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outline

• what is resonance width and why is it important

• formula for resonance width (what sets the width of a
resonance)

• comparison between theory and numerical simulations

• time-dependent perturbation



• When a torus breaks up, tori within a certain resonant width
are also destroyed

• Resonance width is the half-width of the islands that appear
in the resonant layer, as measured in the change ∆I in the
action variable from the center to the outer edge of the island:
Ires −∆I < Ires < Ires + ∆I

• Overlapping resonances lead to the destruction of all surfaces
lying between the two resonant tori (Chirikov and Zaslavsky
1972; Chirikov 1972).

• We seek an analytical expression for ∆I

• An expression is known for 2D incompressible flows but not
for 3D volume preserving flows



Resonance width: derivation

The trajectory equations for the perturbed flow can be written in
action-angle-angle variables:

İ = εF 0(I , φ, θ, σt) (1)

φ̇ = Ωφ(I ) + εF 1(I , φ, θ, σt)

θ̇ = Ωθ(I ) + εF 2(I , φ, θ, σt),

The perturbation F 0(I , φ, θ, σt) can be expanded in a Fourier series

F0(I , φ, θ, σt) =
∞∑

n,m,l=−∞
F 0
nml(I ) sin(nφ+ mθ + lσt + αnml). (2)

The evolution of I along a trajectory is then given by

İ = ε

∞∑
n,m,l=−∞

F 0
nml(I ) sin(nφ+ mθ + lσt + αnml). (3)



For flow in the vicinity of a particular torus I = I0 + δI the phase
function

ηnml(t) = nφ(t) + mθ(t) + lσt + αnml ≈ (4)

nφ(0) + mθ(0) + αnml +

t [nΩφ(I0) + mΩθ(I0) + lσ] + ← O((δI )0)

t

[
n
∂Ωφ

∂I
(I0) + m

∂Ωθ

∂I
(I0)

]
δI + ← O((δI )1)

O((δI )2) + O(ε).

If nΩφ + mΩθ + lσ 6= 0, η increases linearly in time, the
corresponding term is sinusoidal, and δI oscillates but doesn’t
grow.

However, if nΩφ + mΩθ + lσ = 0, then to the lowest order
η ≈ nφ(0) + mθ(0) + αnml is constant and δI grows much faster.



Thus, omitting the oscillating non-resonant terms whose
contribution is small, the displacement δI from the resonant torus

δ̇I = εF 0
nml(I0) sin(η) (5)

where

η̇ = [n
∂Ωφ

∂I
(I0) + m

∂Ωθ

∂I
(I0)]δI . (6)

Equations (5) and (6) can be expressed in the Hamiltonian form

δ̇I = −∂H/∂η and η̇ = ∂H/∂(δI ) (7)

where

H = εF 0
nml(I0) cos(η) +

[
n
∂Ωφ

∂I
(I0) + m

∂Ωθ

∂I
(I0)

]
(δI )2

2
(8)



∆I =

(
2εF 0

nml(I0)∣∣ ∂
∂I [nΩφ + mΩθ] |I=I0

∣∣
)1/2

(9)

with resonance condition nΩφ + mΩθ + lσ = 0

One important difference between the steady and non-steady cases
is that for non-steady systems we can have resonances with
non-periodic trajectories, for which Ωφ/Ωθ is irrational.



Resonance width expression holds for the quasi-periodic
perturbation, F 0(I , θ, φ,

∑
σi t), with resonance condition

replaced by nΩφ + mΩθ + liσi = 0.

For degenerate resonances, when ∂Ωφ/∂I (I0) = ∂Ωθ/∂I (I0) = 0,
higher-order terms should be accounted for leading to

∆I =

 εF 0
nml(I0)(j + 1)!∣∣∣ ∂j∂I j (nΩφ + mΩθ) |I=I0

∣∣∣
1/(j+1)

(10)

where j corresponds to the first non-vanishing derivative.
The corresponding resonance width in frequency is

∆Ωφ/θ =
∂jΩφ/θ

∂I j
(I0)

(∆I )j

j!
∝ εj/(j+1). (11)

Degenerate resonances (j > 1) have smaller resonance widths than
nondegenerate tori, so they require larger perturbation strength to
overlap leading to Strong KAM Stability.



Comparison between theory and numerical simulations

∆I =

(
2εF 0

nml(I0)∣∣ ∂
∂I [nΩφ + mΩθ] |I=I0

∣∣
)1/2

In the rotating can model, ∂Ωθ/∂I = 0 so ∆I ∝
√
ε/
∣∣∣∂Ωφ

∂I (I0)
∣∣∣.
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Perturbation with periodic time-dependence



Summary

• Resonance widths are important as they control the extent of
chaos

• We derived formula for resonance widths (applies to both
steady and nonsteady cases)

• And compared theory with numerical simulations

• Strong KAM stability predicts robust transport barriers near
degenerate tori

• Time-dependent case under investigation




