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1. Introduction 
  “Chaotic Advection” (Aref, 1984) 

  Non-integrable system 

  Laminar flow; turbulent flow 

  Stirring, stretching, folding, mixing 



2. Model 
  Cylinder rotates at Ω 

  Top lid rotates at (Ω + ΔΩ) 



  Nek5000 (spectral element) 

  Cylinder domain 

  Closed boundary, no-slip, no flux 

  Top lid velocity profile 
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3. Results 
 3.1 Zero perturbation 
                                                          Ro = 0.2 Re =1.6x0 = 0
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 3.2 Steady perturbation 
x0 = −0.02
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Poincare Section vs. FTLE (Finite-Time Lyapunov Exponent) 



 3.3 Periodic perturbation 
  

 

     Double Poincare Section 

     “Period orbits” : time interval = perturbation period 

x0 = −0.02+ 0.002sin 2π t T( ) T : period of perturbation 
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Double PS vs. FTLE 



4. Summary 
  Zero perturbation – no resonance, no chaos 

  Steady perturbation – resonance, island chain, chaos 

  Periodic perturbation – period orbits with tips 

  Transport barriers still exist under periodic perturbation 


