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MULOGO

Lagrangian instruments
Argo float glider

Goal – collect below-surface measurements to better
understand 3D dynamics and structures

Lagrangian instruments collect data en route (temperature,
pressure, salinity)

Observations depend on unknown drifter paths

What to do with that data?
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MULOGO

Float depth profile
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Cartoon:  Argo float depth profile

7-10 day float results in O(10)-O(100) km traveled
high frequency data in dive/ascent just before surfacing in
water column beneath “surfacing location”
low frequency en-route measurements at depth, no
latitude/longitude information
en-route measurements averaged, not used in assimilation
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MULOGO

Float depth and overview
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Cartoon:  Overview of surfacing locations

Lagrangian DA can help ascertain velocities w/o averaging
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MULOGO

Float depth and overview
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Cartoon:  Overview of surfacing locations

Some possible Lagrangian paths
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MULOGO

Float depth and overview
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Cartoon:  Overview of surfacing locations

need path & speed for subsurface observation locations
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MULOGO

Float depth and overview
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Cartoon:  Overview of surfacing locations

Can en-route observations help Lagrangian DA?
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MULOGO

Assimilated 3-D Lagrangian paths are (possibly) useful for

aid in resolving Lagrangian structures

assimilating data into high resolution models

avoiding averaging via determining en-route data collection
locales along paths which cross multiple grid cells
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MULOGO

Depth profile for gliders
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Cartoon:  glider flight depth profile

roll, pitch with preprogrammed “flight plan”

paths are semi-Lagrangian

predict path with estimated velocity field and flight plan
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MULOGO

Assimilating glider paths is (possibly) useful for

figuring out what happened when glider surfaces far from
where predicted

improving local velocity estimates for planning next flight

describing 3-D transport paths like those theorized to exist
in the meridional overturning conveyor belt (Lozier, 2010)

need Lagrangian paths to help encorporate en-route data

Can en-route data help Lagrangian DA?

Possibly if gradients are strong
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MULOGO

Observations and likelihood

Observations will be related to the state variable by some
observation function y = H(x).

(For LaDA H(x) = xd , the instrument’s location.)

We can think of observations as random variables distributed as

Yj |(Xj = xj) ∼ g(y |xj).

Or, Yj = H(Xj)+“noise”.

g(y |x) is the likelihood — how likely was an observation given
the possible states?

With a whole set of observations {Yj} we can write down the
likelihood for the time-series of observations

p(y1:j |x1:j) =
n∏

j=1

g(yk |xk )
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MULOGO

Inference: goal for data assimilation

Given a background distribution of initial conditions, µ(x0), and
observations, Y1:n, we want to infer the distribution of physical
states X0:n.

Prior

p(x0:n) = µ(xo)
n∏

j=1

m(xj |xj−1)

Likelihood

p(y1:n|x1:n) =
n∏

j=1

g(y = H(xj)|xj)

Posterior, obtained by Bayes’ rule

p(x1:n|y1:n) =
p(y1:n|x1:n)p(x0:n)

p(y1:n)

recall, p(y1:n) =
∫

p(y1:n|x1:n)p(x0:n)dx1:n
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MULOGO

Breakdown of DA schemes: representation of posterior

Sample posterior: particle filter or MCMC

handles nonlinear/nonGaussianity naturally

doesn’t scale well as dimension increases

Approx posterior as Gaussian: Kalman filter (family)

relies on Gaussian/linear assumptions

ENKF samples to estimate covariance

Find mode of posterior: variational DA

what if posterior is multi-modal w/nearly even masses?

For all cases, including en-route data changes observation
function, H(x), and hence likelihood
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MULOGO

Test problem: Inviscid linearized Shallow Water Eqns

Non-dimensional velocity fields

∂u
∂t

= v − ∂h
∂x

∂v
∂t

= −u − ∂h
∂y

∂h
∂t

= −∂u
∂x
− ∂v
∂y

Lagrangian trajectories

ẋ(t) = u[x(t), y(t), t ]

ẏ(t) = v [x(t), y(t), t ]

Decomposition into Fourier Modes

u(x , y , t) = −2π sin(2πx) cos(2πy)uo + cos(2πy)u1(t)

v(x , y , t) = 2π cos(2πx) sin(2πy)uo + cos(2πy)v1(t)

h(x , y , t) = sin(2πx) sin(2πy)uo + sin(2πy)h1(t)
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MULOGO

Cellular flow field

If u1 = v1 = h1 = 0, flow field is
constant & tracers stay w/in cells
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MULOGO

A few trajectories

Left: u1(0) = v1(0) = h1(0) = 0, x(0) = .2, y(0) = .3

Middle: u1(0) = v1(0) = h1(0) = 0.5, x(0) = .2, y(0) = .3

Right: u1(0) = 0.2, v1(0) = 1.3, h1(0) = 1.4, x(0) = .51, y(0) = .498
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MULOGO

Particle filter for standard LADA

Test problem:

u1(0) = v1(0) = h1(0) = 0.5, x(0) = .2, y(0) = .3

broad priors on (u1, v1,h1), tight on (x , y) at t = 0

run to t = T (1 period of coefficients)

5 noisy observations of drifter

Goal:

learn about u1(0), v1(0),h1(0) from Lagrangian observations
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MULOGO

En route Lagrangian data – a test problem

Idea treat height, h(x , y ,u1, v1,h1), as proxy for salinity –
typical quantity measured en route

Sample height, ĥ(t) = h(xd(t), yd(t), t) + noise between
“surfacings”, e.g. traditional observation instants tj

Changes the observation space, so now
(z = {xd , yd ,u1, v1,h1} whole state)

H(z) =

{
(xd(t), yd(t)) for t = jTobs

ĥ(t) for t = tk , (j − 1)Tobs < tk < jTobs

Update Likelihood at “surfacing” time tj with data
{xo

j , y
o
j , ĥ

o
k=1...Nh

}

− log(g) =
(xd − xo)2 + (yd − yo)2

2σ2
d

+
1

Nh

∑
Nh

(h(zk )−ĥo
k )

2/2σ2
h
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MULOGO

Particle filter w/en route observations
“traditional” LADA:
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MULOGO
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MULOGO

Particle filter w/en route observations
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MULOGO

Improvement with en-route observations
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Characterizing improvement: compare covariance matrices of
prior and posterior distribution

standard LaDA w/height obs
ratio of traces 0.046

0.19 = 0.25 0.015
0.19 = 0.08

ratio determinants 3.5×10−6

2.4×10−4 = 0.015 4.5×10−8

2.4×10−4 = 0.00019

robust over numerical experiments
similar improvement for saddle case
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MULOGO

Looking forward

Future directions:

3D model problem, depth one of observed en-route
variables

include flight plan control in glider problem

assimilate likely paths between surfacing locations

endpoints pinned
assimilate for most likely paths w/Brownian bridge

suggestions welcome
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