# LDA by Particle Filtering

Naratip Santitissadeekorn<sup>1</sup> Chris Jones<sup>1</sup> Elaine Spiller<sup>2</sup>

<sup>1</sup>Department of Mathematics University of North Carolina-Chapel Hill

> <sup>2</sup>Department of Mathematics Marquette University

MURI Meeting 2012, Wilmington, Delaware

#### Outline



- Two-layers point vortices
- Lagrangian Data Assimilation

# 2 Particle Filtering

Standard Particle Filtering



| Problem | Setup |
|---------|-------|
| 000     |       |

#### Two-layers point vortices

# System: 2-Layer Point Vortices

- Consider a 2-layer PV system with two vortices on one layer and a drifter on the other.
- For  $\mathbf{z}^{(\ell)} = (x^{(\ell)}, y^{(\ell)}) \in \mathbb{R}^2, \ \ell \in [1, 2],$  $\frac{dx^{(\ell)}}{dt} = -\sum_{k=1}^{k=2} \sum_{j=1}^{j=N_k} \frac{\Gamma_j^{(k)}}{4\pi} \left(\frac{y - y_j^{(k)}}{|\mathbf{z} - \mathbf{z}_j^{(k)}|^2}\right) F_j^{(k)}(x^{(\ell)}, y^{(\ell)})$   $\frac{dy^{(\ell)}}{dt} = \sum_{k=1}^{k=2} \sum_{j=1}^{j=N_k} \frac{\Gamma_j^{(k)}}{4\pi} \left(\frac{x - x_j^{(k)}}{|\mathbf{z} - \mathbf{z}_j^{(k)}|^2}\right) F_j^{(k)}(x^{(\ell)}, y^{(\ell)})$

where  $k \in [1, 2]$  and  $N_k$  is the number of vortices in the k-th layer, and

$$F_j^{(k)}(\mathbf{z}) := \left(1 + \theta^{(\ell,k)} \frac{|\mathbf{z} - \mathbf{z}_j^{(k)}|}{\lambda} K_1\left(\frac{|\mathbf{z} - \mathbf{z}_j^{(k)}|}{\lambda}\right)\right)$$

Particle Filtering

Two-layers point vortices

### Two-layers point vortex flow



### Model and Observation

- The system is the SDE of the 2-layer PV system in a rotating frame; hence, the truth itself is a random walk.
- The system noise is  $\theta = 0.02$ .
- The state vector  $\mathbf{x}_{j} = x_{j}^{(1)}, y_{j}^{(1)}, x_{j}^{(2)}, y_{j}^{(2)}, x_{j}, y_{j}$
- The model is the same SDE of the 2-layer PV system
- The observation is the trajectory of the drifter  $\mathbf{y}_j = (x_j, y_j)$ .
- The observation is taken at the integer time,  $t_{obs} \in \{1, 2, \dots, 50\}$
- Observational is with  $\theta_{obs} = 0.02$ .

Problem Setup ○○○● Particle Filtering

Results

Lagrangian Data Assimilation

#### Some uncertainty within the system

100,000 sample points initially located at (1,0)



Problem Setup ○○○● Particle Filtering

Results

Lagrangian Data Assimilation

#### Some uncertainty within the system

100,000 sample points initially located at (1,0)



Figure: t=5

Lagrangian Data Assimilation

#### Some uncertainty within the system

• 100,000 sample points initially located at (1,0)



Lagrangian Data Assimilation

#### Some uncertainty within the system

• 100,000 sample points initially located at (1,0)



Lagrangian Data Assimilation

#### Some uncertainty within the system

• 100,000 sample points initially located at (1,0)



#### Standard Particle Filtering

# Standard (or Simple) PF

- Posterior at step *k*:  $p(x_{0:k}|z_{1:k}) \approx \sum_{i=1}^{N_s} w_k^i \delta(x_{0:k} x_{0:k}^i)$
- Important Sampling

$$w_k^i \propto rac{p(x_{0:k}^i|z_{1:k})}{q(x_{0:k}^i|z_{1:k})}$$
 where  $x_{0:k}^i \sim q(x_{0:k}|z_{1:k})$ 

• Choose 
$$q(x_{0:k}|z_{1:k}) = q(x_k|x_{k-1}, z_k)q(x_{0:k-1}|z_{1:k-1})$$

• The weight update equation

$$w_k^i \propto w_{k-1}^i rac{p(z_k | x_k^i) p(x_k^i | x_{k-1}^i)}{q(x_k^i | x_{k-1}^i, z_k)}$$
 where  $x_k^i \sim q(x_k | x_{k-1}, z_k)$ 

• If choosing 
$$q(x_k^i | x_{k-1}^i, z_k) = p(x_k | x_{k-1}^i)$$
,

$$w_k^i \propto w_{k-1}^i p(z_k | x_k^i)$$
 where  $x_k^i \sim p(x_k | x_{k-1})$ 

Particle Filtering

Results

Standard Particle Filtering





Particle Filtering ○●

Results

Standard Particle Filtering



Particle Filtering ○●

Results

Standard Particle Filtering



Particle Filtering ○●

Results

Standard Particle Filtering



Particle Filtering ○●

Results

Standard Particle Filtering



### Marginal Distribution: Standard PF



"x" := truth run, "." := estimate

#### Some statistical justification

#### Average distance

$$\overline{D(\widehat{\mathbf{X}}^{(i)},\mathbf{X}^{(i)})} := \overline{\left((\widehat{X}^{(i)} - X^{(i)})^2 + (\widehat{Y}^{(i)} - Y^{(i)})^2\right)^{1/2}} \qquad i \in \{1,2\}$$

Cross-correlation coefficient

$$Xcorr(\widehat{\mathbf{X}}^{(i)}, \mathbf{X}^{(i)}) = \frac{1}{N} \sum_{k=0}^{N-1} \widehat{X}_{k}^{(i)} X_{k}^{(i)} \qquad i \in \{1, 2\}$$

| Problem | Setup |
|---------|-------|
|         |       |

#### Average distance



900

#### **Cross-correlation coefficient**



Particle Filtering

#### Cross-correlation coefficient, x-coordinate



#### Cross-correlation coefficient, y-coordinate



#### A drifter is on the vortex layer





#### **Two drifters**



#### A drifter is on the vortex layer



#### **Two drifters**





#### Average distance

