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Data assimilation

Setup:

Given dynamical system ẋ = f (x)
(deterministic or stochastic)

Uncertainty in initial conditions
x0 = x(t0) (prior)

Observations at discrete times
k = 1, 2, ...: yk = h(xk)+noise
(likelihood)

Would like to estimate state at specific
time, given the knowledge of
observations: xk = x(tk) (posterior)
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Variational vs Sequential

Variational methods (3DVar, 4DVar) seek to minimize a cost
function to find a best estimate of the initial condition or time series

I J (x) = 1
2

(
x− xb

)T
B−1

(
x− xb

)
+ 1

2 (y − yo)T R−1 (y − yo)
I Uncertainty in estimate not calculated
I Calculation of adjoint can be costly

Sequential methods assimilate observations as they become
available

I Only use information about observations up to (and including) the
current time

I Kalman filter, extended Kalman filter
I Ensemble methods (EnKF, particle filter)

F Spread of ensemble quantitatively describes uncertainty in (posterior)
estimate

F Requires model evolution for many ensemble members
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Sequential DA algorithms

Two steps:

Forecast (evolve previous estimate forward under dynamical system)

Analysis (update current estimate with observation)

observation

repeat

analysisforecast

time t1 time t2time t2

Laura Slivinski (WHOI) Lagrangian DA in Katama Bay Nov 7, 2014 6 / 19



Data assimilation

Application of Bayes’ rule: p(x |y) ∝ p(x)p(y |x)

p(x) : prior

p(y |x) : observation likelihood

p(x |y) : posterior
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Ensemble Kalman filter

Represent probability distribution with ensemble of state vectors
{xi}i=1,...,Ne

Forecast: evolve each ensemble member forward under model until
observation is available.
Analysis: update each ensemble member using observation.

I xanalysisi = xforecasti + K
(
Hxforecasti − y

)
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Lagrangian data assimilation
Suppose we want to estimate the (possibly high-dimensional) flow field xF ,
but the observations are of Lagrangian positions of passive drifters xD .

ẋD = xF (xD , t)

x

y
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Three approaches

Eulerian (assimilate data from current meters, satellite obs, . . . )
I Directly measure velocities: no complicated observation operator, no

strong nonlinearity in drifter trajectory, high accuracy in measurements
I Difficult to obtain these observations: data is sparse
I Fixed moorings cannot follow interesting structures in flow

Pseudo-Lagrangian (approximate velocities as finite differences of
subsequent drifter locations)

I Valid for short times between observations
I Doesn’t use info about full drifter trajectory

Fully Lagrangian (directly use drifter position data)
I Forecasted vs observed Lagrangian velocities
I Augmented vector approach - include drifters as variable in state vector
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Fully Lagrangian approach - Molcard et al (2003)

Innovation (difference between obs and forecast): vo(tk)− vf (tk), where

vo(tk) =
y(tk)− y(tk−1)

tk − tk−1
,

vf (tk) =
xfD(tk)− xfD(tk−1)

tk − tk−1
,

y is obs drifter position; xfD is forecasted drifter position, evolving previous
observation forward using velocity estimate.

Unlike pseudo-LaDA, compares Lagrangian velocities (instead of
comparing Eulerian velocity to approximation from Lagrangian obs)

This method does not use information about the entire particle
trajectory, only the positions at two successive time steps.
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Fully Lagrangian approach - Molcard et al (2003)
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Augmented vector approach

Append drifter position xD to flow state vector xF : x =

(
xF

xD

)
I xF = (u, v,h, [T ,S , . . .])T

I xD = (x1, y1, x2, y2, . . . , xND , yND)T

Observation operator has simple, linear form: H = [0 I]

Flow and drifters are both forecasted and updated via DA scheme

The system evolution is

ẋF = f (xF )

ẋD = g(xF , xD)

and the observations are

y = Hx + ε = xD + ε,

ε ∼ N (0,R)
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Nonlinearity & Non-Gaussianity

Lagrangian data assimilation
leads to non-Gaussian priors

Flow may solve linear system,
but drifters solve nonlinear
system
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Katama Bay

Figure: Setup of Katama Bay experiment in 2012. (Orescanin et al, 2014)
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Katama Bay
Advanced Circulation Model (ADCIRC)

Two-dimensional, hydrostatic, finite-element
Based on shallow water dynamics: Eulerian state vector includes 2D
velocity and fluid depth at each grid point
Irregular grid developed by Mara Orescanin (MIT/WHOI)
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Figure: Left:
bathymetry for
ADCIRC, visualized
with Blue Kenue.
Right: domain
overlaid on Google
Earth (courtesy M.
Orescanin)
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Katama Bay
Assimilate drifter data gathered in August 2013
12 drifters released for ∼ 2 hours, data available nearly continuously
(more than 1x/second)

Figure: Courtesy
B. Raubenheimer
(WHOI), S. Elgar
(WHOI), and J.
MacMahan (NPS)
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Summary

Generally: LaDA involves assimilating drifter trajectories in order to
estimate the velocity field

Benefits over assimilating Eulerian (velocity) obs: drifters can track
interesting structures, cover larger spatial domain; often cheaper and
less sparse

EnKF with augmented vector approach has not been applied with real
Lagrangian data; will apply to small enclosed basin

Future work: apply hybrid filter [Elaine Spiller’s talk], compare results
to EnKF; more drifter deployments with larger number of drifters,
target specific structures; estimate bathymetry in attempt to improve
model itself
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