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Both analyses use Lagrangian averaging, 
but applied to different fields.

ẋp = u(t, xp), xp(0) = p

(p, t) 7! xp(t)

Lagrangian trajectory:

Choice of the field(s) 
to be averaged

f̃(p, T ) :=
1

T

Z T

0
f(⌧, xp(⌧))d⌧

Initial
condition

Lagrangian average:

Averaging
Interval

I. Ergodic Quotient: Coherent Structures

A (large) number of stationary scalar fields, 
related to the domain, not dynamics, e.g., 
spatial Fourier harmonics.

II. Mesochronic Analysis: Material Deformation

Fluid velocity field: 
a single non-stationary vector field.

xp(t)
p

P

Coherence

f(t, x) = u(t, x)
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Quantifying trajectory similarity is difficult pointwise, but 
feasible using Lagrangian averages.
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NASA/Goddard Space Flight 
Center

Layering: neighboring fluid 
parcels behave similarly

Comparison of tracer paths can be misleading:
Two trajectories in a mixing region 
can never be aligned pointwise, 
but on average they have the same behavior.

compare tracers according to averages of many different scalar fields.Approach:

we can quantify when trajectories are equal on average, 
but also when they are similar on average.

Result:

Coherence
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Ergodic quotient coordinates can be used to 
visualize coarse-grained flow patterns.
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Ergodic QuotientTracer paths Colored initial 
conditions

Entire trajectories
mapped to single points.

Connected segments in EQ
correspond to families of 

similar tracer paths.

Coloring initial conditions according to 
membership in connected segments 

visualizes coarse patterns.

Axes in EQ act as generalized 
energies or stream functions.

[Budisic, Mezic 
Physica D, 2012]

Coherence



Ergodic quotient map is obtained by 
averaging a basis of continuous functions
(scalar fields on the state space):

ẋp = u(t, xp), xp(0) = p

(p, t) 7! xp(t)

(p, T ) 7!

2

64
f̃1(p, T )
f̃2(p, T )

...

3

75
⇡

f̃(p, T ) :=
1

T

Z T

0
f(⌧, xp(⌧))d⌧
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Trajectory curve description is replaced
by vectors of Lagrangian averages.

5

Curves:

Lagrangian averages 
of scalar fields:

f

k

(x) = e

ik·x

Representation of 
the tracer path portrait using 

averages of scalar fields.

ẋp = u(t, xp)
f̃2(p, T )

f̃1(p, T )

Coherence
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Averaged scalar fields used as coordinates
quantify “on-average” similarity between tracer paths.
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Continuous topology: Sobolev space norm.

dT (p1, p2)
2 =

X

k2Zd

���f̃k(p1)� f̃k(p2)
���
2

(1 + |k|2)s

If scalar fields are chosen as Fourier harmonics, 
the Lagrangian averages are 
spatial Fourier coefficients of averaging distributions.

Acts as a low-pass filter: 
de-emphasizes
small scale differences.

Tracer
trajectories

Ergodic Quotient 
(in cts. topology)

Stagnation points on 
separatrices prevent 
ergodic quotient from 
connecting.

Coherence

P

f̃2(p, T )

f̃1(p, T )

Wavevectors

f

k

(x) = e

ik·x
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Diffusion maps are a nonlinear coordinate reduction
preserving the intrinsic geometry of the Ergodic Quotient (EQ).
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To disentangle the “wire” (EQ), 
sort the points by time it takes them to heat up.

A heat source is placed on 
an entangled “wire” (EQ).

The scalar fields used in averaging were chosen regardless of 
dynamics, so they yield a high-dimensional space.

The dimension of EQ can be very low, if the dynamics is simple, 
e.g., when there is only a single gyre, or a single mixing region.

Diffusion Maps:

Implementation requires only 
deterministic matrix computations.

Topology and geometry are preserved, 
e.g., a continuous line is still a line, but the 
number of coordinates is greatly reduced.

[Coifman, Lafon, 
ACHA, 2006]

(p, T ) 7!

2

64
f̃1(p, T )
f̃2(p, T )

...

3

75 7!

2
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 1(p, T )
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3
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Tracer 
paths

Averaged
fields

Diffusion
Coordinates

Coherence

EQ: Averaged Fields

EQ: Diffusion Coord.
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Coloring the state space by values of dominant 
diffusion coordinates reveals large scale features.
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State Portrait
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EQ: Diffusion Coordinates as axes

 2 1  3

Diffusion Coordinates as colors

Different colors indicate there is no 
material transport between regions.

Coordinates of higher order 
distinguish between finer features.

Number of diffusion
coordinates depends on 
complexity of dynamics, 
not dimension of the 
state space.

Coherence
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Steady 3D flow: ABC system.

9

LCS FTLE

[Haller, 2001]

2

4
ẋ

ẏ

ż

3

5
=

2

4
A sin z + C cos y

B sinx+A cos z

C sin y +B cosx

3

5

A

2
= 3, B

2
= 2, C

2
= 1

Analytic

[Dombre et al., 1986]

Almost-invariant sets

[Froyland et al., 2009]

G. Haller / Physica D 149 (2001) 248–277 263

From a computational point of view, hyperbolicity time plots converged much faster than “direct” Lyapunov
exponents over short time intervals. On intermediate time scales the details of hyperbolicity time plots are more
refined, but the clarity of the structures is deteriorating. One reason is that the width of coherent structures quickly
decreases, due to the fast convergence of our analytic approach. As a result, the boundaries become more and more
susceptible to the sizable numerical errors introduced by the low order advection scheme we used (a 4th order
Runge–Kutta scheme). These errors also introduce a discrepancy between quantities associated with the velocity
field and particle trajectories that grow inconsistent with the velocity field. The numerical errors are tangible since the
velocity field is known to admit chaotic streamlines. As time approaches t = 10, the plot rendered by the maximal
direct Lyapunov exponents becomes very sharp, as it is not affected by the growing inconsistencies between the
velocity field and individual particle motions.
Hyperbolicity plots of type 7 show similar convergence properties, but reveal further structures that are not of

type 1 or 2.We show a type 6 and type 7 plot together with the maximal direct Lyapunov exponent plot for t = −8 in
Fig. 6. Note that the same coherent structures that are local maximizers in the type 6 plot show up as local minimizers
in the type 7 plot. Also note that the type 7 plot does indicate resonant tori of hyperbolic stability type (cf. [12]),
which remain hidden to the direct Lyapunov exponent calculation. The reason is the sensitivity of hyperbolicity

Fig. 6. Hyperbolicity time plots of type 6 and type 7, along with maximal direct Lyapunov exponents at t = −8 for the ABC flow. Darker colors
indicate larger values. Note the appearance of resonant hyperbolic tori indicated by the low values in the type 7 plot.

G. Froyland, K. Padberg / Physica D 238 (2009) 1507–1523 1515

Fig. 6. Thresholding of second largest eigenvector of R
n

. (a) Three-set partition (c = ±0.001). Regions of high FTLE values corresponding to segments of invariant manifolds
align with the boundaries of invariant sets as approximated by the transfer operator approach. (b) Extraction of invariant sets.

Finally, to further demonstrate the power of the transfer
operator approach we show that the individual 3D invariant sets
are easily extracted by simply displaying those grid sets with v2

n,i
values in the appropriate ranges. The results are shown in Fig. 6(b).
Thus the set-oriented transfer operator method combined with
thresholding also provides a convenient framework to visualise
and extract invariant sets. To extract further invariant sets, one
may use information from other eigenvectors vk

n

; see Remark 3.

6. Case Study II — Autonomous dissipative 3D flow (Lorenz

flow)

The Lorenz flow [31]

ẋ = � (y � x)

ẏ = ⇢x � y � xz (30)
ż = ��z + xy

arose as amodel of convection rolls in climatology. It is well known
as a simple model of a continuous-time dynamical system that
can exhibit chaotic dynamics. We choose the classical parameters
� = 10, � = 8

3 , ⇢ = 28 for which the system is known to possess
a chaotic attractor ⇤ with an SBR measure µ [54].

First, we approximate the chaotic attractor observed in the
Lorenz system using a set-oriented subdivision scheme; for
details on such computations we refer to [48–50]. We obtain an
approximation of the attractor ⇤ consisting of n = 19978 equally
sized boxes. These boxes will also be the basis for approximating
the transfer operator P⌧ , where we choose ⌧ = 0.2. As with
the ABC flow we use 1000 points per box to obtain the n ⇥ n

matrix P

n

with its leading left eigenvector p

n

and then compute
P̂

n

and R

n

. The largest eigenvalues of R
n

are found to be �1 = 1,
�2 = 0.9853,�3 = 0.9801, �4 = 0.9702, �5 = 0.9666, �6 =
0.9641. As the Lorenz flow is transitive on ⇤, we should not be
able to identify any open invariant sets, in contrast to the ABC flow.
Thus the features contained in the second eigenvector v2

n

should
correspond to almost-invariant sets rather than invariant sets. The
second eigenvector v2

n

is shown in Fig. 8(a).
Applying the thresholding ansatz to v2

n

while varying c , we find
that min{⇢

n

(A�
c

), ⇢
n

(A+
c

)} has a global maximum at c = 0, with
⇢
n

(A�
c

) = 0.9419 = ⇢
n

(A+
c

) and µ(A�
c

) = 0.5 = µ(A+
c

), see
Fig. 7. Inserting �2 = 0.9853 into Eq. (14) gives a theoretical lower
boundof 0.8285 and anupper boundof 0.9927. So the thresholding
heuristics produce sets A

+
c

, A�
c

, c = 0, with values ⇢
n

(A�,+
c

) =
0.9419 close to the theoretical upper bound.

Fig. 7. Thresholding in the Lorenz system: using the second eigenvector v2
n

, we
vary c from�0.025 to 0.025 and for each c we compute ⇢

n

(A�
c

) (circles) and ⇢
n

(A+
c

)
(stars) as well as min{⇢

n

(A�
c

), ⇢
n

(A+
c

)} (line).

The partition into two sets obtained via thresholding is shown
in Fig. 8(b). Note that the symmetry in the Lorenz flow not
only affects the geometry of the attractor but it also carries over
to the transfer operator and, hence, the resulting partition into
almost-invariant sets; see [55] for an analysis of symmetries and
Perron–Frobenius operators.

In Fig. 8(c) we have also included part of the stable manifold
of the hyperbolic fixed point at the origin, approximated using
set-oriented continuation methods (see [48–50] for details). The
intersection between the attractor and the stable manifold of the
origin determinesa large part of the boundary between the two
almost-invariant sets, but because of the mutual geometry of the
manifolds they can only form a partial boundary. For a more
detailed visualisation of the interaction of the Lorenzmanifold and
attractor under parameter variation we refer to [56].

In addition we approximated low-period unstable periodic
orbits (using estimates on the periods by [57]). The lowest period
symmetric unstable periodic orbit (period T = 1.558652, see [57])
and its stable manifold determine another large part of the
boundary between the two almost-invariant sets, see Fig. 8(d).
The complete boundary between the two almost-invariant sets
appears to be determined by both the unstable equilibrium point
and this unstable periodic orbit and their stable manifolds.
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Figure 4.2: Six primary vortices extracted by k-means clustering (k = 7) of projection

of the ergodic quotient onto first 30 di�usion coordinate. (Parameters in Tab. 4.2)

boundary plane, which act as Poincaré sections for each of primary vortices. There- 2299

fore, we were able to reduce the initialization set even further, focusing the initial 2300

conditions on the x = 0 plane. Of course, any other x = const. plane could have 2301

been chosen with the same e�ect. 2302

Fig. 4.3 shows the results of the simulation focusing on a single vortex. 2303

Again, the convex hulls of clusters in the ergodic quotient are disjoint, allowing for 2304

an easy detection of k = 5 clusters. We see in Fig. 4.3a that primary vortices do not 2305

have a homogeneous internal structure: they consist of a core vortex (green), and 2306

Observables k ⇤ [�10, 10]3 ⌅ Z3

Initial conditions
N = 1002, uniformly with x = 0,

(y, z) ⇤ [0.35, 0.8]⇥ [0.6, 0.9]

Averaging Tmin = 500, Text = 500, ATOL = 2⇥ 10�4

Di�usion Maps Nmin = 70

Table 4.3: Parameters of the analysis of a primary vortex of the ABC flow.

98

Vortices identified as clusters of 
points in diff. coord. space.

State space coloring EQ in Diffusion Coordinates

Coherence
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Periodic 3D+1 flow: unsteady Hill’s ring vortex

10

Hill’s Vortex

Steady Swirl

Unsteady Perturbation  

(R, z, ✓) 2 R+ ⇥ R⇥ T

z

R

✓

The unsteady perturbation splits the ring vortex into a 
primary core vortex and a secondary companion vortex.

2

4
˙R
ż
˙✓

3

5
=

2

4
2Rz

1� 4R� z2
c
2R

3

5
+ "

2

4

p
2R sin ✓
zp
2R

sin ✓

2 cos ✓

3

5
sin 2⇡t

Invariant tori in Poincaré 
section isolated using 
the ergodic quotient:
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(a) ⇥ = c = 0.280, k = 8 (b) ⇥ = c = 0.349, k = 6

(c) ⇥ = c = 0.352, k = 7 (d) ⇥ = c = 0.355, k = 11

Figure 4.11: Invariant partitions of the forced Hill’s vortex, showing the secondary

vortex (red in left column, blue in right) as it travels with changing ⇥ = c. Level set

partition of �k shown.
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New bifurcation identified:
A crescent shaped secondary vortex appears and disappears

Coherence
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Both analyses use Lagrangian averaging, 
but applied to different fields.

ẋp = u(t, xp), xp(0) = p

(p, t) 7! xp(t)

Lagrangian trajectory:

Choice of the field(s) 
to be averaged

f̃(p, T ) :=
1

T

Z T

0
f(⌧, xp(⌧))d⌧

Initial
condition

Lagrangian average:

Averaging
Interval

I. Ergodic Quotient: Coherent Structures

A (large) number of stationary scalar fields, 
related to the domain, not dynamics, e.g., 
spatial Fourier harmonics.

II. Mesochronic Analysis: Material Deformation

Fluid velocity field: 
a single non-stationary vector field.

xp(t)
p

P

Deformation



In unsteady flows, instantaneous analysis 
gives poor predictions. Move to finite times.

T ! 0+

T > 0

�(p, T ) = xp(T )
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Linear deformation of the material is 
the basis for several flow analysis techniques.

12

t = t0

t = t0 + T

Maximal Finite-Time Lyapunov Exponents (FTLE):

Detect only the maximal magnitude of deformation, 
not its character (e.g., shear, rotation).
Analysis often depends on locally maximising curves as 
barriers to transport.

Mesochronic Analysis:

Classifes deformation based on its character, not its 
magnitude.

ẋp = f(t, xp), xp(0) = p

p

Flow map assigns final 
position to initial.

Our focus is on the Flow Map:

Instantaneous analysis is equivalent 
to vector field analysis.

Deformation
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Deformation by the Flow Map is captured by the
Jacobian of trajectory averages of the velocity field.

13

�(p, T ) = p+
R T
0 f(⌧, xp(⌧))d⌧

f̃(p, T ) = 1
T

R T
0 f(⌧, xp(⌧))d⌧

�(p, T ) = p+ T f̃(p, T )
Flow map

Mesochronic
(=Time-Averaged)
velocity field

Flow map can be interpreted as a Lagrangian average of the velocity field.

Mesochronic Jacobian captures the linear deformation by the flow.

Locations of the eigenvalues determine the character of deformation.

Deformation
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In 2D flows, a single quantity characterizes the deformation.

14

0 tr Jf̃

det Jf̃

tr Jf̃ = 0

Incompressibility
constraint

4
T 2

tr Jf̃ + T det Jf̃ = 0

Incompressibility
constraint

tr Jf̃

det Jf̃

0

T = 0+Okubo-Weiss: T > 0
[Mezic, Loire, et al., Science, 2010]

Elliptic

Hyperbolic
Flipping

Hyperbolic
Non-flipping

Mesochronic Analysis:

Deformation

Mesochronic Vector Field =
Instantaneous Vector Field
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Mesochronic analysis of 2D flows correctly detected 
phenomena related to the Deepwater Horizon Spill.

15

Oil slick distribution (May, 2010): Distribution of bacteria (Jun, 2010):

Deformation

Elliptic 
deformation
corresponds 
to gyres.

doubling times for each of the 52 OMTs are provided in SI Text
along with the associated reasoning.

Results and Discussion
The model predicts that the 2 × 1011 g hydrocarbons injected into
the deepGulf ofMexico drove total bacterial productivity of 1011 g
C (∼1023 cells). Such productivity is sufficient to double the bac-
terial population in the deep plume horizon (1,000–1,300m depth)
over an area of 30,000 km2 and generate a regional oxygen
anomaly of 1012 g. Published observations suggest that this process
began within weeks of the initial irruption (9, 10, 13) and pro-
gressed over a period of ∼120 d, by which point the natural gases
had been consumed and the fluorescence anomaly in the deep
plume had been strongly attenuated (2). These observations, made
during the DWH event, serve to ground truth our models’ pre-
dictions of the temporal and spatial distributions for microbial
growth and metabolism.
Under our model, when a water parcel first encounters a hy-

drocarbon source, a seed population of active hydrocarbon-
degrading cells, present at low abundance in all waters, begins to
grow. As growth progresses, OMTs outpace the influx of their
preferred substrates, giving sequential pulses of respiration as
different OMTs flourish and then fade (Fig. 1). The timing of
respiratory pulses is controlled primarily by the growth rates of the
responsible OMTs, initial abundance of active cells, and duration
of source exposure. The model shows initial pulses of growth and
respiration linked to butane and pentane followed by sequential
pulses from consumption of propane and other short-chain alka-
nes, ethane, aromatic hydrocarbons, and finally, methane.
By injecting the hydrocarbons into moving parcels of water, the

model generates a complex spatial pattern of bacterial growth and
metabolism (Movie S1) and reveals associated feedback mecha-
nisms. Tracking individual water parcels as they advect reveals that
many parcels come into contact with the hydrocarbon source on
multiple occasions (Fig. 1). A parcel’s first encounter with hydro-
carbons feeds staggered pulses of respiration and successive
blooms of individual OMTs (Fig. 2A), and residual hydrocarbon-

degrading OMT abundances remain elevated above background.
We apply the term autoinoculation to describe the priming effect
that occurs when hydrocarbons are introduced into such a pre-
viously exposed parcel. When hydrocarbons irrupt into the pre-
viously exposed parcel, the elevated abundance of hydrocarbon-
degrading OMTs allows simultaneous consumption of different

BA C

er
ia

 (
m

ol
-C

 L
-1

)0102,enuJ910102,enuJ31

La
tit

ud
e

La
tit

ud
e

Ba
ct

e
d-

1 )

13 June, enuJ910102 , 2010

ED F
edutignoLedutignoL

sp
ira

tio
n 

(
M

-O
2

La
tit

ud
e

La
tit

ud
e

R
es

Longitude Longitude

Fig. 3. Impact of recirculation on hydrocarbon abundance, bacterial population, andmetabolism. (A and B) Spatial distribution of bacterial abundance before
(A) and during (B) the early stages of an autoinoculation event. (C) Time course change in average abundance for bacteria consuming nonmethane hydro-
carbons and the average summed concentration of these chemicals integrated over the computational domain. (D and E) Spatial distribution of hydrocarbon
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small number of parcels exit the domain near the end of the simulation.
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Bacterial respiration

[Valentine, Mezic et al., PNAS, 2012]

Mesochronic Classes

doubling times for each of the 52 OMTs are provided in SI Text
along with the associated reasoning.

Results and Discussion
The model predicts that the 2 × 1011 g hydrocarbons injected into
the deepGulf ofMexico drove total bacterial productivity of 1011 g
C (∼1023 cells). Such productivity is sufficient to double the bac-
terial population in the deep plume horizon (1,000–1,300m depth)
over an area of 30,000 km2 and generate a regional oxygen
anomaly of 1012 g. Published observations suggest that this process
began within weeks of the initial irruption (9, 10, 13) and pro-
gressed over a period of ∼120 d, by which point the natural gases
had been consumed and the fluorescence anomaly in the deep
plume had been strongly attenuated (2). These observations, made
during the DWH event, serve to ground truth our models’ pre-
dictions of the temporal and spatial distributions for microbial
growth and metabolism.
Under our model, when a water parcel first encounters a hy-

drocarbon source, a seed population of active hydrocarbon-
degrading cells, present at low abundance in all waters, begins to
grow. As growth progresses, OMTs outpace the influx of their
preferred substrates, giving sequential pulses of respiration as
different OMTs flourish and then fade (Fig. 1). The timing of
respiratory pulses is controlled primarily by the growth rates of the
responsible OMTs, initial abundance of active cells, and duration
of source exposure. The model shows initial pulses of growth and
respiration linked to butane and pentane followed by sequential
pulses from consumption of propane and other short-chain alka-
nes, ethane, aromatic hydrocarbons, and finally, methane.
By injecting the hydrocarbons into moving parcels of water, the

model generates a complex spatial pattern of bacterial growth and
metabolism (Movie S1) and reveals associated feedback mecha-
nisms. Tracking individual water parcels as they advect reveals that
many parcels come into contact with the hydrocarbon source on
multiple occasions (Fig. 1). A parcel’s first encounter with hydro-
carbons feeds staggered pulses of respiration and successive
blooms of individual OMTs (Fig. 2A), and residual hydrocarbon-

degrading OMT abundances remain elevated above background.
We apply the term autoinoculation to describe the priming effect
that occurs when hydrocarbons are introduced into such a pre-
viously exposed parcel. When hydrocarbons irrupt into the pre-
viously exposed parcel, the elevated abundance of hydrocarbon-
degrading OMTs allows simultaneous consumption of different
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We call v*(x0, t0, T) the mesochronic veloc-
ity field (15).

We denote by ftþT
t0 ðx0Þ as the map of A

mapping the fluid particle starting at time t0 at
point x0 ∈ R2 to its position x at time t0 + T. This
map represents the solution of Eq. 1. Its derivative
DftþT

t0 ðx0Þ is the Jacobian matrix J(x0) = ∂x/∂x0.
Because v is divergence-free, the eigenvalues l1,2(x0)
of J(x0) satisfy det(J(x0)) = l1(x0)l2(x0) = 1. Thus,
they are either real with l1(x0) = 1/l2(x0) or
complex-conjugate on the unit circle, |l1,2(x0)| =
1. We call a trajectory starting at x0 mesohyper-
bolic (hyperbolic on average) if l1,2(x0) are real
and different from 1, and mesoelliptic (elliptic on
average) if the eigenvalues are complex-conjugate.

The calculation shown in (4) now leads to
the conclusion that a trajectory starting at x0 is
mesohyperbolic on t, provided that det∇v*(x0) <
0 or det∇v*(x0) > 4/T2, whereas it is mesoellip-
tic, provided that 0 < det∇v*(x0) < 4/T2. There
are also differences in behavior between the case
det∇v*(x0) < 0 or det∇v*(x0) > 4/T2. The local,
linearized map behavior in the case det∇v*(x0) <
0 is a pure strain (fig. S4A), whereas in the case
of d det∇v*(x0) > 4/T2, it is strain combined with
a 180° rotation (that is, reflection across the x
and y axes) (fig. S4B). When T goes to zero, the
mesohyperbolicity/mesoellipticity criterion goes
to the well-known Okubo-Weiss criterion (16, 17)
for instantaneous snapshots of time-dependent
velocity fields, where a region is called elliptic
provided that det∇v > 0 in that region and hy-
perbolic in the region where det∇v < 0.

The Lagrangian coherent structures theory is
based on the calculation of the ridges of the finite-
time Lyapunov exponent (FTLE) field (7, 18, 19).
In contrast to the theory of Lagrangian coherent
structures that determines the stretching skeleton
of a fluid flow depending on the extrema of the
FTLE field [or the extrema of det∇v (x0, t, t0) over
a time interval [t0, t] (20)], our approach is putting
emphasis on the average behavior of trajectories
over an interval of time. In contrast to the FTLE
method, the mesohyperbolicity calculation dis-
tinguishes between two different regions of hy-
perbolic behavior (which we show in examples
below enables characterization of mixing regions)
and provides the ability for gradation of the elliptic
regions. For more detailed comparison, see (4).

Although the field we use to distinguish kin-
ematically separate regions is not frame-invariant,
it can be improved to account for the rate of rota-
tion of the strain along the lines pursued in (21, 22).

The field det∇v*(x0) becomes the centerpiece
of our finite-time diagnostics of the Lagrangian
properties. To build intuition, we begin with a sim-
ple, well-understood, cellular velocity field shown
in Fig. 1A, described by

u(x) ¼ −sin(2px1)cos(2px2)
cos(2px1)sin(2px2)

! "
ð6Þ

This divergence-free flow has families of pe-
riodic orbits around elliptic fixed points bounded
by heteroclinic orbits that connect hyperbolic

Fig. 2. (A) Ocean hypergraph map around the Mississippi Delta on 14 May, forecasting strong mixing
activity (mixture of red and blue) in the following 3 days. (B) NOAA’s oil spread estimate around the
Mississippi Delta on 17 May. The coastal areas affected were predicted by the hypergraph map on the left
3 days earlier. (C) Ocean hypergraph map around Grand Isle, Louisiana, on 19 May, forecasting strong oil
incursion (circled) in the following 3 days. (D) NOAA’s oil spread estimate around the Mississippi Delta on
22 May. The coastal areas around Grand Isle affected by oil spread were predicted by the hypergraph map
on the left 3 days earlier.

Fig. 3. (A) Ocean hypergraph map in front of the Biloxi-Pensacola shoreline on 25 May, forecasting
strong oil incursion toward the coastline (circled) in the following 3 days. (B) NOAA’s oil spread estimate
in front of the Biloxi-Pensacola shoreline on 27 May. The major directions of oil spread were predicted by
the hypergraph map 2 days earlier. The oil reached the shore several days later, on 2 June. (C) Ocean
hypergraph map in front of Pensacola on 8 June, forecasting a strong oil mixing event in front of the
shoreline and extension of the oil slick toward Panama City Beach in the following 3 days. (D) NOAA’s oil
spread estimate on 10 June in front of Pensacola. The oil developed a large slick forecasted by the
hypergraph map 2 days earlier and continued to flow toward Panama City Beach.
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We call v*(x0, t0, T) the mesochronic veloc-
ity field (15).

We denote by ftþT
t0 ðx0Þ as the map of A

mapping the fluid particle starting at time t0 at
point x0 ∈ R2 to its position x at time t0 + T. This
map represents the solution of Eq. 1. Its derivative
DftþT

t0 ðx0Þ is the Jacobian matrix J(x0) = ∂x/∂x0.
Because v is divergence-free, the eigenvalues l1,2(x0)
of J(x0) satisfy det(J(x0)) = l1(x0)l2(x0) = 1. Thus,
they are either real with l1(x0) = 1/l2(x0) or
complex-conjugate on the unit circle, |l1,2(x0)| =
1. We call a trajectory starting at x0 mesohyper-
bolic (hyperbolic on average) if l1,2(x0) are real
and different from 1, and mesoelliptic (elliptic on
average) if the eigenvalues are complex-conjugate.

The calculation shown in (4) now leads to
the conclusion that a trajectory starting at x0 is
mesohyperbolic on t, provided that det∇v*(x0) <
0 or det∇v*(x0) > 4/T2, whereas it is mesoellip-
tic, provided that 0 < det∇v*(x0) < 4/T2. There
are also differences in behavior between the case
det∇v*(x0) < 0 or det∇v*(x0) > 4/T2. The local,
linearized map behavior in the case det∇v*(x0) <
0 is a pure strain (fig. S4A), whereas in the case
of d det∇v*(x0) > 4/T2, it is strain combined with
a 180° rotation (that is, reflection across the x
and y axes) (fig. S4B). When T goes to zero, the
mesohyperbolicity/mesoellipticity criterion goes
to the well-known Okubo-Weiss criterion (16, 17)
for instantaneous snapshots of time-dependent
velocity fields, where a region is called elliptic
provided that det∇v > 0 in that region and hy-
perbolic in the region where det∇v < 0.

The Lagrangian coherent structures theory is
based on the calculation of the ridges of the finite-
time Lyapunov exponent (FTLE) field (7, 18, 19).
In contrast to the theory of Lagrangian coherent
structures that determines the stretching skeleton
of a fluid flow depending on the extrema of the
FTLE field [or the extrema of det∇v (x0, t, t0) over
a time interval [t0, t] (20)], our approach is putting
emphasis on the average behavior of trajectories
over an interval of time. In contrast to the FTLE
method, the mesohyperbolicity calculation dis-
tinguishes between two different regions of hy-
perbolic behavior (which we show in examples
below enables characterization of mixing regions)
and provides the ability for gradation of the elliptic
regions. For more detailed comparison, see (4).

Although the field we use to distinguish kin-
ematically separate regions is not frame-invariant,
it can be improved to account for the rate of rota-
tion of the strain along the lines pursued in (21, 22).

The field det∇v*(x0) becomes the centerpiece
of our finite-time diagnostics of the Lagrangian
properties. To build intuition, we begin with a sim-
ple, well-understood, cellular velocity field shown
in Fig. 1A, described by

u(x) ¼ −sin(2px1)cos(2px2)
cos(2px1)sin(2px2)

! "
ð6Þ

This divergence-free flow has families of pe-
riodic orbits around elliptic fixed points bounded
by heteroclinic orbits that connect hyperbolic

Fig. 2. (A) Ocean hypergraph map around the Mississippi Delta on 14 May, forecasting strong mixing
activity (mixture of red and blue) in the following 3 days. (B) NOAA’s oil spread estimate around the
Mississippi Delta on 17 May. The coastal areas affected were predicted by the hypergraph map on the left
3 days earlier. (C) Ocean hypergraph map around Grand Isle, Louisiana, on 19 May, forecasting strong oil
incursion (circled) in the following 3 days. (D) NOAA’s oil spread estimate around the Mississippi Delta on
22 May. The coastal areas around Grand Isle affected by oil spread were predicted by the hypergraph map
on the left 3 days earlier.

Fig. 3. (A) Ocean hypergraph map in front of the Biloxi-Pensacola shoreline on 25 May, forecasting
strong oil incursion toward the coastline (circled) in the following 3 days. (B) NOAA’s oil spread estimate
in front of the Biloxi-Pensacola shoreline on 27 May. The major directions of oil spread were predicted by
the hypergraph map 2 days earlier. The oil reached the shore several days later, on 2 June. (C) Ocean
hypergraph map in front of Pensacola on 8 June, forecasting a strong oil mixing event in front of the
shoreline and extension of the oil slick toward Panama City Beach in the following 3 days. (D) NOAA’s oil
spread estimate on 10 June in front of Pensacola. The oil developed a large slick forecasted by the
hypergraph map 2 days earlier and continued to flow toward Panama City Beach.
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[Mezic, Loire et al., Science, 2010]
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In 3D flows, deformations are characterized by two quantities.
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Mesochronic deformation classes can be 
identified by signs of two independent parameters.
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Analysis of ABC flow structures matches our intuition.
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Figure IV.2: Six primary vortices extracted by k-means clustering (k = 7) of projection of the ergodic

quotient onto first 30 di↵usion coordinates. Parameters in Table IV.2. (Physica D: Nonlinear Phenomena by

Elsevier [BM12]. Reproduced with permission of Elsevier Publishing in the format reuse in a dissertation/thesis via

Copyright Clearance Center.)

Observables k 2 [�10, 10]3 \ Z3

Initial conditions
N = 1002, uniformly with x = 0,

(y, z) 2 [0.35, 0.8] ⇥ [0.6, 0.9]

Averaging T
min

= 500, T
ext

= 500, ATOL = 2 ⇥ 10�4

Di↵usion Maps N
min

= 70

Table IV.3: Parameters of the analysis of a primary vortex of the ABC flow.

consist of a core vortex (green), and two pairs of side vortices (yellow and blue).

The side vortices are in 2 : 1 resonance with the vortex core, i.e., the non-adjoint lobes

connect to each other at boundaries of the periodicity box. In Fig. IV.4 we illustrate this phenomenon

by combining the k-means and eigenfunction analysis. The k-means was used to extract the set

corresponding to the central vortex and the side lobes. Based on Fig. IV.3b, the pseudo-color was

based on the di↵usion coordinate �10 which varies through half of its range over the core vortex

(green in Fig. IV.3a) and one of the lobe vortices (blue).

The reason that the projection coordinates chosen in Fig. IV.3b are of relatively high index,

compared to those in Fig. IV.2b, lies in the character of the boundary between the primary vortex

region and the chaotic sea, respectively colored red and teal in Fig. IV.3a. Due to slow convergence

in this region that contains zones of intermittency, certain trajectories have been mapped away

from the main bulk; one of such points can be seen as a dark-red dot at the center of Fig. IV.3b.

Such numerical artifacts result in an increase in algebraic multiplicity of the � ⇡ 1 eigenvalues

of the di↵usion kernel: each disconnected component introduces a � = 1 eigenfunction that is a
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Mesochronic analysis: Character of material deformation

Applying the techniques to physical flows: see Drew Poje’s talk.

Techniques will be converted into user-friendly code and shared within the collaboration.

Understanding parametrization: how does change in initial and final averaging time 
affect our interpretation of results.
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