
Ocean Flow Models

I Understanding ocean flow and mixing can help predict
trajectories of other objects carried passively in the ocean
(applicable to AUV’s).

I The ocean is a thin fluid envelope spread on a rapidly
rotating Earth. Dynamics are largely two-dimensional with
weak vertical variation.

I Behavior is governed by the dimensionless Rossby number
Ro = U/Lf , ratio of local vorticity to planetary vorticity.



Quasigeostrophic (QG) Equations

These are equations valid at large scales in the ocean. The
equations of motion are reduced for Ro � 1:

ζ Vorticity
θ = f∂zψ Buoyancy (∼ density)

ψ Streamfunction

bulk ∂tζ = −J(ψ, ζ) + f∂zw
surface ∂tθ = −J(ψ, θ)− N2w

bulk q =

[
∂xx + ∂yy + ∂z

(
f
N

)2

∂z

]
ψ

Velocities are then given by (u, v ,w) =
(
−∂yψ, ∂xψ,w

)
.

Pedlosky, 1982



Surface Quasigeostrophic Equations

Surface QG (SQG) assumes potential vorticity q = 0, so the
flow is determined by the boundary temperature distribution
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If we rescale our variables, we find are solving ∇2ψ = 0 in the
volume subject to ∂zψ = θ on the boundary.



Understanding Vortex Behavior
Three point vortices in 2D (which have regular motion) induce
chaotic motion in passive scalars. We can quantify this chaos
and thus compare the transport properties of SQG point
vortices to those of the 2D system.

Kuznetsov and Zaslavsky, 1998



Equations of Motion on the Surface
We specify a temperature distribution on the surface:

θ0 =
∑

n

κnδ(x − xn)δ(y − yn).

We find the resulting vortex velocities:

(ẋn, ẏn) =
∑
m 6=n

κm

2π
1

|~xn − ~xm|3
(−yn + ym, xn − xm).

The velocities in the interior are then found by

ψ0 =
1

2π|~x − ~xn|
,

~u0 = (−∂yψ0, ∂xψ0) =
∑

n

κn

2π|~x − ~xn|3
(−y + yn, x − xn,0) .



First Order Expansion

We wish to determine the vertical velocity.

Let ε = Ro.

u ∼ −∂ψ0

∂y
− ε
(
∂ψ1

∂y
+
∂F1

∂z

)
,

v ∼ ∂ψ0

∂x
+ ε

(
∂ψ1

∂x
− ∂G1

∂z

)
,

w ∼ ε

(
∂F1

∂x
+
∂G1

∂y

)
= −D0θ0

Dt
.

F ,G are curl potentials of the velocity.

Muraki et al, 1999



3D Transport

I For vortices we first take w1 but not u1, v1:

w1 = 3z
∑

n

κn

2π

(
~u0 − ~̇xn

)
· (~x − ~xn)

|~x − ~xn|5
.

I With this we can observe 3D particle trajectories and
consider their transport properties.

I If we strobe the position of the particle at every period of
vortex motion, we obtain what is called a Poincaré plot.



Poincaré Plot in 3D

An example for ε = 0.1:
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But this is hard to compare to other plots, so we project into 2D.



Poincaré 2D Projections at Various Heights
I The top row is for a vortex configuration that produces regular

motion. Each curve represents a particle trajectory.

I The bottom row is for a different vortex configuration. The cloud
of spots indicates good mixing in that flow.

I Each column represents particles initialized at different heights.
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Conclusion

I SQG produces an interesting system with 2D dynamics
and 3D transport.

I We can use SQG to examine the robustness of 2D models.
I We see with Poincaré sections that there is clear variation

in particle trajectories from different heights.
I We do not know whether this is caused only by vertical

variation of horizontal velocity or whether vertical velocity is
also affecting the particle paths.

I We can explore other surface distributions to further
explore these effects.
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