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In unsteady flows, instantaneous analysis 
gives poor predictions. Move to finite times.
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Linear deformation of the material is 
the basis for several flow analysis techniques.
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t = t0

t = t0 + T

Maximal Finite-Time Lyapunov Exponents:

Detect only the maximal magnitude of deformation, 
not its character (e.g., shear, rotation).
Analysis often depends on locally maximising curves as 
barriers to transport.

Mesochronic Analysis:

Classifes deformation based on its character, not its 
magnitude.

ẋp = f(t, xp), xp(0) = p

p �T
0 (p) = xp(T )

Flow map assigns final 
position to initial.

Our focus is on the Flow Map:

Instantaneous analysis is equivalent 
to vector field analysis.
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Deformation by the Flow Map is captured by the
Jacobian of trajectory averages of the velocity field.

3

�(p, T ) = p+
R T
0 f(⌧, xp(⌧))d⌧

f̃(p, T ) = 1
T

R T
0 f(⌧, xp(⌧))d⌧

�(p, T ) = p+ T f̃(p, T )
Flow map

Average 
Lagrangian 
velocity

Flow map can be interpreted as a Lagrangian average of the velocity field.

Mesochronic Jacobian captures the linear deformation by the flow.

Locations of the eigenvalues determine the character of deformation.
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In 2D incompressible flows, 
a single quantity captures the deformation character.
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0 tr Jf̃

det Jf̃

tr Jf̃ = 0

Incompressibility
constraint

4
T 2

tr Jf̃ + T det Jf̃ = 0

Incompressibility
constraint

tr Jf̃

det Jf̃

0

T = 0+Okubo-Weiss: T > 0
[Mezic, Loire, et al., Science, 2010]

Elliptic

Hyperbolic
Flipping

Hyperbolic
Non-flipping

Mesochronic Analysis:
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Mesochronic analysis of 2D flows correctly detected 
phenomena related to Deepwater Horizon Spill.
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doubling times for each of the 52 OMTs are provided in SI Text
along with the associated reasoning.

Results and Discussion
The model predicts that the 2 × 1011 g hydrocarbons injected into
the deepGulf ofMexico drove total bacterial productivity of 1011 g
C (∼1023 cells). Such productivity is sufficient to double the bac-
terial population in the deep plume horizon (1,000–1,300m depth)
over an area of 30,000 km2 and generate a regional oxygen
anomaly of 1012 g. Published observations suggest that this process
began within weeks of the initial irruption (9, 10, 13) and pro-
gressed over a period of ∼120 d, by which point the natural gases
had been consumed and the fluorescence anomaly in the deep
plume had been strongly attenuated (2). These observations, made
during the DWH event, serve to ground truth our models’ pre-
dictions of the temporal and spatial distributions for microbial
growth and metabolism.
Under our model, when a water parcel first encounters a hy-

drocarbon source, a seed population of active hydrocarbon-
degrading cells, present at low abundance in all waters, begins to
grow. As growth progresses, OMTs outpace the influx of their
preferred substrates, giving sequential pulses of respiration as
different OMTs flourish and then fade (Fig. 1). The timing of
respiratory pulses is controlled primarily by the growth rates of the
responsible OMTs, initial abundance of active cells, and duration
of source exposure. The model shows initial pulses of growth and
respiration linked to butane and pentane followed by sequential
pulses from consumption of propane and other short-chain alka-
nes, ethane, aromatic hydrocarbons, and finally, methane.
By injecting the hydrocarbons into moving parcels of water, the

model generates a complex spatial pattern of bacterial growth and
metabolism (Movie S1) and reveals associated feedback mecha-
nisms. Tracking individual water parcels as they advect reveals that
many parcels come into contact with the hydrocarbon source on
multiple occasions (Fig. 1). A parcel’s first encounter with hydro-
carbons feeds staggered pulses of respiration and successive
blooms of individual OMTs (Fig. 2A), and residual hydrocarbon-

degrading OMT abundances remain elevated above background.
We apply the term autoinoculation to describe the priming effect
that occurs when hydrocarbons are introduced into such a pre-
viously exposed parcel. When hydrocarbons irrupt into the pre-
viously exposed parcel, the elevated abundance of hydrocarbon-
degrading OMTs allows simultaneous consumption of different
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Fig. 3. Impact of recirculation on hydrocarbon abundance, bacterial population, andmetabolism. (A and B) Spatial distribution of bacterial abundance before
(A) and during (B) the early stages of an autoinoculation event. (C) Time course change in average abundance for bacteria consuming nonmethane hydro-
carbons and the average summed concentration of these chemicals integrated over the computational domain. (D and E) Spatial distribution of hydrocarbon
respiration rate before (D) and during (E) the early stages of the same autoinoculation event. (F) Time course change in the average respiration rate for bacteria
consuming nonmethane hydrocarbons, integrated over the computational domain. Because the size of the computation domain is 2° latitude × 2° longitude, a
small number of parcels exit the domain near the end of the simulation.

de

Bacteria ( mol-C L-1)

La
tit

u

Longitude Longitude

Bacteria ( mol-C L-1)

at
itu

de
L

Longitude Longitude

A B

C D

de
La

tit
u

de
La

tit
u

Fig. 4. Comparison of physical and biological features. (A) Spatial distri-
bution of bacterial abundance on June 13, 2010. (B) Hypergraph map on
June 13, 2010. (C) Spatial distribution of bacterial abundance on June 30,
2010. (D) Hypergraph map on June 30, 2010. For the hypergraphs, blue
indicates mesohyperbolic regions, red indicates mesohyperbolicity with
shear, and green indicates elliptic regions in which eddies are formed. The
scaled units for the hypergraphs are defined in ref. 16.
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Elliptic (rotating) region.

Bacterial respiration Mesochronic Classes

We call v*(x0, t0, T) the mesochronic veloc-
ity field (15).

We denote by ftþT
t0 ðx0Þ as the map of A

mapping the fluid particle starting at time t0 at
point x0 ∈ R2 to its position x at time t0 + T. This
map represents the solution of Eq. 1. Its derivative
DftþT

t0 ðx0Þ is the Jacobian matrix J(x0) = ∂x/∂x0.
Because v is divergence-free, the eigenvalues l1,2(x0)
of J(x0) satisfy det(J(x0)) = l1(x0)l2(x0) = 1. Thus,
they are either real with l1(x0) = 1/l2(x0) or
complex-conjugate on the unit circle, |l1,2(x0)| =
1. We call a trajectory starting at x0 mesohyper-
bolic (hyperbolic on average) if l1,2(x0) are real
and different from 1, and mesoelliptic (elliptic on
average) if the eigenvalues are complex-conjugate.

The calculation shown in (4) now leads to
the conclusion that a trajectory starting at x0 is
mesohyperbolic on t, provided that det∇v*(x0) <
0 or det∇v*(x0) > 4/T2, whereas it is mesoellip-
tic, provided that 0 < det∇v*(x0) < 4/T2. There
are also differences in behavior between the case
det∇v*(x0) < 0 or det∇v*(x0) > 4/T2. The local,
linearized map behavior in the case det∇v*(x0) <
0 is a pure strain (fig. S4A), whereas in the case
of d det∇v*(x0) > 4/T2, it is strain combined with
a 180° rotation (that is, reflection across the x
and y axes) (fig. S4B). When T goes to zero, the
mesohyperbolicity/mesoellipticity criterion goes
to the well-known Okubo-Weiss criterion (16, 17)
for instantaneous snapshots of time-dependent
velocity fields, where a region is called elliptic
provided that det∇v > 0 in that region and hy-
perbolic in the region where det∇v < 0.

The Lagrangian coherent structures theory is
based on the calculation of the ridges of the finite-
time Lyapunov exponent (FTLE) field (7, 18, 19).
In contrast to the theory of Lagrangian coherent
structures that determines the stretching skeleton
of a fluid flow depending on the extrema of the
FTLE field [or the extrema of det∇v (x0, t, t0) over
a time interval [t0, t] (20)], our approach is putting
emphasis on the average behavior of trajectories
over an interval of time. In contrast to the FTLE
method, the mesohyperbolicity calculation dis-
tinguishes between two different regions of hy-
perbolic behavior (which we show in examples
below enables characterization of mixing regions)
and provides the ability for gradation of the elliptic
regions. For more detailed comparison, see (4).

Although the field we use to distinguish kin-
ematically separate regions is not frame-invariant,
it can be improved to account for the rate of rota-
tion of the strain along the lines pursued in (21, 22).

The field det∇v*(x0) becomes the centerpiece
of our finite-time diagnostics of the Lagrangian
properties. To build intuition, we begin with a sim-
ple, well-understood, cellular velocity field shown
in Fig. 1A, described by

u(x) ¼ −sin(2px1)cos(2px2)
cos(2px1)sin(2px2)

! "
ð6Þ

This divergence-free flow has families of pe-
riodic orbits around elliptic fixed points bounded
by heteroclinic orbits that connect hyperbolic

Fig. 2. (A) Ocean hypergraph map around the Mississippi Delta on 14 May, forecasting strong mixing
activity (mixture of red and blue) in the following 3 days. (B) NOAA’s oil spread estimate around the
Mississippi Delta on 17 May. The coastal areas affected were predicted by the hypergraph map on the left
3 days earlier. (C) Ocean hypergraph map around Grand Isle, Louisiana, on 19 May, forecasting strong oil
incursion (circled) in the following 3 days. (D) NOAA’s oil spread estimate around the Mississippi Delta on
22 May. The coastal areas around Grand Isle affected by oil spread were predicted by the hypergraph map
on the left 3 days earlier.

Fig. 3. (A) Ocean hypergraph map in front of the Biloxi-Pensacola shoreline on 25 May, forecasting
strong oil incursion toward the coastline (circled) in the following 3 days. (B) NOAA’s oil spread estimate
in front of the Biloxi-Pensacola shoreline on 27 May. The major directions of oil spread were predicted by
the hypergraph map 2 days earlier. The oil reached the shore several days later, on 2 June. (C) Ocean
hypergraph map in front of Pensacola on 8 June, forecasting a strong oil mixing event in front of the
shoreline and extension of the oil slick toward Panama City Beach in the following 3 days. (D) NOAA’s oil
spread estimate on 10 June in front of Pensacola. The oil developed a large slick forecasted by the
hypergraph map 2 days earlier and continued to flow toward Panama City Beach.
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We call v*(x0, t0, T) the mesochronic veloc-
ity field (15).

We denote by ftþT
t0 ðx0Þ as the map of A

mapping the fluid particle starting at time t0 at
point x0 ∈ R2 to its position x at time t0 + T. This
map represents the solution of Eq. 1. Its derivative
DftþT

t0 ðx0Þ is the Jacobian matrix J(x0) = ∂x/∂x0.
Because v is divergence-free, the eigenvalues l1,2(x0)
of J(x0) satisfy det(J(x0)) = l1(x0)l2(x0) = 1. Thus,
they are either real with l1(x0) = 1/l2(x0) or
complex-conjugate on the unit circle, |l1,2(x0)| =
1. We call a trajectory starting at x0 mesohyper-
bolic (hyperbolic on average) if l1,2(x0) are real
and different from 1, and mesoelliptic (elliptic on
average) if the eigenvalues are complex-conjugate.

The calculation shown in (4) now leads to
the conclusion that a trajectory starting at x0 is
mesohyperbolic on t, provided that det∇v*(x0) <
0 or det∇v*(x0) > 4/T2, whereas it is mesoellip-
tic, provided that 0 < det∇v*(x0) < 4/T2. There
are also differences in behavior between the case
det∇v*(x0) < 0 or det∇v*(x0) > 4/T2. The local,
linearized map behavior in the case det∇v*(x0) <
0 is a pure strain (fig. S4A), whereas in the case
of d det∇v*(x0) > 4/T2, it is strain combined with
a 180° rotation (that is, reflection across the x
and y axes) (fig. S4B). When T goes to zero, the
mesohyperbolicity/mesoellipticity criterion goes
to the well-known Okubo-Weiss criterion (16, 17)
for instantaneous snapshots of time-dependent
velocity fields, where a region is called elliptic
provided that det∇v > 0 in that region and hy-
perbolic in the region where det∇v < 0.

The Lagrangian coherent structures theory is
based on the calculation of the ridges of the finite-
time Lyapunov exponent (FTLE) field (7, 18, 19).
In contrast to the theory of Lagrangian coherent
structures that determines the stretching skeleton
of a fluid flow depending on the extrema of the
FTLE field [or the extrema of det∇v (x0, t, t0) over
a time interval [t0, t] (20)], our approach is putting
emphasis on the average behavior of trajectories
over an interval of time. In contrast to the FTLE
method, the mesohyperbolicity calculation dis-
tinguishes between two different regions of hy-
perbolic behavior (which we show in examples
below enables characterization of mixing regions)
and provides the ability for gradation of the elliptic
regions. For more detailed comparison, see (4).

Although the field we use to distinguish kin-
ematically separate regions is not frame-invariant,
it can be improved to account for the rate of rota-
tion of the strain along the lines pursued in (21, 22).

The field det∇v*(x0) becomes the centerpiece
of our finite-time diagnostics of the Lagrangian
properties. To build intuition, we begin with a sim-
ple, well-understood, cellular velocity field shown
in Fig. 1A, described by

u(x) ¼ −sin(2px1)cos(2px2)
cos(2px1)sin(2px2)

! "
ð6Þ

This divergence-free flow has families of pe-
riodic orbits around elliptic fixed points bounded
by heteroclinic orbits that connect hyperbolic

Fig. 2. (A) Ocean hypergraph map around the Mississippi Delta on 14 May, forecasting strong mixing
activity (mixture of red and blue) in the following 3 days. (B) NOAA’s oil spread estimate around the
Mississippi Delta on 17 May. The coastal areas affected were predicted by the hypergraph map on the left
3 days earlier. (C) Ocean hypergraph map around Grand Isle, Louisiana, on 19 May, forecasting strong oil
incursion (circled) in the following 3 days. (D) NOAA’s oil spread estimate around the Mississippi Delta on
22 May. The coastal areas around Grand Isle affected by oil spread were predicted by the hypergraph map
on the left 3 days earlier.

Fig. 3. (A) Ocean hypergraph map in front of the Biloxi-Pensacola shoreline on 25 May, forecasting
strong oil incursion toward the coastline (circled) in the following 3 days. (B) NOAA’s oil spread estimate
in front of the Biloxi-Pensacola shoreline on 27 May. The major directions of oil spread were predicted by
the hypergraph map 2 days earlier. The oil reached the shore several days later, on 2 June. (C) Ocean
hypergraph map in front of Pensacola on 8 June, forecasting a strong oil mixing event in front of the
shoreline and extension of the oil slick toward Panama City Beach in the following 3 days. (D) NOAA’s oil
spread estimate on 10 June in front of Pensacola. The oil developed a large slick forecasted by the
hypergraph map 2 days earlier and continued to flow toward Panama City Beach.
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Oil Slick (May 27, 2010)

Oil slick distribution (May, 2010): Distribution of bacteria (Jun, 2010):

[Mezic, Loire et al., Science, 2010]

[Valentine, Mezic et al., PNAS, 2012]

Prediction



det Jf̃ = 0

Mezić Research Group

May 1, 2013 Quotients by Lagrangian averages detect coarse patterns in flows.

Goal: detecting coarse-grained patterns in fluid flows.

1

NASA/Goddard Space Flight Center

We have access to 
Lagrangian trajectories: 
how do we detect which 
trajectories are similar?

Layering: neighboring fluid 
parcels behave similarly

Mesochronic Analysis for 3D FlowsMay 1, 2013

In 3D flows, behaviors are parametrized by two quantities.
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Elongating node Elongating focus

Flattening node Flattening focus

det Jf̃

trCof Jf̃

T = 0+ Okubo-Weiss-Chong:

0

Okubo-Weiss-Chong

T=0+

Vortex

Vortex

Vortex

Mixing

Mixing

Vortex

Vortex

Criterion yields non-intuitive results even for steady flows: 
boundaries do not match understanding of invariant structures.

ABC Flow (z=0 slice)

Non-hyperbolic
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Mesochronic deformation classes can be 
identified by signs of two parameters.
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det Jf̃

trCof Jf̃

Elongating 
node

Elongating 
focus

Flattening 
node

Flattening 
focus

Non-hyperbolic

�

⌃

Elongating
Node

Non-hyperbolic

Flattening
Focus

Elongating
Focus

Flattening
Node

Introduce two new quantities
that separate hyperbolic classes:

⌃�

Incompressibility:

[with S. Siegmund (TU Dresden), 
T.S. Doan (Imperial College London)]
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Analysis of ABC flow matches our intuition.
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Mesochronic Classes

T=1 T=5 T=10 T=50

Non-hyperbolic

Mixture: non-hyperbolic, 
flattening and elongating

Hyperbolicity
with rotation

Hyperbolicity dominates 
at short time scales.
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(a) Six clusters in the state space. Chaotic sea (cluster 1)

cropped for clarity.
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k
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Figure IV.2: Six primary vortices extracted by k-means clustering (k = 7) of projection of the ergodic

quotient onto first 30 di↵usion coordinates. Parameters in Table IV.2. (Physica D: Nonlinear Phenomena by

Elsevier [BM12]. Reproduced with permission of Elsevier Publishing in the format reuse in a dissertation/thesis via

Copyright Clearance Center.)

Observables k 2 [�10, 10]3 \ Z3

Initial conditions
N = 1002, uniformly with x = 0,

(y, z) 2 [0.35, 0.8] ⇥ [0.6, 0.9]

Averaging T
min

= 500, T
ext

= 500, ATOL = 2 ⇥ 10�4

Di↵usion Maps N
min

= 70

Table IV.3: Parameters of the analysis of a primary vortex of the ABC flow.

consist of a core vortex (green), and two pairs of side vortices (yellow and blue).

The side vortices are in 2 : 1 resonance with the vortex core, i.e., the non-adjoint lobes

connect to each other at boundaries of the periodicity box. In Fig. IV.4 we illustrate this phenomenon

by combining the k-means and eigenfunction analysis. The k-means was used to extract the set

corresponding to the central vortex and the side lobes. Based on Fig. IV.3b, the pseudo-color was

based on the di↵usion coordinate �10 which varies through half of its range over the core vortex

(green in Fig. IV.3a) and one of the lobe vortices (blue).

The reason that the projection coordinates chosen in Fig. IV.3b are of relatively high index,

compared to those in Fig. IV.2b, lies in the character of the boundary between the primary vortex

region and the chaotic sea, respectively colored red and teal in Fig. IV.3a. Due to slow convergence

in this region that contains zones of intermittency, certain trajectories have been mapped away

from the main bulk; one of such points can be seen as a dark-red dot at the center of Fig. IV.3b.

Such numerical artifacts result in an increase in algebraic multiplicity of the � ⇡ 1 eigenvalues

of the di↵usion kernel: each disconnected component introduces a � = 1 eigenfunction that is a

72
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Computation is a numerical integration of 
evolution of the mesochronic Jacobian.
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ẋp = f(t, xp), xp(0) = p, t 2 [0, T ]Step 1. Integrate a trajectory.

J(p, t) = [rf ]⇤(t, xp(t))
Step 2. Evaluate Jacobian of the vector field 
along the trajectory.

Step 4. Compute trace, determinant of mesochronic Jacobian 
and mesochronic classes.

�, ⌃ are rational functions of  trace, 
determinant, and integration time. 

Step 3. Integrate the ODE for the mesochronic Jacobian.

Jacobian of averaged vector field 
is not 

average of Jacobian of vector field.

d

dt
Jf̃ (p, t) =

J(p, t)� Jf̃ (p, t)

t
+ J(p, t)Jf̃ (p, t)

�

⌃

Elongating
Node

Non-hyperbolic

Flattening
Focus

Elongating
Focus

Flattening
Node


