forecast Models
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Truth and Model Forecast
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Figure: k1 = ko = k3 =1, kj = 0.03 for j = 4,...,30. The RMSEs for
the three vortices are 0.64, 0.43 and 0.44, respectively.



Lagrangian Data Assimilation

@ We do not want to rely only on the model forecasts to track
the large-scale vortices (i.e. estimate the "true" vortex
trajectories)

@ Suppose that we observe only (noisy) trajectories of
passive tracers (or drifters/floats)

@ Deployment strategy: Where should we initialize the
tracers?

@ Can we use some dynamical structures (e.g. LCS or
finite-time coherent sets) to aid the design of the launching
strategy?

@ Do (optimal) launching strategies depend on assimilation
methods?



Recursive Estimation

@ Given the data y1.; := (y4,- .., ¥t), inference about x; is
carried out by

P(xtly1.t) o< P(ye|Xts Y1.t—1)P(Xe|y1:t-1)

@ The normalization term is omitted here

@ Prior distribution: (deterministic/stochastic) model
containing uncertainties in model itself or initial conditions
or both

@ Likelihood: uncertainties in predicting y; from x; (e.g.
Yt = Hxt+"noise")

@ Posterior distribution: “combined knowledge", saying
nothing about “truth”



Kalman Filtering

@ Optimal for“linear + Gaussian" assumption

@ KF: “linearly regresses" observation increments onto state
variable increments

x3(t) = x" () + K(t) (v°(t) — ¥ (1))
Pa(t) = ( K(t)H)P’(t)

y'(te) = HX(t) + e(t)

K(t) = Pf(tk)HT(HPf( HT +R) ™"

@ x'(tx) and P'(t) come from the model forecast
@ ¢(1x) is observation noise with known covariance R

@ Provide only mean x and covariance matrix P2 (so-called
the “uncertainty")



Ensemble KF (ENKF) with perturbed obsevation

@ ENKF: use sample statistics to approximate P2 and P’
@ Anomalies: X = [x1|...|xn]/VN — 1

XA(te) = x[ (1) + Ke(ti) (y°(t) + ei(te) — Hx! (1))

yi JH)
PL(t) = XX, Pa(t) — (1 — Ke(tk)H)PL(t)
Ke(tc) = X (YNT(Y{(Y)T + YYT)~!

@ P2(t,) converges to the desired form when N large and x
and ¢; uncorrelated

@ Use the ensemble mean (x7?) as the state estimate



Important Sampling (IS)

@ Suppose we can draw x() "5 7 (x),

N
L[] = / FOm(x)a ~ NS A(xD)s(x — x(D)
i=

@ we have an empirical distribution
N
7= Z (x — x)

@ 1S: Suppose x() "5 x(x) is unavailable and = (x) can be
evaluated only up to a normalization constant so that
m(X) = 7(X)/Zp

@ Choose “proposal density” q(x) = §(x)/Zq such that
m(x)>0=q(x)>0



Important Sampling (IS)

o Draw x() "2 §(x)
LICIPYIY ZGZN:,:(X(/))W(:'). i = TX)
Z, & ' §(x)

El= [ 1005 e
@ The normalization can be evaluated with the same x(/)

/ 7(x) g dXNZW
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@ The empirical distribution is now a weighted sum
w()
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e w() compensate the discrepancy between g(x) and 7(x)



Sequential Important Sampling (SIS)

® P(Xo:t, 1:t) = P(X0) P(x1]X0) P(y11x1) - - - P(Xt|Xt—1) P(yzl xt)
@ Our target: P(Xo.t|y1.t) (can be marginalized to P(xt|y1.¢))
@ Choose q(xo.¢|y1.¢) such that x((,ig can be drawn without

modifying the past trajectories x, é% 1

q(X0:t|y1:t) = Q(X0:t—11Y1:t=1)q(Xe| X0:t—1, Y1:t)
t
Xo) H q(Xk| Xo:k—1 Y1:k)
k=1
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Sequential Important Sampling (SIS)

o Choose x{" ~ qo(x0) = P(x0) and x\” ~ q(xs|x{", y1),
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“Standard” Particle filtering

@ Choose q(x,(’)|xéf2_1,yt) = p(xt(’)|xt(i)1). We get

w o W p(y|x)

@ This is an easy choice, but not the “optimal” choice.
@ Then, the posterior density at n is

N
pOxo:tlyre) = Y wa(xo. — x§))
i=1

@ |t is easy to marginalize

N
p(xelyre) =~ > wi6(x — xV)
i=1

@ In practice, resampling is required



Truth and Model Forecast

@ Vortices: [X1, Y1, ..., Xm, Ym] = XF
@ Tracers: [zy1,2Zy1,-..,2Zx,n Zy,n] = XD
@ State variable: (xg,Xp)

@ Model uncertainty: SDE with N(0, 0.05l) for a model
forecast

@ Observation: (xp)+“noise"

@ Observation noise: Gaussian with zero mean and
covariance 0.05I



h and Model Forecast

Forward FTLE Xcorr: vortex 1 Xcorr: vortex 2 Xcorr: vortex 3
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Results: ENKF

Average error

K,=0003

Circle: ENKF 20 pts, Square: ENKF 300 pts, Cross: ENKF 1000pts



Average error

K,=0.003

Circle: PF 400 pts, Cross: PF 2000pts
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