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Tamay Özgökmen, University of Miami

Contents

1 A Discussion of Ocean Modeling Approaches 2

2 Large Eddy Simulation 4

2.1 The Concept of Spatial filtering . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Eddy Viscosity SGS models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Smagorinsky SGS model: . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Approximate deconvolution SGS models . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Repeated filtering AD model: . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Rational AD model: . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Examples of LES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 What constitutes a good test problem? . . . . . . . . . . . . . . . . . 15

2.4.2 Quantification of mixing: . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 What resolution constitutes an LES? . . . . . . . . . . . . . . . . . . 16

3 FTLEs from LES 21

3.1 Application to Lock Exchange Problem . . . . . . . . . . . . . . . . . . . . . 21

3.2 Application to Mixed Layer Instability . . . . . . . . . . . . . . . . . . . . . 22

1



1 A Discussion of Ocean Modeling Approaches

Traditional ocean general circulation models (OGCMs) have the advantage that they are

already configured at the global scale, as well as for specific ocean basins by national opera-

tional centers, such as Naval Research Laboratory (NRL) and National Center for Environ-

mental Prediction (NCEP)1), with mesh spacings going down to about 5 km. OGCMs can

also be set up for regional simulations at finer resolutions (Capet et al., 2008). The primary

advantage of these approaches is that the dynamics of the general circulation and mesoscale

features such as jets and eddies are well captured. These OGCMs contain realistic forcing,

domain geometry, and assimilate ocean data.

There are however several disadvantages of OGCMs for simulating submesoscale flows:

• First, the equation set (so-called primitive equations, PE) contains the hydrostatic

approximation, which is justified by the high aspect ratio between horizontal and ver-

tical domain dimensions. The hydrostatic approximation becomes invalid for scales

below approximately 1 km (Kantha and Clayson, 2000), or within the submesoscale

range. The breakdown of the hydrostatic approximation creates two types of errors

in OGCMs. Internal waves are prominent features in the ocean with well-known dis-

persion relations and characteristics (Garrett and Munk, 1972). It is known that hy-

drostatic models cannot produce the correct dispersion for non-linear internal waves,

leading to unrealistically fast propagating waves (Scotti and Mitran, 2008). Also, the

overturning of density surfaces by Kelvin-Helmholtz instabilities, which are one of the

primary mechanisms responsible for mixing in the ocean, cannot be explicitly captured

with hydrostatic models. In fact, the accuracy of hydrostatic models can substantially

degrade with finer resolution at such scales (Chang et al., 2005). Inclusion of a non-

hydrostatic pressure solver in hydrostatic OGCMs requires a substantial change in

these codes (Scotti and Mitran, 2008).

• Second, for the reasons described above, OGCMs contain parameterizations for mixing

and dissipation (but not for dispersion, to the knowledge of the authors). These pa-

rameterizations may range from algebraic models to second-order turbulence closures

1http://www.hycom.org/ocean-prediction
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(Large, 1998). One challenge with algebraic closures is that they can contain dimen-

sional parameters that need to be tuned for different flow problems (Chang et al.,

2005). The turbulence closures have been imported from the engineering community

and further developed for stratified oceanic flows (Mellor and Yamada, 1982; Kantha

and Clayson, 1994; Burchard and Baumert, 1995; Burchard and Bolding, 2001; Canuto

et al., 2001; Baumert and Peters, 2004; Baumert et al., 2005; Warner et al., 2005; Um-

lauf and Burchard, 2005; Canuto et al., 2007). They have been shown to work well in

challenging ocean mixing problems (e.g., Ilıcak et al. (2008)). But perhaps they require

more extensive evaluation as more comprenhesive ocean data become available.

• Also, given that the hydrostatic approximation changes the vertical momentum bal-

ance, turbulence closures are applied only in the vertical direction. This has created a

disconnect between horizontal and vertical closure schemes.

• Third, there are challenges with data assimilation. Assimilation can influence conser-

vation laws. In addition, it is not clear that assimilating data that contain much higher

spatial resolution than the OGCMs, or simply point measurements on 5 to 10 km grids

would enhance the realism of the model for submesoscale processes.

• Finally, the prevailing OGCMs are based on second order numerics, thereby requiring

more mesh points for convergence than higher order methods (Deville et al., 2002).

Given that submesoscale processes are expected to be captured near the highest re-

solved wave number range in OGCMs, it becomes likely that numerical dissipation and

dispersion errors could influence submesoscale flow behavior.

As such, it is beneficial to consider methods developed in the computational fluid dynam-

ics (CFD) community for simulating submesoscale flows. While these models are typically

not configured to incorporate the large-scale realism of OGCMs, they offer high numerical ac-

curacy, scalability, adaptive and/or unstructured meshes, and integrate the well-established

Navier-Stokes or Boussinesq equations (BE) of motion. In that sense, they address many

of the issues that create challenges for OGCMs outlined above. Nevertheless, not all CFD

methods are appropriate for oceanic problems. The large Reynolds numbers in ocean flows
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prohibit the direct numerical simulation (DNS), in which all degrees of freedom are com-

puted. Reynolds averaged Navier Stokes (RANS, Wilcox (1998)) codes are computationally

efficient, but raise several questions. First, the decomposition of the flow field into a mean

and fluctuating component creates some ambiguity for transient flows, as in the case of

mixed layer instability. Second, many RANS closures rely on the eddy viscosity paradigm,

or forward cascade of energy, which is not always valid in the presence of stratification, and,

in particular, rotation (Vallis, 2006). An alternate approach is the large eddy simulation

(LES, Ferziger (2005)), which lies in between the extremes of DNS, in which all turbulence

is resolved, and RANS, in which all turbulence is modeled. In regards to the numerical

method, the spectral element method (SEM), which combines the geometrical flexibility of

finite element method (FEM) with the numerical accuracy of spectral models (Patera, 1984;

Maday and Patera, 1989), seems to be ideally suited for submesoscale oceanic flows.

2 Large Eddy Simulation

The fundamental concept behind LES is summarized on page in Fig. 1. LES problem

consists of finding the best approximation of u on the computational grid by solving the

discrete version of the Navier-Stokes equations. The discrete approach introduces two types

of errors:

• Discretization error is due to dispersion and dissipation errors introduced by the nu-

merical scheme (finite difference, finite volume, finite element, spectral and spectral

element methods).

• Resolution error is due to the fact that only a limited number of degrees of freedom

can be captured and some scales of the exact solution are missing.
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Fig. 1: Schematic view of a simple scale separation operator. From p. 11 of Sagaut (2006).

In LES, we seek the best solution by two basic ways:

• Implicit LES approach in which the numerical method is such that discretization er-

ror and resolution error will cancel one another. There are strong defenders of this

approach for control volume based numerical models, such as finite volume and fi-

nite elements (Margolin and Rider, 2002), whereas point-wise techniques such as finite

differences do not fall into this category.

• Explicit LES approach in which extra terms are added to the equations of motion that

aim to cancel the resolution error. It is imperative that discretization error must be

driven to zero for this approach to work.

In the following, we will focus on the explicit LES approach, under the assumption that

high-order models are used to implement LES.
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2.1 The Concept of Spatial filtering

The main mathematical idea behind LES is the concept of spatial filtering. Consider a

generalized filter as a convolution integral, viz.,

ui(x, t) = gδ ⋆ ui =

∫ ∫ ∫
gδ (x− ξ)ui(ξ, t)d

3ξ (1)

ui = u− u′
i

where ui denotes the full velocity, u denotes the resolvable-scale filtered velocity, u′
i = ui−ui

is the subgrid-scale (SGS) velocity, δ = (∆x∆y∆z)1/3 is the filter width as a function of

model spatial resolution.

The filter function gδ is typically of the form top-hat, Gaussian, sharp cut off filters.

We will not go into details of such filters, because for most purposes related to actual com-

putations, constraining of the solution on the numerical mesh is assumed to constitute the

filtering procedure. Filters are important in situation where the LES solution should be

compared to filtered DNS solution. It is important to know that unlike Reynolds temporal

averaging, the spatial filtering does not commute, leading to:

u = g ⋆ g ⋆ u 6= u = g ⋆ u , (2)

u′ 6= 0 , (3)

and therefore, there will be differences regarding the turbulence terms arising from RANS

vs LES.

As before, we write the NSE:

∂ui

∂t
+

∂

∂xj
(uiuj) = −

1

ρ

∂p

∂xi
+

∂

∂xj
(2νSij) , (4)

∂ui

∂xi
= 0 , (5)

which, after filtering become

∂ui

∂t
+

∂

∂xj
(uiuj) = −

1

ρ

∂p

∂xi
+

∂

∂xj
(2νSij) , (6)

∂ui

∂xi
= 0 . (7)
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As in the case of RANS, the main issue is the decomposition of the nonlinear term in the

momentum equations:

uiuj = (ui + u′
i)(uj + u′

j) = uiuj + uiu
′
j + uju

′
i + u′

iu
′
j . (8)

One approach is to express filtered momentum equation as:

∂ui

∂t
+

∂

∂xj
(uiuj) = −

1

ρ

∂p

∂xi
+

∂

∂xj
(2νSij)−

∂τ ∗ij
∂xj

, (9)

where τ ∗ is so-called double-decomposition SGS stress tensor

τ ∗ij = Cij +Rij , (10)

Cij = uiu
′
j + uju

′
i , (11)

Rij = u′
iu

′
j , (12)

where cross-stress tensor C represents the interactions between large and small scales, and

the Reynolds SGS tensor R reflects the interactions between the sub-grid scales. One prob-

lematic issue is that uiuj requires (secondary) application of the spatial filter. This issue is

remedied by Leonard (1974) who proposed a further decomposition

uiuj = (uiuj − uiuj) + uiuj , (13)

= Lij + uiuj , (14)

where the new L term, called Leonard tensor, represents interactions among the large scales.

Using this new decomposition, the filtered momentum equations become

∂ui

∂t
+

∂

∂xj
(uiuj) = −

1

ρ

∂p

∂xi
+

∂

∂xj
(2νSij)−

∂τij
∂xj

, (15)

where τ is so-called triple-decomposition SGS stress tensor

τij = Lij + Cij +Rij = uiuj − uiuj . (16)

We should point out that in the case of a Reynolds operator, Cij = 0 and Lij = 0

and τij = Rij. Therefore, the presence of Cij and Lij constitutes one of the mathematical
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differences between RANS and LES. The objective in LES, as in turbulence closure models,

is then to come up with SGS models for τ . Note that we have neglected a discussion of SGS

models for density perturbation, which appear as

∂ρ′

∂t
+

∂

∂xi

(uiρ′) = +
∂

∂xi

(K
∂ρ′

∂xi

)−
∂σ

∂xi

, (17)

σ = uρ′ − u ρ′ . (18)

It is my personal experience (Özgökmen et al., 2007, 2009a, 2009b) that the SGS model

for momentum has a much larger influence on the simulation than SGS models for density

perturbations, so we will focus only on τ in the following.

Some commonly used models are introduced next. The list is by no means exhaustive.

In fact, we will focus only on three SGS models.

2.2 Eddy Viscosity SGS models

2.2.1 Smagorinsky SGS model:

In this model, first the eddy viscosity assumption is made

τij = −νsgs2Sij = −νsgs

(
∂ui

∂xj

+
∂uj

∂xi

)
, (19)

where the eddy viscosity coefficient needs to be determined, which is the main contribution

of Smagorinsky (1963). We assume high Re homogeneous turbulence with a wide inertial

range where the rate of dissipation can be estimated from Taylor’s (1935) scaling

ε ∼
Q3

L
∼

q3

δ
, (20)

where Q is a velocity scale for energetic eddies, L is the integral scale of the turbulence, and

q is a typical velocity of the SGS field. We assume that SGS field lives by the energy loss

of the large scales and serves to dissipate this energy. The dissipation rate can be using the

scaling of its definition

ε ∼ νsgs
q2

δ2
. (21)

From (20) and (21), it follows that

νsgs ∼ qδ , (22)
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as in the mixing length theory. From (20), (21) and (22), we get

νsgs ∼ Qδ4/3L−1/3 . (23)

Estimating Q from

Q ∼ L(SijSij)
1/2 = L|S| , (24)

and inserting a model parameter to produce equality, we have

νsgs = c2sδ
4/3L2/3|S| , (25)

where cs is so-called Smagorinsky constant. The integral length scale L is not easy estimate,

and requires much more complex closures than the one above, as we have seen in sections

4.6 and 4.7. For this reason, the following substitution is used

δ4/3L2/3 = δ2 , (26)

leading to the Smagorinsky (1963) closure for νsgs

νsgs = (cs δ)
2|S| , (27)

thus

τij = −2(cs δ)
2|S|Sij . (28)

The approximation (26) introduces errors into this model and one should not be surprized

if the model coefficient is not constant.

Note that unlike RANS turbulence closures, (28) is a function of δ, in a way that

τij → 0 as δ → 0 , (29)

namely LES solution natually becomes DNS in the limit of adequate resolution.

Theoretical estimation of the Smagorinsky constant: The resolved dissipation rate

can be estimated from

ε = νsgs|S|
2 = (cs δ)

2|S|3 . (30)
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Next, we assume that |S| can be estimated from the energy spectrum, for which (??) applies:

|S|2 = 2

∫ kc

0

k2
E(k)dk ≈ 2

∫
k2K ε2/3 k−5/3 dk ,

=
3

2
K ε2/3 k4/3 . (31)

From (31) and (30), one gets,

cs =
1

π

(
2

3K

)3/4

, (32)

and using K = 1.5, we arrive at

cs = 0.17 . (33)

There are several challenges regarding the implementation of the classic Smagorinsky

model:

• The first is that as put forward before, numerical models with low numerical errors are

needed. In particular, the effect of the numerical dissipation error should be smaller

than the Smagorinsky model, which calls for high-order models.

• The second is that the theoretical value of cs = 0.17 relies on the spectrum (??) in

homogenous turbulence at very high Re, which is usually not the case in many LES

simulations. In fact, the inertial range may not appear at all in the resolved scales

of motion. Subsequently, cs = 0.17 is found to be too high, and typically half of this

value is employed.

Dynamic estimation of the Smagorinsky constant: Problems associated with classic

Smagorinsky model are usually attributed to the constant cs. Germano et al. (1991) in-

troduced a dynamic estimation of cs, which works very well and considered (with variants

introduced later) be to be state of the art in LES. The basic concept is that if we assume

that we have the fully-resolved solution from a DNS, we should be able to estimate the

appropriate value of cs. Given that we do not have this solution, one can still devise filtering

at two levels, one at the resolved LES level, and the other at a coarser level (since higher
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resolution is costly), and use the information from these two filtering methods to estimate

cs as a function is time and space.

Mathematically, we know from (16) that the SGS stress that must be modeled in LES is:

τij = Lij + Cij +Rij = uiuj − uiuj . (34)

A second, so-called test filter, denoted by operation ˜ is used, for which the SGS stresses

become:

Tij = ũiuj − ũiũj . (35)

Note that neither τij nor Tij are known since they require knowledge of unfiltered fields.

The Leonard stress for the test filter is:

Lij = (ũiuj − ũiũj) . (36)

Note that Lij can be computed by filtering the LES fields. These three stresses are related

by the Germano’s identity:

Lij = Tij − τij . (37)

Note that so far we have not made any assumptions on the modeling of the stresses,

and in principle, the dynamic procedure can be applied to any type of model for the SGS

stresses. Next, we take Smagorinsky model (28) for the unknown stress tensors τ and T

τij = −2(cs δ)
2|S|Sij , (38)

Tij = −2(cs δ̃)
2|S̃|S̃ij . (39)

Thereby we arrive at the following relation

Lij = −2c2s ( δ̃
2 |S̃|S̃ij − δ2 |S|Sij) , (40)

in which everything can be computed from resolved/LES fields and the only unknown is cs.

Nevertheless, since (40) has five components, the equation is over-determined for cs. Lilly

(1992) showed that an optimal solution can be reached by using

c2ds =
MijLij

MijMij
, (41)
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where Mij ≡ ( δ̃2 |S̃|S̃ij − δ2 |S|Sij), and cds now denotes the dynamic coefficient, as opposed

to a constant.

Nevertheless, there are problems with (41) as well. This is because turbulent flows are not

at all times dissipative and the assumption of dissipative closures results in cds < 0, indicating

backward energy cascade at certain places and times in the simulation. Most models cannot

handle negative diffusivity coefficient, and this results in numerical instability. As a remedy,

the following procedure is often used:

c2ds =
< MijLij >

< MijMij >
, with cds = max(cds, 0) , (42)

where <> indicate averaging along one of the spatial directions. Alternately, Lagrangian

averaging following coherent structures could be applied (Meneveau et al., 1996). Fig. 2

shows the pdf of cds in an LES computation (Özgökmen et al., 2009a) with this dynamic

estimation procedure. Note that half of the values had to be clipped since they indicated

backscatter. In fact, some people think that the main improvement of the dyanmic procedure

over the constant one is in its ability to set νsgs = 0 in such places of the flow field. Also note

that the peak of the distribution is at cds ≈ 0.08, which is much smaller than the theoretical

value of cs = 0.17. Finally, values up to cds = 0.30 were used in this simulation at times.

Fig. 2: Time-averaged probability distribution function of the dynamic Smagorinsky coeffi-

cient from LES of the lock-exchange problem. From p. 148 of Özgökmen et al. (2009a).
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2.3 Approximate deconvolution SGS models

The approximate deconvolution (AD) models represent a promising alternative to the eddy-

viscosity models. Instead of using physical insight to model τij = τ (u,u), the AD models

are developed solely on mathematical grounds. This is highly desirable in flows where the

assumptions of isotropy and homogeneity (which are essential to the assumption of energy

cascade) may not hold. The main idea in approximate deconvolution is to use the available

numerical approximation of u to approximate u.

2.3.1 Repeated filtering AD model:

A particular class of AD models relies on finding an approximate deconvolution of the filtered

quantity by repeated filtering (Stolz and Adams, 1999), which has been shown to be an

effective method for a variety of flow types, such as homogeneous transitional flows.

Let’s denote by G the filter function, and by q the variables of interest. Then, G ⋆ q = q̄

and using G = I − (I − G) , the inverse of the filter can be written as the non-convergent

Neumann series

G−1 ∼

∞∑

i=0

(I −G)i . (43)

Truncating this series after N terms gives us an approximation for G−1 ≈ QN

QN =

N∑

i=0

(I −G)i , (44)

so that the the unfiltered variable can be approximated in terms of the filtered variable using

q ≈ q∗ = QN ⋆ q̄ approximate deconvolution (45)

Here, as N increases, the accuracy of the inverse filter also increases:

Q1 = I

Q2 = Q1 + (I −G) = 2I −G

Q3 = Q2 + (I −G)2 = 3I − 3G+G2

Q4 = Q3 + (I −G)3 = 4I − 6G+ 4G2 −G3

Q5 = Q4 + (I −G)4 = 5I − 10G+ 10G2 − 5G3 +G4
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so that

q ≈ q∗ = 5q̄ − 10¯̄q + 10¯̄̄q − 5¯̄̄̄q +
¯̄̄̄
q̄ . (46)

Since filtering can be quite expensive, it could be important that a computationally efficient

filter is used for this method to be cost effective.

2.3.2 Rational AD model:

Another class of AD models are those obtained through wave-number asymptotics, such

as the gradient model (Leonard, 1974). The gradient model is derived by Taylor series

approximation to the Fourier transform of the Gaussian filter

gδ(x) =
(γ
π

) 3

2 1

δ3
e−γ

|x|2

δ2 (47)

ĝδ(k) = e−
δ2|k|2

4γ = 1−
δ2|k|2

4γ
+O(δ4) , (48)

where ĝδ(k) denotes the Fourier transform of gδ(x), and its inverse is

1

ĝδ(k)
= e

δ2|k|2

4γ = 1 +
δ2|k|2

4γ
+O(δ4), (49)

where γ is a parameter of the Gaussian filter. After a few operations (Iliescu and Fischer,

2003), it can be shown that

u ≈ u−
δ

4γ
∇2u , (50)

and after a bit more algebra, one gets the gradient SGS model

τ = τ (u,u) = uu− u u ≈
δ2

2γ
∇u∇u . (51)

While the gradient model is shown to help preserve high wavenumber features (unlike

diffusive models), it has a tendency to induce numerical instability in models. In order to

address this issue, Galdi and Layton (2000) suggested so-called rational SGS model, denoted

RLES, based on a rational Padé approximation, as opposed to Taylor series:

ĝδ(k) = e−
δ2|k|2

4γ =
1

1 + δ2|k|2

4γ

+O(δ4) . (52)
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The SGS stress tensor in RLES model becomes:

τ (u,u) =

[(I− δ2

4γ
∆

)−1(
δ2

2γ
∇u∇u

)]
, (53)

where I is the identity operator.

The RLES model (53) has been used in the numerical simulation of turbulent homo-

geneous flows (Iliescu and Fischer, 2003, 2004), and also for mixing in stratified flows

(Özgökmen et al., 2009a,b). One of the issues in (53) is that the Helmholtz operator not

only makes solution quite expensive, but also tends to over-smooth the gradient model. This

problem is remedied in Özgökmen et al. (2009a) by using a reduced Helmholtz operator in

which only 2 iterations are used to remove the high wavenumber features that can induce

numerical instability.

2.4 Examples of LES

Next we proceed to some practical questions about testing LES, comparing different SGS

models and exploring high Re regimes of mixing using LES.

2.4.1 What constitutes a good test problem?

Ideally, the test problem is one for which previous published literature, DNS and/or ex-

perimental results exist. If one is interested in a non-standard problem, such as mixing in

stratified flows, then one may define the following criteria:

• The test problem should contain the three characteristics of stratified flows:

– Mixing due to stably-stratified shear flows.

– Mixing due to unstably-stratified convective motions.

– Internal waves.

Preferably all of them co-existing simultaneously and interacting.

• The test problem should be free from any implicit factors that can affect mixing, such

as uncertainties in the boundary conditions, initial conditions and domain geometry.

15



• The test problem should be as simple as possible to set up, so that it can be used by

other researchers to conduct their investigations as well.

These conditions are satisfied for the so-called- lock-exchange problem (Özgökmen et al.,

2007, 2009a, 2009b).

2.4.2 Quantification of mixing:

The accuracy of the SGS models is evaluated through a posteriori testing. The main measure

used is the background/reference potential energy (RPE), which exactly quantifies mixing

in an enclosed system (Winters et al. 1995). RPE is the minimum potential energy that

can be obtained through an adiabatic redistribution of the water masses. To compute RPE,

we use the probability density function approach introduced by Tseng and Ferziger (2001).

Specifically, we split the density perturbation field typically into 51 to 101 bins at each time

step, and integrate:

RPE = gLW

∫ H

0

ρ′(zr)zrdzr , (54)

where zr(ρ
′) is the height of fluid of density ρ′ in the minimum potential energy state. It is

convenient to use the non-dimensional background potential energy

RPE∗(t∗) ≡
RPE(t∗)−RPE(0)

RPE(0)
, (55)

which shows the relative increase of the RPE with respect to the initial state by mixing.

2.4.3 What resolution constitutes an LES?

Given that LES relies on computation to capture at main eddies of a certain flows field,

that change from flow to flow, depend on geometry, it is critical that the main coherent

features creating turbulence are resolved. The SGS models help complete the processes of

the turbulent break-down (say, in the inertial range), but they are not substitutes for all

mixing, unlike RANS closures. This is depicted in Fig. 3.
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Fig. 3: Density perturbation in a 2D lock-exchange problem for different resolutions at

the same time. (Top/first panel) Fully-resolved (2D DNS) simulations with 1,040,400 points;

no SGS is needed. (Second panel) Simulation with 7,500 points, which captures accurately the

overturning eddies, but not the smaller features imbedded in the large eddies. Simple SGS models

would work fine. (Third panel) Coarser (2,700) simulation that starts to exhibit dispersion errors

and misrepresents the number of large eddies. (Fourth panel) Simulations with 72 points that

lacks entirely the overturning eddies and requires very comprehensive SGS models to incorporate

their net effect. From Özgökmen et al. (2007).
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What is the objective?

One of the objectives would be to evaluate the accuracy of different SGS models using

the metric (55) and by comparing:

• DNS: fully (or highly) resolved simulations that are considered to be the gold standard

for truth in computation.

• DNS∗: so-called under-resolved DNS. These are coarse resolution simulations without

SGS models.

• LES: coarse resolution (same resolution as DNS∗) simulations with SGS models.

The main objective of LES is to attain major computation gain over DNS, typically 1000

fold in computation time, 100 fold in number of mesh points, while matching the accuracy

of mixing.

Selected results at a specific Re: Preliminary impressions of the effect of SGS models

on the solution are shown in Fig. 4. We note that classical Smagorinsky model tends to

smooth the density interface, implying high diffusivity, while the rational model maintains

features on the coarse mesh almost as accurately as higher resolution simulations.

Fig. 5 depicts the convergence of the mixing metric as a function of the model resolution

and CPU time. Note that DNS∗ leads to spurious mixing which is due to the interpolation

of high gradients onto a coarse resolution. The DNS∗ computation is about 2300 faster than

DNS∗, even though quite accurate solutions can be obtained with a computation that is 12

times faster than DNS.

Comparison of different SGS models is shown in Fig. 6. Perhaps the most important

point is that not all SGS models improve the DNS∗. Excellent agreement with DNS is

obtained with an SGS model that combines the ability of dynamics Smagorinsky model

to provide dissipation where and when needed with the rational model that helps preserve

dispersion on coarse meshes.
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Fig. 4: Comparison of snapshots of the density perturbation field from LES with different

SGS models. From Özgökmen et al. (2009a).

Fig. 5: Convergence of the mixing metric as a function of mesh points, and associated

computation time. From Özgökmen et al. (2009a).
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Fig. 6: Comparison of results from different SGS models in LES to those from DNS and DNS∗.

Note that not all SGS models lead to an improvement. The hybrid (dissipatove/dispersive) SGS

model matches the mixing curve from DNS accurately while being 1200 fold cheaper computa-

tionally. From Özgökmen et al. (2009a).

Another example of repeated-filtering AD model is shown in Fig. 53.5. Here, the

barotropic vorticity equation is solved for a wind-forced system, so that this case has some

relevance to oceanic flows. Clearly the SGS model makes a huge difference regarding the

reproduction of inertial gyres that otherwise require much higher resolution.

20



Fig. 7: Time-averaged streamfunction from a well-resolved case (left panel), under-resolved case

(middle panel) and LES with repeated-filtering AD model (right panel). From San et al. (2011).

3 FTLEs from LES

A 3D FTLE code has been developed within the visualization tool visit2 in a collaborative

effort with Hank Childs, Harinarayan Krishnan (LLNL) and Christoph Garth (University of

Kaiserslautern). Computations are carried out using Nek5000, a spectral element LES/DNS

model developed by Paul Fischer (Argonne National Laboratory).

3.1 Application to Lock Exchange Problem

A solution to lock exchange problem (LEP) is computed using approximately 40 million

mesh points. The computation was carried out over four days on 384 processors of salk,

a Cray XE6m machine at CUNY high-performance computing center. An example of the

FTLE field is shown in Fig. 8.

2visit.llnl.gov
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(a) (b)

Fig. 8: The density perturbation field (left panel) and FTLE field (right panel) in LEP. The

animation is available from: http://www.rsmas.miami.edu/personal/tamay/3D/dbpr153.mov

3.2 Application to Mixed Layer Instability

Mixed layer instability (MLI) is quite similar to the lock exchange problem in that the energy

feeding the kinetic energy comes from the available potential energy, but there are two main

differences:

• The Earth’s rotation is important in MLI, leading to baroclinic instability. Subse-

quently, the large eddies in this problem are the coherent submesoscale eddies, as op-

posed to the vertical stratified overturns arising from the Kelvin-Helmholz instability

in LEP.

• The main activity is constrained to a thin layer at the ocean surface, requiring computa-

tions with a very high aspect ratio, typically L/H on the O(100) to O(100). Controlling

numerical diffusion through high-order numerics is important, as otherwise available

potential energy can be removed by vertical diffusion, instead of the MLI.
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The MLI is one of the few submesoscale motions that is relatively well understood (Ma-

hadevan and Tandon, 2006; Boccaletti et al., 2007; Fox-Kemper et al., 2008; Thomas et al.,

2008; Capet et al., 2008; Mahadevan et al., 2010; Özgökmen et al., 2011). Of particular in-

terest is how surface submesoscale motions interact with deep mesoscale eddies. The FTLEs

appear to be quite useful in gaining insight into this process (Fig. 9).

(a) (b)

Fig. 9: The density perturbation field and FTLEs in LES during (a) the phase of MLI only, and (b)

the phase when MLI and deeper baroclinic motions coexist. Surfaces corresponding to ρ′ = 0.5

(blue) and FTLE = 0.33 days−1 (yellow) are shown. From Özgökmen et al. (2012). The

animation is available from: http://www.rsmas.miami.edu/personal/tamay/3D/mlis11.mov
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