
Complexity – measure – based method (CM method)         
for identifying LCSs 

Trajectories of fluid parcels in 3d time-dependent flows can be very complex. Our goal is to 
identify, among all these convoluted motions, clusters of trajectories with similar 
Lagrangian behavior. This will help to locate coherent water masses traveling together as the 
flow evolves. Boundaries between the clusters correspond to LCSs and act as transport 
barriers with very little fluid exchange across them.   

I. Measuring trajectory complexity 

In time-dependent fluid flows, Lagrangian trajectories of fluid particles have very different 
behavior – from simple stationary points to complex chaotic trajectories. These differences in 
trajectory behavior can be quantified in a number of ways.  

The first, easiest and most intuitive, measure of trajectory complexity is trajectory arclength 
(or pathlength)  –  the length of a path of a fluid parcel over some time interval T,  

                       , or, if trajectory is sampled with discrete time steps dt,       

L is zero for stationary points and increases with increasing complexity. 

 

The second convenient measure of 
trajectory complexity is its correlation 
dimension, which is closely related to 
the fractal dimension. Loosely 
speaking, correlation dimension C 
measures area (volume in 3d) occupied 
by a trajectory. C can vary from 0 for 
simplest stationary points to 2 (3 for 3d 
flows) for chaotic trajectories that 
densely cover area (volume for 3d 
flows). The correlation dimension can 
be easily computed using the box 
counting algorithm: cover the domain 
with adjucent squares of length s and 
count the number of trajectory points, 
Nj, inside each square (Fig. 1), then repeat the counting for smaller and smaller s (more and more  

squares), and estimate        
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Figure 1: Box counting algorithm: cover domain with 
adjacent squares of length s and count the number of 
trajectory samples (dots), Nj, inside each square. 



Alternatively, one can use ergodicity defect (or ergodicity deficit), d, to measure trajectory 
complexity. Ergodic hypothesis is that the space average of any physical quantity is equal to the 
time average of same quantity along trajectory. Ergodic trajectory thus should uniformly cover 
the domain and spend equal amount of time in each little part of the domain. The most non-
ergodic case is a stationary trajectory (stationary point), which spends all time at one location 
and has d=1. The most ergodic case is a chaotic trajectory that covers the whole domain and has 
d=0. Similar to C, d can also be estimated from the box counting as  

II. Basic principles of the CM method                 

We want to separate the domain into regions with qualitatively different Lagrangian properties, 
where trajectories have qualitatively different behavior. In other words, we want to identify, 
among all trajectories, clusters with similar complexities. We can then locate LCSs as the 
boundaries between different regions, i.e., as curves across which we have largest gradient of 
complexity.  

This method allows separating a Lagrangian core of an eddy from its surroundings, and 
separating trajectories lying on opposite sides of a manifold (Fig. 2). Stable manifolds are 
revealed by forward integration, unstable manifolds – by backward integration of trajectories. 

 
III. Application of the CM method 

The computation starts with seeding a large number of simulated fluid parcels within the 
domain of interest and evaluating their trajectories. Once trajectories are computed, the 
second step is to estimate trajectory complexities, i.e., to compute L, C or d for each trajectory. 
Color-coded complexity maps, showing L, C or d as function of trajectory’s initial position will 
then reveal regions with similar complexity (uniform color) separated by LCSs – curves of 
most noticeable color change (Fig. 3).  
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Figure 2: Flow near the hyperbolic and 
elliptic regions. Blue/red are 
stable/unstable manifolds of a 
hyperbolic trajectory, green is the 
boundary of an elliptic region (eddy 
core). Trajectories on opposite sides of a 
stable manifold diverge from each other 
in forward time. Trajectories inside the 
eddy core stay within the eddy. These 
three classes of trajectories have 
qualitatively different complexities 
resulting in high complexity gradient 
across the blue and green curves.   

 



Figure 3: (left) Velocity and manifolds; (middle and right) C field for the numerically-generated flow 
field produced by ROMS. Several LCSs (curves of large color change) are seen at the perimeter of the 
eddy. The core region is not well-defined suggesting that this eddy is exchanging fluid with its 
surroundings over the integration period of 2 weeks. 

A recurring theme for all Lagrangian methods 
is how long to integrate trajectories. The 
answer depends on which temporal and spatial 
scales one is interest in. For example, if one is 
interested in mesoscale eddies, Tint should be 
comparable to a lifetime of an eddy. If, on the 
other hand, one is interested in basin-wide 
circulation over a decade, Tint  should be set to a 
decade. In the latter case, one should not expect 
to identify LCSs associated with mesoscale 
features whose lifetime is << Tint.  

One advantage of the CM method over the 
Lyapunov-exponent-based methods is its ability 
to work with nonuniformly-spaced trajectories. 
Unlike LE methods, which use separation rates 
between particles and produce noisy fields in 
these settings, CM method uses complexities of 
individual trajectories and produces much 
cleaner images of LCSs (Fig. 4).  

More details on the CM method can be found in 
Rypina, I. I.; Scott, S. E.; Pratt, L. J. & Brown, M. G. Investigating the connection between 
complexity of isolated trajectories and Lagrangian coherent structures Nonlin. Proc. Geophys., 
2011, 18, 977-987, doi:10.5194  

Figure 4: Comparison between CM (left) and FTLE 
(right) fields computed using (top) 2550 and 
(bottom) 640 randomly seeded simulated drifters 
advected by the Duffing Oscillator flow. 


