Collaborative Robot Tracking of Geophysical Flows: How Local Measurements Discover Global Structures

M. Ani Hsieh

Scalable Autonomous Systems Lab

Drexel University

UNC Chapel Hill

Highlights and Lowlights

2/13/2013

опо спарег ниг

3

The Last Robotic Frontier

by: Kai Schumann, CA Dept of Public Health (volunteer)

System Design & Control

- Maneuverability of ASVs and AUVs
- Perception
 - Proprioceptive vs Exteroceptive
 Sensing
 - » Biology vs Engineered Systems
- Communication
 - » Low Bandwidth
 - » Lossy

System Design & Control

Geophysical Fluid Dyanmics

CBS News 2/13/2013

For Understanding Dynamics For Autonomy nti=512 37 36.9 36.9 Latitude 36.8 36.8 > 36.7 36.7 х 36.6 36.6 -122.2 -122.3 -122.2 -122.1 -122 -121.9 -122.3-122.1х Longitude

Courtesy of Shadden (http://mmae.iit.edu/shadden/LCS-tutorial/)

Unfortunately, for robotics

- 1. Global structures
- 2. Low spatio-temporal resolution of data

-122

by: Inanc, Shadden, and Marsden (ACC 2005)

-121.9

-121.8

2/13/2013

Air & Ground Navigation

Courtesy of D. D. Lee

The Oceanic Super Highway

2/13/2013

UNC Chapel Hill

Robots in Flows

A Story in Two Acts

» Tracking Coherent Structures

Development of distributed control and coordination strategies for autonomous robots to quantify key transport phenomena in flows

» Distributed Sensing and Sampling

Development of *distributed strategies* to control the spatial distribution of autonomous robots *given the flow dynamics*

- AUV and ASV Planning, Control, & Coordination
 - » Planning & Control: Whitcomb et al., Eustice et al. (UMich), Leonard et al. (MIT), Sukhatme et al. (USC), Leonard et al. (Princeton), Paley et al. (UMD), Gupta et al. (UMD), Lermusiaux et al. (MIT), Smith et al. (QUT), Rhoads et al. (UCSB), Inanc et al. (CalTech)
 - » Perception: Eustice et al. (UMich), Leonard et al. (MIT), Sukhatme et al. (USC), Zhang et al. (GATech), Lynch et al. (Northwestern), Farques et al. (NPS), Horner et al. (NPS)
 - » Coordination: Bishop et al. (Naval Academy), Esposito (Naval Academy), Sukhatme et al. (USC), Bullo et al. (UCSB), Zhang et al. (GATech), Paley et al. (UMD), Chung et al. (NPS)

Resource Allocation

- » Distributed Algorithms: Diaz (CMU), Mataric (USC), Parker (UTenn), Veloso (CM), Shen (USC)
- » Macroscopic Approaches: Berman et al. (Harvard/ASU), Hsieh et al. (Drexel), Lerman et al. (UCSB), Martinoli et al. (EPFL), Milutinovic et al. (UCSC)

Tracking Coherent Structures

- » Objective:
 - Track material lines that separate regions of flow with distinct dynamics using a team of N robots
- » Approach:
 - Take advantage of the fluid dynamics
 - Control strategy based Proper Interior Maximum (PIM)
 Triple Procedure (Nusse and Yorke, 1989)

Tracking Coherent Structures

» N robot team in 2D w/ 2D vehicle kinematics $\dot{x}_i = V_i \cos \theta_i + u_i$

$$\dot{y}_i = V_i \sin \theta_i + v_i$$

- » Flow modeled by 2D planar conservative vector $\dot{\mathbf{x}} = F(\mathbf{x})$ field w/ $F : \mathbb{R}^n \to \mathbb{R}^n$
- » B_s and B_U are 1-D curves
- » Additional Assumptions
 ο ρ_{min}(B_S), ρ_{min}(B_U) > r
 ο Min vehicle turning radius r

PIM Triples

- » ${\mathcal D}$ is a closed and bounded set w/ no attractors
- » Escape time $T_{E}(\mathbf{p})$ of point \mathbf{p} from \mathcal{D}
- » J is line segment that crosses B_s

3-Robot PIM Triple Inspired Control

Given $\dot{\mathbf{x}} = F(\mathbf{x})$

Initial positions lie on J₀, a saddle straddle line segment

Analysis

Theorem: (Hsieh et. al., ICRA 2012)

Given a team of 3 robots with kinematics given by $\dot{x}_i = V_i \cos \theta_i + u_i$

 $\dot{y}_i = V_i \sin \theta_i + v_i$ where u_i and v_i are given by a 2D planar conservative field, the feedback control strategy maintains a valid saddle straddle line segment in the time interval [t, t+ Δ t] if the initial positions of the robots $\mathbf{x}(0)$ is a valid PIM triple.

Sketch of Proof:

Tracking in Stationary Flows

Some Remarks

- PIM Triple inspired approach reveals *global* structures through *local* sensing alone
- Requires initial location of the unstable ridge

Proposition:

» Given a team of 3 robots w/ assumed 2-D kinematics in a 2-D conservative flow, the PIM Triple inspired control strategy in an estimate of B_S , or \hat{B}_S , such that $\langle B_S, \hat{B}_S \rangle_{L_2} \langle W$ for some W > 0.

- Lagrangian Coherent Structures:
 - » Time-dependent versions of stable/unstable manifolds of a saddle point
 - » In 2-D, analogous to ridges defined by maximum local instability quantified by local FTLEs
- Driven double-gyre model w/ noise

Tracking LCS in Periodic Flows

2/13/2013

UNC Chapel Hill

17

LCS and the Presence of Noise

X UNC Chapel Hill

2/13/2013

18

Distributed Sensing and Sampling

Distributed Spatial Allocation of Autonomous Sensing Resources

- » N robots w/ 2-D kinematics $\mathbf{q}_k = \mathbf{u}_k + F(\mathbf{q}_k)$
- » $\mathbf{\dot{x}} = F(\mathbf{x})$ is a 2-D planar vector field
- » Leverage the environmental dynamics: Flow dynamics + Noise
- » {V₁, ..., V_M} s.t. V_i $\subset \mathcal{W}$ and $\cup V_i = \mathcal{W}$
- » Robots have ability to localize

Assumptions

• N robots w/ 2-D kinematics

$$\mathbf{q}_k = \mathbf{u}_k + F(\mathbf{q}_k)$$

- Workspace dynamics w/ dynamics given by 2-D planar vector field $\dot{\mathbf{x}} = F(\mathbf{x})$
- {V₁, ..., V_M} s.t. V_i $\subset W$ and \cup V_i = W
- V_i's are dynamically distinct
- Robots have ability to localize

Example Desired Allocations

Assumptions

- Robots know $\{\overline{X}_1, \dots, \overline{X}_M\}$ and $\{X_1(t), \dots, X_M(t)\}$
- Prioritization based on escape likelihoods

Two Step Process

- I: Assignment Phase
 - » Escape Likelihoods
- II: Actuation Phase
 - » Leave
 - » Active Stay o w/ Actuation
 - » Passive Stay

 o w/o Actuation

What is Gained

Convergence Rate

Control Effort Expenditure

What Next?

Tracking and control in real ocean flows

Santa Barbara, CA

mCoSTe

multi-Robot Coherent Structure Testbed

LoRe Tank: Re ~ $O(1) - O(10^4)$

HiRe Tank: $\text{Re} \ge O(10^4)$

UNC Chapel Hill

Prelim Results in HiRem Tank

Flow Tank

Simulated LCS Tracking

Scaling Up – MR Tank

MR Tank

mASVs

A Grand Vision

MEM380: Mobile Robots 1 Winter 2011

Acknowledgements

Ph.D. Students: Dennis Larkin Ken Mallory Matt Michini

Funding Agencies:

Collaborators:

Eric Forgoston (Montclair State) Phil Yecko (Montclair State) Ira Schwartz (NRL)

http://drexelsaslab.appspot.com/

UNC Chapel Hill

Coherent Structures

Courtesy of Paduan and Cook (NPS) and Shadden (IIT) Source: http://mmae.iit.edu/shadden/LCS-tutorial/

- Geophysical flows exhibit coherent structure
- Coherent structures give insight into dynamics of fluids
- Lagrangian coherent structures give insight into transport

2/13/2013

UNC Chapel Hill

33

- Use herders position and local flow measurements to
 - » Determine vector field for points $\mathbf{q}_1, ..., \mathbf{q}_M$ on J_t

$$\mathbf{u}(\mathbf{q}_k) = \sum_j \sum_{i=1}^N \frac{w_{ij} \mathbf{\hat{u}}_i(j)}{\sum_j \sum_{i=1}^N w_{ij}}$$

» Find point on J_t closest to B_S (or B_U)

The PIM Triple Algorithm I

3-Robot PIM Triple Inspired Control

 $B_{\mathcal{U}}$

 J_{0}

 \mathbf{x}_{C}

- Initial positions lie on J₀, a saddle straddle line segment
- Controller Objectives:
 - » End robots (Herders): B_{S} maintain *valid* saddle straddle line segment at all times
 - » Center robot (Tracker): tracks the boundary B_s or B_u

Single Robot Controller

 $\mathbf{q}_k = \mathbf{u}_k + F(\mathbf{q}_k)$

LEAVE

$$U_L(\mathbf{q}_k) = \omega_i \times c \frac{F(\mathbf{q}_k)}{\|F(\mathbf{q}_k)\|}$$

ACTIVE STAY
$$U_{S_A}(\mathbf{q}_k) = -\omega_i \times c \frac{F(\mathbf{q}_k)}{\|F(\mathbf{q}_k)\|}$$

PASSIVE STAY

 $U_{S_P}(\mathbf{q}_k) = 0$

A Stochastic Hybrid Shaten (SHS)

$$X_u \xrightarrow{k_{uv}} X_v$$

- Ensemble States: X₁, ... , X_M
- States defined as discrete random variables
- k_{uv} -> transition propensities

Mather & Hsieh (RSS 2011)

• The Extended Generator, i.e. $\frac{d}{dt} \mathbb{E} \left[\psi(X_i) \right] = E \left[L \psi(X_i) \right]$

$$L\psi(X_i) = \sum_{j} \left[(\psi(X_i - 1) - \psi(X_i))w_{ji} + (\psi(X_i + 1) - \psi(X_i))w_{ij} \right]$$

- » ψ : real-valued function of X_i
- » $w_{ij}(k_{ij}, X_j, X_j)$: frequency of change

» So on ...

• Examples:

Hespanha (2008)

$$X_1 \xrightarrow[k_{21}]{k_{21}} X_2, \quad \text{with } \psi(X_i) = X_i, \quad w_{ij} = k_{ij} X_i$$

- nth moment dynamics only depends on 1st nth moments
- Thus, moment equations are *closed*
- Ensemble dynamics are stable

Mather and Hsieh (RSS 2011)

Stability Analysis

Theorem: (*Mather and Hsieh, RSS2011*)

The first moment dynamics of the system $X_i \xrightarrow{k_{ij}(X_i, X_j)} X_j$ with the ensemble feedback strategy $k_{ij} = \alpha_{ij} - \beta_i j \frac{X_j}{X_i}$ is stable.

Proof:
$$\frac{d}{dt} \mathbf{E}[X_i] = \sum_{(i,j)\in\mathcal{E}} (\alpha_{ji} + \beta_{ij}) \mathbf{E}[X_j] - \sum_{(j,i)\in\mathcal{E}} (\alpha_{ij} + \beta_{ji}) \mathbf{E}[X_i]$$
$$\frac{d}{dt} \mathbf{E}[X] = (\mathbf{K}_{\alpha} + \mathbf{K}_{\beta}) \mathbf{E}[X]$$

Both K_{α} and K_{β} are Markov process matrices and negative semidefinite => stable

Monitoring of 3 Regions

No Feedback

With Feedback

Mather and Hsieh (RSS2011)

Future Work

- Tracking LCS
 - » Precision
 - » Representation
 - » Planning

- Controlling Spatial Distribution
 - » Analysis of the single robot controller
 - » Derive transition propensities from actual fluid dynamics
 - » Use ensemble models to improve single robot strategy
- Experimental Validation
 - » Develop a large scale indoor test-bed