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When a torus breaks up, tori within a certain resonant width
are also destroyed

Resonance width is the half-width of the islands that appear
in the resonant layer, as measured in the change A/ in the
action variable from the center to the outer edge of the island:
/res - Al < Ires < Ires + Al

Overlapping resonances lead to the destruction of all surfaces
lying between the two resonant tori (Chirikov and Zaslavsky
1972; Chirikov 1972).

We seek an analytical expression for Al

An expression is known for 2D incompressible flows but not
for 3D volume preserving flows



Resonance width: derivation

The trajectory equations for the perturbed flow can be written in
action-angle-angle variables:

I = €eF°,¢,0,0t) (1)
¢ = Qu(l)+eFi(1,0,0,0t)
0 = Qo(l)+eF%(1,6,0,0t),

The perturbation FO(/,¢,0,0t) can be expanded in a Fourier series

o0
Fo(l,6,0,0t) =Y Fl()sin(ng + mb + Iot + cnmr). (2)
nm,/=—oc
The evolution of I along a trajectory is then given by

o0

I=e > Fpy(l)sin(ng + mo+ lot + apm).  (3)

n,m,/=—o0



For flow in the vicinity of a particular torus | = Iy + d/ the phase
function

(4)

Q

Nami(t) = nd(t) + mO(t) + lot + apmy

np(0) + mO(0) + cpmy  +
t[nQ4(l0) + mQ(lo) + o] +  + O((61)°)
t naaﬂld)(/o) + m%(/o) ol + « o((snh)

O((61)%) + O(e).

If nQy + mSQg + lo # 0, 1 increases linearly in time, the
corresponding term is sinusoidal, and d/ oscillates but doesn't
grow.

However, if n2, + mQy 4 lo = 0, then to the lowest order
1 =~ n¢(0) + mO(0) + apmy is constant and 6/ grows much faster.



Thus, omitting the oscillating non-resonant terms whose
contribution is small, the displacement §/ from the resonant torus

81 = (o) sin(n) )
where
= [ 5 () + m e ()] (©

Equations (5) and (6) can be expressed in the Hamiltonian form

1 =—0H/dn and 1= 0H/d(s]) 7)
where
0Q 19) 512
H = cFomy(lo) cos(n) + | n— 2 () + m==£ () ( 2) ®)
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Al = > 26anl(/0) (9)
| 57 [nQ26 + mSQ] |1=p, |

with resonance condition n€y + m$g + lo = 0

One important difference between the steady and non-steady cases
is that for non-steady systems we can have resonances with
non-periodic trajectories, for which Q¢/Qg is irrational.



Resonance width expression holds for the quasi-periodic
perturbation, F°(/,0, ¢, o;t), with resonance condition
replaced by n€2y + mQg + lio; = 0.

For degenerate resonances, when 99,/0/(lp) = 099/01(lh) = 0,
higher-order terms should be accounted for leading to

. 1/G+1)
6anl(lo)(J + 1)'

25 (nQg + mQy) | 1=,

Al = (10)

where j corresponds to the first non-vanishing derivative.
The corresponding resonance width in frequency is

¥Q AlY i
_ $/0 (AT) J/(+1)
Degenerate resonances (j > 1) have smaller resonance widths than
nondegenerate tori, so they require larger perturbation strength to
overlap leading to Strong KAM Stability.



Comparison between theory and numerical simulations

1/2
2€Fr?ml(lo)

‘% [I‘IQ¢ + mQQ] |[:/0’

In the rotating can model, /81 = 0 so Al 4 /¢/ 83#(/0)‘.
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Perturbation with periodic time-dependence

trajectories Poincare' map in 6 only

Snap shot of time-dependent tori




Summary

Resonance widths are important as they control the extent of
chaos

We derived formula for resonance widths (applies to both
steady and nonsteady cases)

And compared theory with numerical simulations

Strong KAM stability predicts robust transport barriers near
degenerate tori

Time-dependent case under investigation
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