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Origins of Argo: Autonomous Lagrangian Circulation
Explorer (ALACE)
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e Developed as part of World
Ocean Circulation Experiment

¢ Profiling float, tracked via satel-
lite at ocean surface but de-
signed to follow current at 800 or
1000 m depth



Origins of Argo
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Davis et al, JTech, 1992

: Year 1 ALACE Trajectories

e 7/ floats

e 14-day trajectories at 800-m
depth

e Temperature measured at park-
ing depth

e Goal: map large-scale, low-
frequency velocity over
global ocean to address the
geostrophic reference velocity
problem.

e Subsequent improvements
added CTD to measure temper-
ature and conductivity (salinity)
while profiling: Profiling ALACE
(PALACE)

e No acoustic tracking



Transitioning to Argo

ST/ / / / _

6 -12 hours at surface
! to transmit data to satellite

]

: Descent to depth

1 ~10 em/s (~6 hours)
Salinity & Temperature
profile recorded during ascent
~10 cm/s (~6 hours)

Float descends to begin
profile from greater depth
2000 db (2000m)

e Early 2000s: ALACE/PALACE became global Argo program
e Emphasis on profile data; trajectories not initially quality controlled




Outline: What Argo Lets Us Learn

e What Argo measures

e Defining the mean and time
varying properties of the ocean
from Argo.

e Using trajectories as a reference
velocity

e Pushing the limits. Can we eval-
uate eddy variability?

e Prospects for the future. How
well do we know where an Argo
float will go?
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Argo measurements

http //soccom prmceton edu/ |

e Temperature, salinity

e pH, O,, nitrate, fluores-
cence, backscatter (SOC-
COM)

e EM-APEX: small-scale ve-
locities

e \ (turbulence): Prototype

e Acoustic tracking: Tested
but not highly successful

e Trajectory information: Col-
lected but not in initial qual-
ity control requirements



Mapping Argo data: How well do we sample an ed-
dying ocean?
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Mapping Argo data: Using altimetry to remove eddies

0 SN
e Eddies are the biggest non-seasonal , | '
process.
] \ \ 400~
e Satellite altimeter correlated with Argo
measurements, particularly in mid- °°
depth ocean, below mixed-layer g 80
gwoof :
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Correlation coefficients: sea surface height and Argo

Zajaczkovski and Gille, submitted, 2015



Mapping the ocean from Argo: Time-mean potential
density
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How to get a good trajectory

fﬂf//// / / / —{ g S e When did the float arrive at the sur-
4 face?

e How did the float move at the surface
; ; before making transmitting its posi-
o o T tion to satellite? (With ARGOS trans-
: i mitters, floats spent ~24 hours at the
surface to transmit data.)

6 -12 houl

ce :
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1 g

FI at descends to begin
rofile fnm greater depth
200[) db (2000m)




How to get a good trajectory: Inertial motion at the
surface

N e Assume inertial motion
m : cyele number) . . .
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Park et al, GRL, 2004



How to get a good trajectory: When do the floats sur-

face?

ations

Ollitrault and Rannou, JTech, 2013

e Retrieve surfacing times from
raw data by counting number of
attempts to transmit.

e Neglect inertial motion.

e Released data base of trajecto-
ries, BUT weren’t funded to ex-
tend to present, and didn’t im-
plement inertial motion correc-
tion.

e Megan Scanderbeg and
Nathalie  Zilberman (SIO)
working on complete trajectory
quality control.



What do we learn from trajectories?
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East Pacific Rise
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Irajectory coverage

Trajectory Density
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Pressure maps (with trajectories and hydrography only)
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Transport at 1000 m differs when trajectories are used

— {rajectory-based velocily case

A) --=. Zero-reference velocity case
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Classic wind-driven Sverdrup balance augmented with

bottom torque
e Transport from tempera-

— ture/salinity ~ profiles  alone
. 4 goimared vom i foing (black) nothing like transport

e s referenced with trajectories
(red).

e Classic Sverdrup balance (ma-
genta) matches neither.

e Adding bottom torque (blue)

Geostrophic transport over the EPR (117°-108°W)

0 ] implies agreement within error
2. - bars.
4 L e East Pacific Rise Current new,
sy 46 44 42 40 38 36 34 32 30°S i . .
Latnuce not previously identified. Ro-
Zilberman, Roemmich, Gille, in prep, 2015 bUSt impaC’[ on gIObaI meridional
transport.

e Expect other mid-ocean ridges
to support similar current struc-
tures.
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Can we evaluate eddy variability?

%_{ +V - (Tl)+ V- (uT") = forcing

Estimate: /T’ from float data

Time-Averaged Streamlines

Cross-stream
component

ALACE Velocity



Missing high-frequency component

o Floats measure v'yggays and

T'40 days- 1
o We want v'T"yg gays- What have
we lost?
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Geographic distributions: Meridional heat flux

Gille, JPO, 2003
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Along-stream averages: Net meridional heat flux
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Total heat flux at 900 m: 4.7 to 7.5 kW/m?.
Implies 0.3 PW heat loss to atmosphere south of ACC.
Temperature change at 900 m in 50 years: > 2° C.

Gille, JPO, 2003; see also Gray and Riser, in prep
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Planning for future deployments
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e Upper 2000 m of ocean well sampled by Argo, but deep ocean is a data
void.

e Deep Argo will help to fill gaps, albeit at higher cost.
e Sampling strategy will require planning.



Pressure (dbor)
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Summary

e Argo has transformed physical
oceanography mostly because of
T/S measurements.

e Argo trajectories are latecomers to
the Argo data stream but good
constraints on reference velocities.

e However, Argo trajectories are dif-
ficult to interpret as Lagrangian
measurements.

e Lagrangian methods will be use-
ful in planning future Argo deploy-
ments, for Deep Argo, Core Argo,
and other Argo-related programs.

Deep SOLO Float deployment, R/V Tangaroa, June 2014, south-west Pa-

cific



