A 70-year perspective on water mass transformation in the central Greenland Sea

Anna-Marie Strehl, Kjetil Våge, Lars Henrik Smedsrud

Group Retreat 24th Mar 2022

 1909, Helland-Hansen and Nansen: deep water production takes place in the Greenland Sea

- 1909, Helland-Hansen and Nansen: deep water production takes place in the Greenland Sea
- cessation of bottom reaching convection in the 1980s

- 1909, Helland-Hansen and Nansen: deep water production takes place in the Greenland Sea
- cessation of bottom reaching convection in the 1980s
- 2019, Brakstad et al.: formation of a new class of intermediate water (GSAIW)

- 1909, Helland-Hansen and Nansen: deep water production takes place in the Greenland Sea
- cessation of bottom reaching convection in the 1980s
- 2019, Brakstad et al.: formation of a new class of intermediate water (GSAIW)
- 2020, Huang et al.: waters formed in the Greenland Sea are contributing to overflow waters

Overview - central Greenland Sea

heat fluxes

EGC: East Greenland Current JMC: Jan Mayen Current

NAC: Norwegian Atlantic Current

Overview - central Greenland Sea

EGC: East Greenland Current JMC: Jan Mayen Current

NAC: Norwegian Atlantic Current

Data distribution

Data distribution

Temperature evolution

Salinity evolution

Salinity evolution

Salinity evolution

Temperature + salinity evolution

Density evolution (referenced to 3000 m)

Density evolution (referenced to 3000 m)

The central Greenland Sea - something in between

 β -ocean (salinity stratified)

transition ocean

 α -ocean (temperature stratified)

$$N^2 = g \left(\alpha \frac{\partial \theta}{\partial z} - \beta \frac{\partial S}{\partial z} \right)$$

The central Greenland Sea - something in between

(salinity stratified)

transition ocean

ransition ocean
$$N^2 = g \left(\alpha \frac{\partial \theta}{\partial z} - \beta \frac{\partial S}{\partial z} \right)$$

 α -ocean

(temperature stratified)

 β -ocean: salinity stratified α -ocean: temperature stratified

 β -ocean: salinity stratified α -ocean: temperature stratified

Stratification (buoyancy frequency) evolution

Mixed layer depth

σ - π distance

σ - π distance

π : spicity

change coordinate system from θ -S to σ - π

σ - π distance to 750 m

σ - π distance to 750 m

convective mechanisms

haline convection	thermal convection	double diffusive convection + cabbeling	thermobaric convection		
mixed layer convection		internal convection	bottom reaching convection		
+ + + + + + + + + + + + + + + + + + + +			2 Pare(T.5) Pa(T.5)		

convective mechanisms

haline convection	thermal convection	thermobaric convection			
mixed layer convection		bottom reaching convection			
+ - + + + + + + + + + + + + + + + + + +	- +	hip pressure on	հեցի density tow	Trobumn Column(T,S)	Power(T,S)

 α -ocean: temperature-stratified β -ocean: salinity-stratified

 α -ocean: temperature-stratified β -ocean: salinity-stratified

 α -ocean: temperature-stratified β -ocean: salinity-stratified

Hydrography:

- intermediate variability probably driven by variability in the NAC
- deep variability caused by convection and import of other deep water masses

Hydrography:

- intermediate variability probably driven by variability in the NAC
- deep variability caused by convection and import of other deep water masses

Formation of GSAIW:

- ↑ increase of temperature and salinity ↓ decrease in density
- formation of stratified layer separates intermediate from deep ocean

Hydrography:

- intermediate variability probably driven by variability in the NAC
- deep variability caused by convection and import of other deep water masses

Formation of GSAIW:

- † increase of temperature and salinity
- regime shift density
- from transition- to α -ocean separates intermediate from deep ocean

Hydrography:

- intermediate variability probably driven by variability in the NAC
- deep variability caused by convection and import of other deep water masses

Formation of GSAIW:

- † increase of temperature and salinity
- regime shift density
- from transition- to lpha-ocean separates

Convection:

- deep convection until 1985
- intermediate mixed layer depth increased during formation of GSAIW
- since the early 2010s even the intermediate convection became shallower

deep convection profiles

Seasonal Variability of surface properties

Typical heat fluxes and the MIZ

Typical heat fluxes and the MIZ

Typical heat fluxes and the MIZ

ice coverage of the central Greenland Sea

ice coverage of the central Greenland Sea

Typical heat fluxes for the different ice states

heat flux trend at different locations

heat flux trend at different locations

slope = 0.00576 W/m²/year

heat flux trend

Mixed Layer properties

Literatur I

- [1] A. Brakstad et al. "Overturning in the Nordic Seas". In: Progress in Oceanography (in prep).
- [2] Ailin Brakstad et al. "Water Mass Transformation in the Greenland Sea during the Period 1986–2016". In: Journal of Physical Oceanography 49.1 (2019), pp. 121–140.
- [3] Bjørn Helland-Hansen and Fridtjof Nansen. "The Norwegian Sea: Its Physical Oceanography Based Upon the Norwegian Researches 1900-1904". In: *Report on Norwegian Fishery and Marine-Investigations* 11.2 (1909).
- [4] N. Penny Holliday et al. "Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas". In: *Geophysical Research Letters* 35.3 (2008).

Literatur II

- [5] Jie Huang et al. "Sources and upstream pathways of the densest overflow water in the Nordic Seas". In: *Nature communications* 11.1 (2020), p. 5389.
- [6] Rui Xin Huang, Lu-Sha Yu, and Sheng-Qi Zhou. "New Definition of Potential Spicity by the Least Square Method". In: Journal of Geophysical Research: Oceans 123.10 (2018), pp. 7351-7365.
- [7] MetOffice. "Risk Management of climate thresholds and feedbacks: Atlantic Meridional Overturning Circulation (AMOC)". In: Factsheet MetOffice (2019), pp. 1–2.
- [8] Bert Rudels. "Haline convection in the greenland sea". In: Deep Sea Research Part A. Oceanographic Research Papers 37.9 (1990), pp. 1491–1511.

Literatur III

[9] Kial D. Stewart and Thomas W. N. Haine. "Thermobaricity in the Transition Zones between Alpha and Beta Oceans". In: *Journal of Physical Oceanography* 46.6 (2016), pp. 1805–1821.