

ANALYSES OF COHERENCE AND DEFORMATION USING LAGRANGIAN AVERAGES

Marko Budišić Igor Mezić (PI)

ONR MURI Ocean 3D+1 May 1, 2013 engineering Coherence

Both analyses use Lagrangian averaging, but applied to different fields.

Lagrangian trajectory:

$$\dot{x}_p = u(t, x_p), \quad x_p(0) = p$$

 $(p, t) \mapsto x_p(t)$

Lagrangian average:

I. Ergodic Quotient: Coherent Structures

A (large) number of stationary scalar fields, related to the domain, not dynamics, e.g., spatial Fourier harmonics.

 $f(t,x) = f_k(x), \ k = 1, 2, \dots$

II. Mesochronic Analysis: Material Deformation

Fluid velocity field: a single non-stationary vector field. f(t, x) = u(t, x) engineering Coherence

Quantifying trajectory similarity is difficult pointwise, but feasible using Lagrangian averages.

Comparison of tracer paths can be misleading: Two trajectories in a mixing region can never be aligned pointwise, but on average they have the same behavior.

- **Approach:** compare tracers according to averages of many different scalar fields.
- **Result:** we can **quantify** when trajectories are **equal** on average, but also when they are **similar** on average.

Ergodic quotient coordinates can be used to visualize coarse-grained flow patterns.

Coherence

May 1, 2013

UC SANTA BARBARA

engineering

Trajectory curve description is replaced by vectors of Lagrangian averages.

Coherence

Curves:

UC SANTA BARBARA

engineering

$$\dot{x}_p = u(t, x_p), \quad x_p(0) = p$$

 $(p, t) \mapsto x_p(t)$

Ergodic quotient map is obtained by

(scalar fields on the state space):

averaging a basis of continuous functions

$$\tilde{f}(p,T) := \frac{1}{T} \int_0^T f(\tau, x_p(\tau)) d\tau$$

 $f_k(x) = e^{ik \cdot x}$

$$(p,T) \stackrel{\pi}{\mapsto} \begin{bmatrix} \tilde{f}_1(p,T) \\ \tilde{f}_2(p,T) \\ \vdots \end{bmatrix}$$

Averaged scalar fields used as coordinates quantify "on-average" similarity between tracer paths.

If scalar fields are chosen as Fourier harmonics, the Lagrangian averages are spatial Fourier coefficients of averaging distributions.

 $f_k(x) = e^{ik \cdot x}$

Continuous topology: Sobolev space norm.

Diffusion maps are a nonlinear coordinate reduction preserving the intrinsic geometry of the Ergodic Quotient (EQ).

EQ: Averaged Fields The scalar fields used in averaging were chosen regardless of dynamics, so they yield a high-dimensional space. The dimension of EQ can be very low, if the dynamics is simple, e.g., when there is only a single gyre, or a single mixing region. $\tilde{f}_i(x)$ A heat source is placed on To disentangle the "wire" (EQ), an entangled "wire" (EQ). sort the points by time it takes them to heat up. **Diffusion Maps:** [Coifman, Lafon, EQ: Diffusion Coord. **Implementation requires only** deterministic matrix computations. $f_1(p,T)$ 0.5 $\Psi_1(p,T)$ $\Psi_2(p,T)$ $f_2(p,T)$ (p,T) ψ_2 0 **Topology and geometry are preserved**, e.g., a continuous line is still a line, but the -0.5Tracer Averaged Diffusion

number of coordinates is greatly reduced.

Coherence

UC SANTA BARBARA

engineering

 $ilde{f}_j(x)$

ACHA, 2006]

paths

fields

Coordinates

-0.5

0

 ψ_1

0.5

Coloring the state space by values of dominant diffusion coordinates reveals large scale features.

Coherence

UC SANTA BARBARA

engineering

engineering Coherence

Steady 3D flow: ABC system.

Periodic 3D+1 flow: unsteady Hill's ring vortex

Coherence

The unsteady perturbation splits the ring vortex into a primary core vortex and a secondary companion vortex.

Invariant tori in Poincaré section isolated using the ergodic quotient:

UC SANTA BARBARA

engineering

New bifurcation identified:

Both analyses use Lagrangian averaging, but applied to different fields.

Deformation

Lagrangian trajectory:

UC SANTA BARBARA

engineering

$$\dot{x}_p = u(t, x_p), \quad x_p(0) = p$$

 $(p, t) \mapsto x_p(t)$

Lagrangian average:

Linear deformation of the material is the basis for several flow analysis techniques.

Deformation

UC SANTA BARBARA

enaineerina

Maximal Finite-Time Lyapunov Exponents (FTLE):

Detect only the maximal magnitude of deformation, not its character (e.g., shear, rotation). Analysis often depends on locally maximising curves as barriers to transport.

Mesochronic Analysis:

Classifes deformation based on its character, not its magnitude.

Our focus is on the Flow Map:

$$\dot{x}_p = f(t, x_p), \ x_p(0) = p$$

 $p \quad flow map assigns final position to initial.$

 $T \to 0^+$

Instantaneous analysis is equivalent to vector field analysis.

In unsteady flows, instantaneous analysis gives poor predictions. Move to finite times.

T > 0

Deformation by the Flow Map is captured by the Jacobian of trajectory averages of the velocity field.

Flow map can be interpreted as a Lagrangian average of the velocity field.

Flow map

$$\Phi(p,T) = p + \int_0^T f(\tau, x_p(\tau)) d\tau$$

UC SANTA BARBARA

Deformation

$$\tilde{f}(p,T) = \frac{1}{T} \int_0^T f(\tau, x_p(\tau)) d\tau$$

$$\Phi(p,T) = p + T\tilde{f}(p,T)$$

Mesochronic Jacobian captures the linear deformation by the flow.

$$J_{\tilde{f}}(p,T) = \frac{J_{\Phi}(p,T) - \mathrm{Id}}{T} = \begin{bmatrix} \partial_1 \tilde{f}_1(p,T) & \partial_2 \tilde{f}_1(p,T) & \dots \\ \partial_1 \tilde{f}_2(p,T) & \partial_2 \tilde{f}_2(p,T) & \dots \\ \vdots & \ddots \end{bmatrix}$$

Locations of the eigenvalues determine the character of deformation.

In 2D flows, a single quantity characterizes the deformation.

Okubo-Weiss:
$$T = 0^+$$

Mesochronic Vector Field =
Instantaneous Vector Field
 $\det J_{\tilde{f}}$
 $\det J_{\tilde{f}}$
 $Hyperbolic Flipping$
Elliptic

Deformation

 $\mathbf{\Pi}$

Mesochronic Analysis: T > 0

[Mezic, Loire, et al., Science, 2010]

UC SANTA BARBARA

engineering

Mesochronic analysis of 2D flows correctly detected phenomena related to the Deepwater Horizon Spill.

Oil slick distribution (May, 2010):

Deformation

UC SANTA BARBARA

engineering

[Mezic, Loire et al., Science, 2010]

Distribution of bacteria (Jun, 2010):

Mesochronic Classes

[Valentine, Mezic et al., PNAS, 2012]

Mixing

Vortex

In 3D flows, deformations are characterized by two quantities.

Deformation

UC SANTA BARBARA

engineering

Criterion yields non-intuitive results even for steady flows: boundaries do not match understanding of invariant structures.

Mezić Research Group

Analysis of ABC flow structures matches our intuition.

UC SANTA BARBARA

engineering

Deformation

Near-future developments:

Understanding parametrization: how does change in initial and final averaging time affect our interpretation of results.

Techniques will be converted into user-friendly code and shared within the collaboration.

Applying the techniques to physical flows: see Drew Poje's talk.

Ergodic quotient: Identification of coherent structures

Budišić and Mezić, *Geometry of the ergodic quotient reveals* coherent structures in flows, **Physica D**, 241, (**2012**).

Budišić, Mohr, and Mezić, *Applied Koopmanism*, Chaos 22, (2012).

+1 in preparation

Mesochronic analysis: Character of material deformation

Mezić, Loire, et al., *A New Mixing Diagnostic and Gulf Oil Spill Movement*, **Science** 330, (**2010**).

Valentine, Mezić, et al., *Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption*, **PNAS** 109, (**2012**).

+2 in preparation