Geometry of 3D Dipole Interactions: Painting
HYCOM

MURI-4D-DS Workshop

Wilmington Delaware

January 24-26, 2012
Supported by: Office of Naval Research Multiple University Research Initiative: Analysis of 4D Ocean Flows

Collaborators:
- MURI Crowd
- Robert Numrich, CUNY HPCC
- David Dritschel, St. Andrews
- Bruce Lipphardt, U. Del
- Eugene Deditis, CUNY
- Lucas Garber, CUNY
Overview: ’Paradigm’ 3D Ocean Structures?

- **2D Coherent Structures:**
 - Classical phase space pictures:
 - Hetero-clinic orbits: Cat’s Eye
 - Meandering Jet
 - Eddy-eddy interaction
 - Dipoles
 - Homoclinic Orbits:
 - Eddy-pinchoff
 - Eddy-jet interaction
Overview: ’Paradigm’ 3D Ocean Structures?

- 2D Coherent Structures:
 - Classical phase space pictures:
 - Hetero-clinic orbits: Cat’s Eye
 - Meandering Jet
 - Eddy-eddy interaction
 - Dipoles
 - Homoclinic Orbits:
 - Eddy-pinchoff
 - Eddy-jet interaction
Overview: ‘Paradigm’ 3D Ocean Structures?

- 3D Coherent Structures?
 - 2D + 1
 - z-dependent 2D structures
 \[\mathbf{u} = (u(x, y, z), v(x, y, z)) \]
 - 3D + symmetry
 \[\mathbf{u} = (u(r, \theta), v(r, \theta), w(r, \theta)) \]
 - Fully 3D? Role of \(w \) component?
 - Isopycnal advection.
 - Diagnose \(w \) in cartesian coordinates.
Overview: ’Paradigm’ 3D Ocean Structures?

- 3D Coherent Structures?
 - 2D + 1
 - z-dependent 2D structures
 \[\mathbf{u} = (u(x, y, z), v(x, y, z)) \]
 - 3D + symmetry
 - \[\mathbf{u} = (u(r, \theta), v(r, \theta), w(r, \theta)) \]
 - Fully 3D? Role of \(w \) component?
 - Isopycnal advection.
 - Diagnose \(w \) in cartesian coordinates.

Goal: Tool for quickly visualizing 3D advective pathways in available model data sets.
Eulerian Approach to LCS

- Trouble: Proxy measures rely on differenting gridded trajectories w.r.t. initial conditions.
- Time dependent 3D structures → many particles.
- Look instead at a differentiable scalar field:

\[
\frac{\partial \phi}{\partial t} + (\mathbf{u} \cdot \nabla) \phi = \kappa \nabla^2 \phi + S(\mathbf{x}, t)
\]

\[
\phi(\mathbf{x}, 0) = \phi_0(\mathbf{x})
\]

\(\kappa\) and \(S\) prescribed
\(\mathbf{u}(\mathbf{x}, t)\) given \((I(\mathbf{u}_{ijkl}))\)

- ‘Judicious’ choice of \(S\) and/or \(\phi_0(\mathbf{x})\)
- Computationally minimal \(\kappa\) ensures differentiable \(\phi\).
- Backwards in time evolution with \(\mathbf{u} \rightarrow -\mathbf{u}\).
Advection-Diffusion + HYCOM

\[\frac{\partial \phi}{\partial t} + (\mathbf{u} \cdot \nabla) \phi = \kappa \nabla^2 \phi + S(\mathbf{x}, t) \]

\[\phi(\mathbf{x}, 0) = \phi_0(\mathbf{x}) \]

- Standard conservative, explicit 2nd order finite-differences.
- 2-pass MPDATA for advection.
 - Upwind + Anti-Diffusive.
 - Stable w/no explicit diffusion.
- Dufort-Frankel diffusion.
- Interpolation:
 - cubic in space.
 - linear in time.

- Fancy CAF Code (F2008)
- User-defined grid

\[\Delta x < \Delta x_{\text{Model}} \]

- Split diffusion:

\[\kappa \nabla^2_h \phi + \alpha \frac{\partial^2 \phi}{\partial z^2} \]
Advection-Diffusion: HYCOM Results

HYCOM - GOM30.1

- HYCOM GOM: 1/25 Degree, 2010 archive.
- Daily output, Cartesian grid.
- \(w \) available.

Case 1: Plane Source

- Loop Current Dynamics:
- \(S(x, t) = \text{constant on } x - z \) plane at inflow
- \(\Delta x = 0.75 \Delta x_{HYCOM} \)
- Regrid: \(\Delta z = 25 \text{m} \)
- \(\sim 5 \) minutes for 50 days
 \((300 \times 300 \times 20\text{layers}) \)
Advection-Diffusion: HYCOM Results

HYCOM - GOM30.1

- HYCOM GOM: 1/25 Degree, 2010 archive.
- Daily output, Cartesian grid.
- \(w \) available.

Case 1: Plane Source

- Loop Current Dynamics:
 \(S(x, t) = \text{constant on } x - z \text{ plane at inflow} \)
 \(\Delta x = 0.75 \Delta x_{HYCOM} \)
- Regrid: \(\Delta z = 25m \)
- \(w \neq 0, \alpha \neq 0 \)

\(\sim 5 \text{ minutes for 50 days (} 300 \times 300 \times 20 \text{layers) } \)
Case 2: Isolated Structures

- Deep-water, western Gulf.
- One (of many) multi-pole pairs.
- $\phi_0(\mathbf{x}) = \text{constant in } z \text{ dependent cycolone-anticyclone.}$
- Strong vertical component.
Case 2: Isolated Structures
- Deep-water, western Gulf.
- One (of many) multi-pole pairs.
- $\phi_0(x) = \text{constant in } z\ \text{dependent cycolone-anticyclone}.$
- Strong vertical component.

$w = 0, \alpha \neq 0$
Case 2: Isolated Structures
- Deep-water, western Gulf.
- One (of many) multi-pole pairs.
- $\phi_0(\mathbf{x}) = \text{constant in } z \text{ dependent cycolone-anticyclone.}$
- Strong vertical component.
Advection-Diffusion: HYCOM Results

Center of Mass:

\[M_i(t) = \iiint x_i \phi(x, t) dV \]
To Do List:

- Compare scalar/LCS proxies
- Raw HYCOM output:
 - $\Delta t \sim 1$ hour
 - Isopycnal coordinates:

 $$\frac{\partial h\phi}{\partial t} + (\mathbf{u} \cdot \nabla) h\phi = \nabla \cdot \kappa h \nabla \phi + \tilde{S}(\mathbf{x}, t)$$

- Extend to other OGCM data bases.