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Outline

(1) Background: Eddies, climate modeling, and previous
mixing theories and estimations.

(2) Our methodology: Global eddying model with one million
numerical floats.

(3) Results: Complex mixing patterns at high spatial resolution.

(4) Results: Comparison between new and original mixing
theories.

(5) Summary



Eddy field and model resolution

Courtesy of Matt Mazloff

Ocean Model Resolution (km equivalent)
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Eddy parameterization in models

General eddy parameterization problem in climate models
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Estimate eddy diffusivity from Lagrangian particles

Pure diffusion case: particles evolution with time through random walk (molecular
diffusion).

t = 0.000 Mean square displacement
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Float-based mixing estimates: observations

Diapycnal and isopycnal mixing experiment (DIMES)
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Float-based mixing estimates: numerical models

Cross-stream (mean flow) diffusivities
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Griesel et al. (2006)

Patchy eddy mixing patterns in the Southern Ocean from a global
eddying model



Estimate eddy diffusivity from Lagrangian particles

Pure diffusion case: particles evolution with time through random walk (molecular
diffusion).

t = 0.000 Mean square displacement
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Effect of Iarge scale mean flow on mixing
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Mixing in the mean flow: Critical layer

When Cw=U, elevated mixing occurs.
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. I\/Ileng in the mean flow: Theory

Both eddy properties and mean flow
control mixing!

Courtesy of Matt Mazloff

cross-stream 1/(eddy decorrelation time)
diffusi\\‘/ities 12 eddy kir;tic energy
K| = EKE

K2 5 272 + K[Cy — U )P

eddy wavenumber eddy phase speed Mean flow magnitude

(e.g. Green, 1970; Ferrari and Nikurashin, 2010)



Efforts testing the theory: Observations

eddy diffusivities
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Problem of the mixing theory

cross-stream 1/(eddy decorrelation time)
diffL;vities kQ eddzzl;;‘%ﬁc energy
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eddy wavenumber
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* (1) single wavenumber and phase speed

e (2) constant mean flow
* (3) linear system



Our hypothesis: Multi-waves matter!

Spectrum of observed sea surface height (30°N, 170°W)
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Our hypothesis: Multi-waves matter!

Normalized spectrum of sea surface height
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Neither single wavenumber nor single phase speed.



Our goal

Barotropic streamfunction Surface eddy kinetic energy
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Figure 3. Transport stream function in 106m3/sfromthe 16-year average. Some of the contours in 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

the high latitude Southern Ocean have been omitted. The function is set to zero on the western KE x sinZp

boundaries (from a code of B. Klinger).
Figure 4

Estimate of the geostrophic kinetic energy (KE) (cm s~1)? of oceanic variability at the sea surface, here multiplied by sin’ ¢, where ¢ is

the latitude, to avoid the equatorial singularity in noisy data. Note the very large spatial changes of kinetic energy. Figure taken from

Wunsch (2011)™=" " ca rari and Wunsch (2009)

1. Provide float-based cross-jet mixing at high spatial resolution.
2. Develop a mixing theory with multi-wavenumbers and test its

validity.



Tool: Lagrangian particles

Pure diffusion case: particles evolution with time through random walk (molecular
diffusion).

t = 0.000 Mean square displacement
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Tool: High resolution model with floats

Parallel Ocean Program model with floats (Griesel et al. 2014)
* Global eddying (0.1deg) ocean model with 42 levels
* One million floats evenly deployed globally in 1994 and advected by velocity fields

0 +60 120 +180

Floats deployed Study domain: Examples of
globally at 23 vertical levels DIMES region float trajectories



Estimating diffusivity from floats

Calculation method
Average autocorrelation of residual float velocities over all tracks in

the defined bin (Davis 1991).

(a) 2-side symmetric converge (133°E, 24°N, depth=275-400m)
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Estimating diffusivity from floats

a | Geographic bins b | Adaptive bins
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Spatial patterns of mixing: Drake Passage
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Spatial patterns of mixing: Kuroshio

Mixing suppression b\/ Enhanced mixing at downstream
intense jet andgrecirculation gyres
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Analogous to the Southern Ocean in many aspects



Single-wavenumber theory works poorly at

topography
Topography in the Kuroshlo Extensmn m
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Single-wavenumber theory

cross-stream 1/(eddy decorrelation time)
diffusivities kQ eddy kir:;tic energy
K| = EKE
k2 5 292 + R2[Cy — U ()]
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eddy wavenumber eddy phase speed Mean flow magnitude

(e.g. Green, 1970; Ferrari and Nikurashin, 2010)



Single-wavenumber theory works poorly at
topography




Multi-wavenumber theory

wavenumber
cross-stream frequency

dlffuswmes
K (x / ,k’ w{)@ (T-k/dk’

mean flow magnitude
frequency-wavenumber spectrum
of cross-mean flow Eulerian eddy
velocities along a slice aligning
with the mean flow vector

Derivation available in Chen et al. (2015).

In the single-wave limit, single-wave and multi-wave theories are
equivalent!



Estimate diffusivity from multi-wavenumber theory
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Testing the theory: Mixing lengths
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Testing the theory: Diffusivities

correlation of vertical structures K varies with z!

(a) floats vs. muIti-wvenumber theory 1 %
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Hatched: negative correlation. mean flow vs. eddies
Non-hatched: positive correlation.



Summary

(1) To include the contribution of the entire eddy spectrum to mixing,

we formulated and tested a multi-wavenumber theory.

equivalent in the single-
wavenumber limit

/ N

Single-wavenumber theory —> Multi-wavenumber theory

l

Breaks down in topographic regions DIMES region from the Southern Ocean

In the Kuroshio Extension and a. Better represents both horizontal and

at the spot of the DIMES experiment Vvertical structures of mixing lengths.

b. Better represents the vertical structures
of eddy diffusivities.

c. Both theories capture large-scale

horizontal structure of eddy diffusivities.

(2) Details are available at
a. Chenetal., 2014: "Isopycnal eddy diffusivities and critical layers in the Kuroshio
Extension from an eddying ocean model." JPO.

b. Chenetal.,, 2015 "A multi-wavenumber theory for eddy diffusivities and its application to
the southeast Pacific (DIMES) region." JPO.
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