Collaborative Robot Tracking of Geophysical Flows:

How Local Measurements

Discover Global Structures

M. Ani Hsieh

Scalable Autonomous Systems Lab
Drexel University
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A Anatomy of a Robot Control Scheme N3
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The Last Robotic Frontier
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System Design & Control

* Maneuverability of ASVs and
AUVs

* Perception

» Proprioceptive vs Exteroceptive
Sensing

by: Kai Schumann, CA Dept of Public Health (volunteer) » Biology vs Engineered Systems

*  Communication

» Low Bandwidth
» Lossy

System Design & Control
* Geophysical Fluid Dyanmics

CBS News
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Drexel

For Understanding Dynamics For Autonomy
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1. Global structures

Untortunately, for robotics 2. Low spatio-temporal resolution of data
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Robots in Flows

LABORATORY

A Story in Two Acts

» Tracking Coherent Structures

Development of distributed control and coordination
strategies for autonomous robots to quantify key
transport phenomena in flows

» Distributed Sensing and Sampling

Development of distributed strategies to control the
spatial distribution of autonomous robots given the flow
dynamics
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Existing Strategies
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AUV and ASV Planning, Control, & Coordination

» Planning & Control: Whitcomb et al., Eustice et al. (UMich), Leonard et al.
(MIT), Sukhatme et al. (USC), Leonard et al. (Princeton), Paley et al. (UMD),
Gupta et al. (UMD), Lermusiaux et al. (MIT), Smith et al. (QUT), Rhoads et al.
(UCSB), Inanc et al. (CalTech)

» Perception: Eustice et al. (UMich), Leonard et al. (MIT), Sukhatme et al. (USC),
Zhang et al. (GATech), Lynch et al. (Northwestern), Farques et al. (NPS), Horner
et al. (NPS)

» Coordination: Bishop et al. (Naval Academy), Esposito (Naval Academy),
Sukhatme et al. (USC), Bullo et al. (UCSB), Zhang et al. (GATech), Paley et al.
(UMD), Chung et al. (NPS)

e Resource Allocation

» Distributed Algorithms: Diaz (CMU), Mataric (USC), Parker (UTenn), Veloso
(CM), Shen (USC)

» Macroscopic Approaches: Berman et al. (Harvard/ASU), Hsieh et al. (Drexel),
Lerman et al. (UCSB), Martinoli et al. (EPFL), Milutinovic et al. (UCSC)

2/13/2013 UNC Chapel Hill 8



LABORATORY

Tracking Coherent Structures

» Objective:

O Track material lines that separate regions of flow with
distinct dynamics using a team of N robots

» Approach:
O Take advantage of the fluid dynamics

0 Control strategy based Proper Interior Maximum (PIM)
Triple Procedure (Nusse and Yorke, 1989)

2/13/2013 UNC Chapel Hill 9



Tracking Coherent Structures
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Tracking Coherent Structures

» N robot team in 2D w/ 2D vehicle kinematics
:i:i = V;'COSHi -+ U;

yi = Visinb; +v;

» Flow modeled by 2D planar conservative vector X = F'(x)
fieldw/ F:R" — R"
/ Bs

» Bcand B, are 1-D curves

» Additional Assumptions

O Prin(Bs) Prmin(By) > T
O Min vehicle turning radius r

2/13/2013 UNC Chapel Hill



Proper Interior Maximum Triples
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PIM Triples

» D is a closed and bounded set w/ no attractors
» Escape time T¢(p) of point p from D
» Jis line segment that crosses B

BS'

» [P, Pe PRl is @ PIM Triple IF

Te(pc) > max{Te(pr), Te(Pr)}

Nusse and Yorke (1989)
and {pLa PcC, pR} CJ

2/13/2013 UNC Chapel Hill 11



3-Robot PIM Triple Inspired Control
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Given x = F(x)

Initial positions lie on J,, a saddle straddle line segment

Mapping out the boundary

Controller Objectives:

{z(0), z(0), z(0)} « End robots (Herders):
maintain valid saddle straddle
line segment at all times

« Center robot (Tracker):

tracks the boundary Bg or B,

By

2/13/2013 UNC Chapel Hill 12



Analysis
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Theorem: (Hsieh et. al., ICRA 2012)

Given a team of 3 robots with kinematics given by
z; = V.cos0; + u;
yi = Visinb; +v;
where u. and v, are given by a 2D planar conservative field,

the feedback control strategy maintains a valid saddle
straddle line segment in the time interval [t, t+ At] if the initial
positions of the robots x(0) is a valid PIM triple.

Sketch of Proof:

2/13/2013 UNC Chapel Hill 13



Tracking in Stationary Flows
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Some Remarks

LABORATORY

* PIM Triple inspired approach reveals global
structures through local sensing alone

* Requires initial location of the unstable ridge

Proposition:

» Given a team of 3 robots w/ assumed 2-D kinematics in a
2-D conservative flow, the PIM Triple inspired control
strategy in an estimate of B, or Bs, such that <BS,BS>L2<W
for some W > 0.

2/13/2013 UNC Chapel Hill 15



Manifolds Static vs. LCS

* Lagrangian Coherent Structures:

» Time-dependent versions of stable/unstable manifolds of a
saddle point

| Jrexe

LABORATORY

» In 2-D, analogous to ridges defined by maximum local
instability quantified by local FTLEs

* Driven double-gyre model w/ noise

10

E0F -

- -

P ..-,__"E——._ﬁ-.."“a ™,

1
1
RO 1 Luc %—-._l"\ \1 \ 1
0

N T
0F — — — . - _—
[ e
T e .
TN T 0 ;
20k N PRI 1 .
_ h\(‘1r.|;‘\< J'/J"IT\]‘ . |
AT
N A NN
0 e s AN
[ e “ H,__ﬁ‘___}__,-..,_—;p—v// '. ]
10 20 3; 40 a0

B0 —— ' —
B 50 40 0 20 0 O
X

2/13/2013 UNC Chapel Hill 16



Tracking LCS in Periodic Flows  Niss
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Distributed Sensing and Sampling Nim
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Distributed Spatial Allocation of Autonomous

Sensing Resources
» N robots w/ 2-D kinematics qx = Ux + F'(qx)
» x = F(x) is a 2-D planar vector field
» Leverage the environmental dynamics: Flow dynamics +

Noise
» {Vy, ..., Vy}s.t. V.C Wand
JV,= W

» Robots have ability to localize -

2/13/2013 UNC Chapel Hill 19



Assumptions
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* N robots w/ 2-D kinematics
qr = ug, + F(qg)
* Workspace dynamics w/ dynamics given by 2-D
planar vector field x = F(x)
{V,, .., Vytst.V.C WanduUV, =W

* V/'saredynamically distinct . ¢ 1

Robots have ability to localize

107
=200 1

304 r
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Assumptions
* Robots know {X1,..., X}

and {X1(t),..., Xp(t)}

* Prioritization based on
escape likelihoods

2/13/2013 UNC Chapel Hill 21



Two Step Process

* |: Assignment Phase

» Escape Likelihoods <__> (_@—)

e |I: Actuation Phase

| i
Lo wlelale

» Active Stay

» Passive Stay

o wloAcuter 1B EE
-1 B2 E21 E3
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With & Without Controls

Drexel

Papulation Distribution for Block pattern Population Distribution for L pattern . o .
. . Fopulation Distribution for Ring pattern
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What is Gained
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Convergence Rate Control Effort Expenditure
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What Next?

ystems
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Santa Barbara, CA
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LoRe Tank: Re ~ O(1) — O(10%)

B

HiRe Tank: Re 2 (4)
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Cooperative Tracking w/ Tank Data Niss

t=20
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Scaling Up — MR Tank
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MR Tank mASVs
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A Grand Vision

Knowledge, Mission
Data Base Commands

\

Localization

"Position"
MODEL Builds Global Map
Environ Model Path
x Locall Map |
| 4
Information Path
Extraction Execution

Actuator Commands

| )

Sensing

|
Raw data

Perception
Motion Control

Real Ocean
Environment
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* Geophysical flows
exhibit coherent
structure

* Coherent structures give

insight into dynamics of
fluids

* Lagrangian coherent
structures give insight

Courtesy of Paduan and Cook (NPS) and Shadden (IIT) | nto trans po rt
Source: http://mmae.iit.edu/shadden/LCS-tutorial/
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Straddle Formation Control
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Maintains desired formation
while collecting flow data %

If diC < dmin

Return to
Tracker

if darin < ||%i — x| < dMas
(p; — x;) — u;|| otherwise

Y

if dpygin < HXZ — XC” < dprax
«; otherwise
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Manifold Tracking Control

* Use herders position and local flow measurements to

» Determine vector field for points ql, oy Oy ON J

-y
] 1= 12 Zz 1 Wij

» Find point on J, closest to B (or B )
L Ve = |[(as + bip) —x¢] —uc||
Bs o 0c = Be

By

2/13/2013 UNC Chapel Hill 34
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The PIM Triple Algorithm

Given x = F(x)
Finding a PIM Triple

‘]qu > Ak (TEk )

——> Define D and select an initial J,

———>
Compute T¢(q;) and let k = argmax Tg(q;)

>
Repeat!

By

N
\l \4(12 (Tg,)

d1 (TEl)

Let d)isepiizandh Gl PpTisk tharew ehdpoinisef J,

2/13/2013 UNC Chapel Hill 35



The PIM Triple Algorithm |
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Given x = F(x)
Mapping out the boundary

{PLo» Pcos Pro}
B J For every PIM Triple, integrate over
S ! At to obtain next Jatt+ A t.
Repeat!
D By,

Using the endpoints of J, , ,,, find a new
valid PIM triple on J;, 4.

2/13/2013 UNC Chapel Hill 36



3-Robot PIM Triple Inspired Control
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* Initial positions lie on J,, a saddle straddle line
segment

e Controller Objectives:
» End robots (Herders): Bg

maintain valid saddle straddle line segment

at all times By,
» Center robot (Tracker): ,
tracks the boundary B or B, x@
R

2/13/2013 UNC Chapel Hill 37
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ar = u, + F(qx) LEAVE

k¢ Q,, and Py(ili) < Ps. o F(qx)
or i £ V; Urlar) = Vi TR Q)]

k‘EQiL

. & ACTIVE STAY
By o F(qg)
| G  Ug(qr) = —wixec
ke Qi 2 ke Qi A 1F(qr)]

and Py (i|7) > Ps,
PASSIVE STAY

Usp(ak) = 0
Q,, — Set assigned to LEAVE P ()

P,(i|) — Liklihood to stay
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kuv
Xu H er

* Ensemble States: X,, ..., X,

e States defined as discrete
random variables

* k,, -> transition propensities

X; Xo X Mather & Hsieh (RSS 2011)

2/13/2013 UNC Chapel Hill 39



What This Gets Us

e The Extended Generator, i.e. %E [W(Xs)] = E [Ly(X;)]

LABORATORY

Lp(X;) = Z (P(Xs = 1) = p(Xs))wyi + (P(Xs + 1) — (Xi) Jwi]
» re;I-vaIued function of X,

» w,(ky, X, X;) : frequency of change

ij

e Examples:
» Let 1) (X.) = X, to obtain %E [ X;]

X X " X >
» Let 1 (X%) = X2 to obtain %E (X7 Lo .

» Soon ...
Hespanha (2008)
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Two State Example

| Jrexe
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k
X1 % Xo, with 9(X;) = Xy,  w; = ki X,
21

CEBIXy ] [k ka0 0 0 E[X)]
d E[XQ] k1o —ko1 0 0 0 E[XQ]
— | BlX1.X] k1o ko1 —2kis O oy E[X;X,]

E[XQXQ] k1o ko 0 —2ko1 2k19 E[XQXQ]

E[X X5) | —k12 —ko1 k12 kor  —kor — k12| |E[X1X3]

* nt" moment dynamics only depends on 15t - nth
moments

* Thus, moment equations are closed

* Ensemble dynamics are stable
Mather and Hsieh (RSS 2011)
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Stability Analysis
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Theorem: (Mather and Hsieh, RSS2011)

The first moment dynamics of the system X, By (X X5) X;
with the ensemble feedback strategy kw = — ﬂz]% is

stable.

Proof: ZE[X;]= Z (aji + Big ) E[X;] — Z (aij + Bji ) E[Xi]

(1,5)€E (j,i)€E

4E[X] =(Ka + Kp)E[X]

Both K, and K; are Markov process matrices and
negative semidefinite => stable
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Monitoring of 3 Regions

T T LABORATORY

No Feedback With Feedback

No Variance Control - 8x with Variance Control - 8x

Mather and Hsieh (RSS2011)
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* Tracking LCS

» Precision

» Representation
» Planning

e Controlling Spatial Distribution
» Analysis of the single robot controller
» Derive transition propensities from actual fluid dynamics
» Use ensemble models to improve single robot strategy

* Experimental Validation

» Develop a large scale indoor test-bed
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