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A remarkably preserved dolomite oolite from the onset of the Ediacaran Shuram
excursion—a critical, yet enigmatic, interval in Earth’s history—offers new insights into
pathways of dolomite formation during the Neoproterozoic era. We examine ooids from
the Khufai Formation using electron backscatter diffraction (EBSD) and
polarization-dependent imaging contrast (PIC) mapping to characterize crystal
preservation and orientation at the nanoscale. For comparison, we analyze two other
well-preserved Ediacaran dolomite fabrics from the same stratigraphic succession:
spherulitic dolomite from conical stromatolites in the Buah Formation, and fibrous
dolomite cements from a supratidal pisolite in the Birba Formation. The Khufai ooids
exhibit distinctive characteristics: fibrous radial crystals organized into plumose
(feather-like) bundles, with the c-axis consistently oriented perpendicular to the
elongation direction (length-slow), concentric banding with evidence of abrasion, and
microfabrics indicating competitive growth dynamics. This combination of features is
less consistent with typical replacement processes, including mimetic or synsedimentary
dolomitization, than with primary precipitation of crystals with a dolomite lattice, likely
imperfectly ordered at nucleation. Primary dolomite precipitation in ooid shoals may
reflect a rare and still unknown set of environmental conditions during the onset of the

Shuram excursion.

INTRODUCTION

Ooids are non-skeletal, subspherical carbonate grains
that form in shallow marine environments as oriented crys-
tals grown concentrically around a nucleus. The structure
of ooids—their crystal orientations and petrographic prop-
erties—can preserve a record of the conditions under which
they originally formed and were subsequently altered, as
ooid morphology depends on environmental conditions
such as water chemistry, sediment transport regime, abra-
sion, biological activity, and the primary mineralogy of the
ooid (Anderson et al., 2020; Diaz & Eberli, 2019; Howes
et al., 2024; Riaz et al., 2024; Sandberg, 1975; Simone,
1980; Trower et al., 2017). Thus, ooid crystallography can
be used as a tool for reconstructing both paleoenvironmen-
tal conditions and post-depositional diagenesis (Hood &
Wallace, 2018; Medwedeff & Wilkinson, 1983; Sandberg,
1975; Wilkinson et al., 1984).

Here we explore whether ooid crystallography may help
us better understand shallow marine environments at the
onset of the largest negative carbon isotope excursion in
Earth history, the Shuram excursion (e.g., Bergmann et al.,
2025; Busch et al., 2022; Grotzinger et al., 2011; Schrag et
al., 2013). The Ediacaran Shuram excursion (573-568 Ma)
records 813C values as low as -12%o (VPDB; e.g., Bergmann
et al., 2025; Busch et al., 2022; Fike et al., 2006; Grotzinger
et al., 2011). Both dolomite and calcite ooids are commonly
associated with this excursion in multiple locations world-
wide (e.g., Bergmann et al., 2011, 2025; Corsetti et al.,
2006; Melezhik et al., 2009). We focus on dolomite ooids
from the upper Khufai Formation in Oman that record the
onset of the Shuram excursion (Bergmann et al., 2025; Le
Guerroué et al., 2006; Osburn et al., 2014).

Our primary objective is to address whether these ooids
originally precipitated as calcite or aragonite and were later
altered to dolomite, or whether they precipitated directly as
dolomite. Resolving their original mineralogy is key to in-
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terpreting both primary environmental conditions and the
extent of diagenetic overprinting. We address this question
using electron backscatter diffraction (EBSD) and synchro-
tron-based polarization-dependent imaging contrast (PIC)
mapping to resolve crystal orientations at high spatial res-
olution. We compare our results from the Khufai oolite to
two other dolomite fabrics the same Ediacaran succession
in Oman: spherulitic dolomite from a conical stromato-
lite, and multiple generations of dolomite cements from a
supratidal tepee-pisolite complex. For broader context, we
also draw on previously published EBSD and PIC maps of
calcite and aragonite ooids (Bergmann et al., 2025; Dick-
son, 2023; Frazier, 2024; Mono et al., 2025), along with ad-
ditional observations of radial calcite ooids from the Edi-
acaran and Cambrian presented in the Supplemental
Materials. Together, these analyses reveal crystallographic
features that distinguish primary dolomite precipitation
from secondary mimetic dolomitization, and imply that en-
vironmental conditions in shallow open marine environ-
ments at the onset of the Shuram excursion approximated
the extreme conditions that permit dolomite formation to-
day.

MATERIALS AND METHODS
Geological Setting and Sample Collection

The upper Khufai oolite is a 1-30 m thick, cross-strat-
ified ooid grainstone deposited in a high-energy, shallow
marine setting with stromatolite bioherms and intraclasts
(Figure 1A, B; Supplemental Figure 1). In our studied sec-
tions at Mukhaibah Dome and Khufai Dome of the Huqf
outcrop area, Oman, &3C values decrease from 0.3 to
-2.98%o (VPDB) across the 1.1 m-thick oolite, marking the
onset of the Shuram excursion (Figure 1C, D) (Bergmann et
al., 2025). Supplemental Table 1 contains sample informa-
tion and Supplemental Table 2 has analytical coverage for
the oolite and comparison samples.

The overlying Shuram Formation begins with siliciclastic
red-to-purple siltstone, followed by limestone oolites that
record the excursion nadir (6*3C values as low as —12%o
VPDB; Bergmann et al., 2025; Le Guerroué et al., 2006).
These calcitic ooids are smaller than the dolomitic Khufai
ooids, with cortices composed of radial crystals that are
length-fast and acicular (straight and needle-like) (Supple-
mental Figures 2-3) (Bergmann et al., 2025). In Oman, the
negative 83C values that define the Shuram excursion re-
cover within the overlying Buah Formation. In the Hugf
outcrop area and in subsurface penetrations, the late Edi-
acaran Birba Formation overlies a subaerial unconformity
at the top of the Buah Formation (Gémez-Pérez et al.,
2024).

Analytical Coverage

Our analytical coverage (Supplemental Table 2) included
six thin-sections of Khufai Formation oolite samples from
Mukhaibah and Khufai Domes imaged with plane- and
cross-polarized light microscopy (Supplemental Figure 4).
One oolite hand sample from Mukhaibah Dome (MD6

258.6m; Figure 2A-E) underwent additional analysis:
stitched microscopy of the entire thin section at 5x magni-
fication (Supplemental Figures 5-6); Scanning Electron Mi-
croscopy (SEM) imaging of acid-etched and unetched re-
gions  (Supplemental Figure 7); Electron Probe
Microanalysis (EPMA) elemental mapping of two regions
containing 17 and 7 ooids respectively with 37 EPMA spot
measurements of Ca, Mg, Fe, Sr, and Mn in ooids and 14
spot measurements of sediment; EBSD and Energy Disper-
sive Spectroscopy (EDS) mapping of two ooids and partial
mapping of four additional ooids (yellow region 1 (R1) and
region 2 (R2) in Figure 2B; Supplemental Figure 8); and PIC
mapping of one-quarter of one of the EBSD-characterized
ooids (Figure 2B, orange box).

Comparative Samples

For comparison with the EBSD and PIC results from the
Khufai Formation oolite sample, we examined two dolomite
samples from the overlying Buah and Birba Formations that
preserve fine-scale fabrics. The first comparative sample
(SB1_CON) is from a conical Conophyton stromatolite in
the upper Buah Formation with heavy 63C values of +7%o
(VPDB), which contains spherulitic dolomite laminae with
sweeping sinistral extinction (counterclockwise extinction
with clockwise stage rotation) (Figure 2F; Supplemental
Figure 9; Supplemental Movie 1). SEM imaging was com-
pleted of acid-etched and unetched spherulites (Supple-
mental Figure 9), EDS and EBSD were conducted on one
spherulite, and a portion of that same spherulite was ana-
lyzed with PIC mapping (Figure 2G-J; Supplemental Figure
10).

The second comparative sample (SB1_ONC) contains
multiple generations of fascicular-optic dolomite cement
with counterclockwise extinction precipitated between
pisoids within a supratidal tepee-pisolite complex of the
Birba Formation (Figure 2K; Supplemental Movie 2). SEM
imaging was completed on acid-etched and unetched ce-
ments filling cavities between pisoids (Supplemental Figure
11), EBSD and EDS conducted on one region of cements
(Supplemental Figure 12), and a subregion of cements was
analyzed with PIC mapping (Figure 2L-O).

For additional context, we also include petrographic im-
ages and SEM imaging of etched and unetched regions from
two calcite oolite samples in the Supplemental Materials:
an Ediacaran calcite oolite with radial acicular crystals from
the Shuram Formation in Oman (Supplemental Figures 2-3)
and Cambrian calcite ooids from the Petit Jardin Formation,
Newfoundland, with radial acicular crystals partially re-
placed by dolomite (Supplemental Figure 13). XRD analysis
was completed on 47 dolomite samples from the Ediacaran
stratigraphy in the Hugf region, including the MD6 258.6m
oolite sample, three other oolite samples, and nine other
samples from the onset of the Shuram excursion (Supple-
mental Figures 14-18).

Sample Preparation

Sample preparation varied by analytical technique. For
PIC mapping, each sample was cut to a 4 mm x 4 mm
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Figure 1. Khufai and Shuram Formation boundary in the Hugf outcrop area, Oman.

A) Khufai Formation and overlying red silts of the Shuram Formation at Mukhaibah Dome. Dashed line highlights the Khufai-Shuram Formation contact. Stromatolitic bioherms nu-
cleated on the upper Khufai oolite (see Bergmann et al., 2018; Osburn et al., 2014). Trees in the lower right are approximately 1-2 m tall for scale. B) High-energy facies of the Upper
Khufai ooid grainstone: disrupted stromatolite laminae, intraclasts, and ooids. Knife point is 7 cm long for scale. C) Upper Khufai Formation §'3C values (%o, VPDB) from section
MD6 in Osburn (2013), with the orange circle highlighting the oolite sample (MD6 258.6) analyzed in this study. Red shading indicates the onset of the Shuram excursion. D) Strati-
graphic detail showing a decrease in §!3C values across the upper Khufai oolite (blue points), with the orange circle representing data from the dolomite oolite sample.

square cross section, embedded in epoxy, polished with
Al, Oz down to 50 nm, and coated with 1 nm of Pt following
De Stasio et al. (2003). These samples were subsequently
repolished with colloidal silica and carbon-coated for EBSD
and EDS analysis. Remaining samples were thin-sectioned,
polished to 0.25-um thickness for petrographic observa-
tion, and carbon-coated for EPMA spot analysis and ele-
mental mapping. For X-ray diffraction (XRD), aliquots from
the three samples were powdered using a drill press.

Scanning Electron Microscopy (SEM), Electron
Probe Microanalysis (EPMA), and X-Ray Diffraction
(XRD) Analysis

Small regions on the polished thin sections were acid-
etched using 10% HCI for 30 seconds before SEM analysis.
SEM imaging and EDS elemental mapping were conducted
using a Hitachi TM4000II microscope at MIT, operated at 10
kV accelerating voltage for imaging and 15 kV for elemental
mapping, at a working distance of 8.5 mm under low vac-
uum.

EPMA spot analyses were performed using a JEOL
JXA-8200 electron microprobe at the California Institute
of Technology with an accelerating voltage of 15 kV, beam
current of 20 nA, and beam size of 1 ym. Ca, Mg, and Mn
were calibrated using calcite, dolomite, and rhodochrosite
in-house standards with detection limits of 177-300 ppm.

Powder XRD data were collected on a PANalytical X’Pert
Pro (California Institute of Technology) using Cu Ka radi-
ation (45 kV, 40 mA) over 5-70° 26, step size 0.008°, and

10.16 s per step. Background was removed with a rolling-
median filter (0.6° 20 window); peak heights were mea-
sured on the baseline-corrected signal (Supplemental Fig-
ure 14). Peak positions were identified as the tallest local
maximum within #0.30° of standard positions (quartz (101)
26.6737° 20, RRUFF R040031; dolomite standard from
RRUFF R040030, e.g., (104) 31.00°, (110) 37.42°, (015)
35.37°, (021) 43.85°) (Supplemental Figure 15). All reported
20 values were corrected by a constant +0.09°, equal to
the average deviation of the quartz (101) reflection from
the standard, computed from 17 of 47 scans with strong
quartz (101) reflections (mean 26.76°; 10 = 0.05°; I>50 after
baseline correction). Dolomite ordering was quantified as
1(015):1(110) (following Goldsmith & Graf, 1958; Manche
& Kaczmarek, 2021) (Supplemental Figure 16). Following
Pina et al. (2020), we also calculate HWHM(104) =
15-FWHM(104) and A26(104) = (104) - 31.00° (Supplemen-
tal Figures 17-18).

Electron Backscatter Diffraction (EBSD)

Full, 3-D crystal orientations were mapped using a Ther-
moFisher Helios Hydra 5 SEM equipped with an Oxford In-
struments Symmetry S3 EBSD detector, located at the Ma-
rine Biological Laboratory (Woods Hole, MA). EBSD data
were collected at 25 kV accelerating voltage, 51 nA beam
current, 15 mm working distance, 156 x 128 EBSD detector
resolution (“Speed 4” mode), 0.5 ms dwell time, and with
2x frame averaging, yielding an EBSD acquisition speed of
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Figure 2. Comparison between three Ediacaran dolomites and high-resolution analytical locations for EBSD and
PIC mapping.

In three rows, this figure shows the progression from field context to microscopic analysis for each sample type analyzed in this study. A) Field photograph showing cross-stratified
ooid grainstone bed at Mukhaibah Dome. Some individual ooids circled in white. B) Reflected light image of polished surface showing radial ooids from sample MD6 258.6m with R1
and R2 yellow and dark orange boxes indicating EBSD mapping locations and orange box in R1 indicating PIC mapping location. C) PIC map of c-axis orientations within crystal bun-
dles. Regions with one color correspond to single crystal orientations, with hue and brightness representing in-plane and out-of-plane c-axis orientations, respectively. D) Zoom in
from EBSD map of crystal orientations in the z directions (out of plane) from the dark orange box in image B. E) SEM backscatter (BSE) image from a thin section at the same scale as
the EBSD map. Acid-etched crystals of an ooid cortex with etching-induced porosity along the margins of the curved crystal fibers (black lines) and pits with the crystals. Etching
highlights the elongated curved bundles. Adjacent bundles are influenced by their neighbors creating a fabric consistent with competitive growth. F) Field photograph showing coni-
cal stromatolite from the upper Buah Formation in outcrop with steeply inclined stromatolite laminae highlighted. G) Reflected light image showing laminae composed of spherulitic
dolomite from sample SB1_CON with yellow and dark orange boxes indicating EBSD mapping locations and the orange box indicating PIC mapping location. H) PIC map showing
blotchy spherulitic fabric with radially oriented, length-fast c-axes. I) Zoom in from EBSD map of crystal orientations in the z directions (out of plane) from the dark orange box in
image G. J) SEM BSE image from a thin section at the same scale as the EBSD map. The spherulite margin is porous with smaller individual rhombohedral crystals that increase in
size near the spherulite edge. K) Field photograph showing pisolite outcrop with dolomite cements (arrow) nucleating on highlighted (white circles) pisoid from a supratidal tepee-
pisolite complex in the Birba Formation. L) Reflected light image showing pisoids and multiple cement generations from sample SB1_ONC with yellow and dark orange boxes indicat-
ing EBSD mapping locations and orange box indicating PIC mapping location. M) PIC map of the third cement generation indicating either length-fast (blues and greens) or length-
slow (reds) crystal orientations. Abundant inclusions are visible as black spots. N) Zoom in from EBSD map of crystal orientations in the z directions (out of plane) from the dark
orange box in image L. O) SEM BSE image from a thin section at the same scale as the EBSD map in image N. The 15t and 21d cement generations have larger crystals composed of

smaller well-formed, stacked dolomite rhombohedrons. Abundant inclusions and intracrystal porosity are evident.

~1000 Hz. Samples were mapped at step sizes of either 0.25
pm or 0.50 pm.

For all inverse pole figure maps, except for those from re-
gion R2 in Figure 2B, pixels that did not yield clear Kikuchi
patterns were left non-indexed rather than interpolated us-
ing neighboring pixel data, as these regions often corre-
sponded to genuine porosity. These maps were analyzed us-
ing the open-source MTEX toolbox for MATLAB (Bachmann
et al., 2010). A 10° misorientation threshold was used to as-
sign pixels to crystals. For each pixel belonging to a grain
with aspect ratios >1.5 and containing >10 pixels, the an-
gle between the c-axis and the grain long axis (hereafter
referred to as the “c-axis to elongation” angle) was mea-
sured. Region R2 from sample MD6 258.6m was mapped at
500 nm step size, then reindexed using Oxford Instruments’
MapSweeper to increase indexing from ~56% to ~99%. The
map was refined through pattern binning, iterative repair
of clusters containing < 5 wild-spike or non-indexed pixels,
and removal of pixels with cross-correlation coefficients R
<0.2.

Polarization-dependent Imaging Contrast (PIC)
Mapping

Crystal morphologies and orientations were also
mapped at nanoscale resolution using polarization-depen-
dent imaging contrast (PIC) mapping (DeVol et al., 2014) to
supplement EBSD mapping. We produced high-resolution
maps of crystal orientations and geometries within one 400
um-diameter ooid from the upper Khufai oolite, one area of
the spherulitic dolomite from the conophyton stromatolite,
and a dolomite cement horizon from the pisolite sample.

PIC mapping uses soft X-rays with a variable linear po-
larization angle to measure the optic-axis orientation of
crystals (e.g., the c-axis for dolomite), displaying them in
3D, with 20 nm resolution and 56 nm pixels. Hue and
brightness represent in- and out-of-plane angles, respec-
tively (Gilbert et al., 2011). Based on X-ray linear dichroism,
this technique has been applied to aragonite, calcite, and
vaterite (DeVol et al., 2014; Gilbert, 2023; Lew et al., 2023)
and is demonstrated here for dolomite.
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Data were collected on beamline 11.0.1.1 at the Ad-
vanced Light Source, Lawrence Berkeley National Labora-
tory, using X-ray PhotoEmission Electron spectroMi-
croscopy (X-PEEM) (De Stasio et al., 1998, 1999). Samples
were mounted at 60° to the incident X-ray beam. At 534 eV,
the linear polarization direction was rotated from 0° to 90°
in 5° increments, generating 19 images processed using GG
Macros (Sun et al., 2021). Intensity (I) versus polarization
angle (X) curves were fit using Malus’s law: I = a + bcos?(X —
¢"), with parameters (a, b, and c') representing the in-plane
and out-of-plane angle of the crystal c-axis orientation in
polar coordinates (DeVol et al., 2014; Gilbert et al., 2011).

RESULTS
Mineralogy

EPMA Ca/Mg ratios (Figure 3A) and XRD ordering peaks
(015) and (021) (Figure 3B) indicate that the oolite com-
prises ordered dolomite with Ca and Mg in near equal parts.
EPMA spots 1-4 in Figure 3A yielded Ca/Mg molar ratios of
1.00, 1.01, 1.07, and 1.02, respectively. The average Ca/Mg
molar ratio of all spot measurements is 1.01 (*0.01, 1 SE, N
=37). Ooids have an average Mn concentration of 1010 ppm
(*70, N = 37) compared to 852 ppm in sediments (*107, N
= 14). Average Fe concentrations are 3342 ppm in the ooids
(%159, N = 37) and 5352 ppm in the sediments (¥931, N
= 14). Errors are reported as one standard error (SE). The
degree of ordering in the oolite ranges from 0.44 to 0.62
across the Hugf region based on (015)/(110) reflection ra-
tios (N = 4), with an ordering ratio of 0.50 for sample MD6
258.6m (Supplemental Figures 16-18). The (104) reflection
at 30.91° confirms Ca/Mg stoichiometry near 1. The SEM
images (Figure 3A; Supplemental Figure 7), elemental map
of Mn (Figure 3C, left), and phase map from EBSD (Supple-
mental Figure 8B) all show concentric banding in ooid cor-
tices. Ooids are surrounded by Si- and Fe-rich sediment and
either silica cement or preserved open porosity (Figure 3C,
right).

Petrography

The upper Khufai oolite contains fibrous, radial,
dolomitic ooids ranging in diameter from ~250 to 1500 pym.
The ooids have well-defined nuclei with radially-oriented
crystals making up the ooid cortices (Figure 3D, E) and min-
imal internal porosity (Figure 2E; Figure 3F; Supplemental
Figure 7). Closely spaced (< 10 um) concentric banding is
visible in the cortices (Figure 3E; Supplemental Figure 8),
with occasional small fractures where ooids are in contact
with one another. Individual radial crystals can span tens of
microns in length across multiple bands (Figure 3F).

Larger ooids contain two distinct generations of fibrous
dolomite crystals within the cortex (Figure 2D; Figure 3D,
F). First-generation crystals are longer, with more curva-
ture and minimal banding. Second-generation crystals nu-
cleate on abraded surfaces with regular banding.

Ooid nuclei exhibit four distinct fabrics: small, equant
dolomite crystals (5-20 pum); irregular clotted fabrics with
possible residual organics; multiple irregular grains ce-

mented together like grapestone; and coarse, blocky, rhom-
bohedral dolomite crystals, approximately 50-100 pym in di-
ameter (Figure 3D, G, H). Some nuclei are dissolved, leaving
dolomite cortices intact but with nuclei either open or filled
with botryoidal chalcedony (Figure 3D).

Crystal Morphology and Crystallographic
Orientation

EBSD (Figure 4A-E) and PIC mapping (Figure 4F-H) re-
veal ooid cortices that are composed of small, fibrous
dolomite crystals (~ 2 ym x 15 um), while the dolomite
crystals in the nuclei are larger and equant. Crystal bundles
are composed of radially oriented crystallites with c-axis
orientations within 60° of each other (Figure 4G, H). Each
bundle exhibits a curved, plumose morphology expanding
towards the ooid edges, with systematic brightness and hue
changes reflecting progressive c-axis orientation changes
consistent with differential growth rates across crystallites
within the bundle (Figure 4F, G). All crystals terminate be-
fore or at the preserved outer edge of the ooid (labeled in

Figure 4A-B).
Comparative crystallographic analysis

For comparison, the stromatolite spherulite sample
(SB1_CON) has a dolomite cation ordering ratio of 0.52 with
the (104) reflection at 30.94°, while the pisolite sample
(SB1_ONC) has a ratio of 0.36 (versus 0.50 for the ooid)
and 30.92° for the (104) reflection (Supplemental Figures
16-18). Unlike the ooids, which contain clear banding in
the cortices, the stromatolite sample contains no evidence
of banding, abrasion, or wave agitation, consistent with
spherulites forming in low-energy environments (Figure
2G). The spherulitic stromatolite is cemented by micro-
crystalline dolomite, whereas the pisolite sample has pores
between pisoids filled with multiple generations of fasci-
cular-optic dolomite cements and, occasionally, an orange
calcite microcrystalline cement or silica cement (Figure 2K,
L). Some of the primary pore structure remains open within
the tepee-pisolite complex in the Hugf region.

EBSD analysis of the three samples reveals distinctly dif-
ferent crystal orientations (Figure 5A-F), with the c-axis
orientation quantified relative to the crystal elongation di-
rection (Figure 5D-L). This analysis confirms that the ooids
have fine, elongated, radial, length-slow crystals, with a
mean c-axis-to-elongation angle of 71.5° * 15.7° (n =
916,647) and preferential < 1120 > a-axis alignment with
the elongation direction (Figure 5A, D, G, ]). In contrast to
the length-slow crystals of the ooid sample, the stromato-
lite shows length-fast crystal orientations with c-axes ori-
ented parallel to crystal elongation (Figure 5B, E, H, K).
This difference is evident in the Y-direction inverse pole
figure (IPF) coloring: vertical crystals appear red in the
stromatolite (Figure 5B) versus blue and green in the ooid
(Figure 5A), indicating c-axes parallel and perpendicular to
the Y-direction, respectively. The c-axis to elongation angle
histogram shows an approximately uniform distribution in
the spherulite (Figure 5K), indicating no preferential crys-
tal orientation. Unlike the fibrous crystal fabric of the ooid
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Figure 3. Petrographic images and mineralogy of the Khufai Formation oolite.

A) SEM image of a concentrically banded ooid within sample MD6 258.6m. Ca/Mg molar ratios in EMPA spots 1-4 are 1.00, 1.01, 1.07, and 1.02, respectively. B) Peak-offset corrected
XRD pattern of the oolite, with orange lines indicating dolomite ordering peaks (Kaczmarek et al., 2017). C) EPMA Mn (left) and Si (right) maps showing concentric banding in Mn
content in some of the ooid cortices, and Si-rich sediment and chalcedony cement surrounding ooids. Ooids have an average Mn concentration of 1010 ppm (*¥70, 1SE, N = 37) com-
pared to 852 ppm in sediments (¥107, 1 SE, N = 14). Warm colors are higher concentration. D) Cross-polarized light petrographic image of ooids partially cemented with chalcedony
and partially uncemented with open primary porosity. Various nuclei show evidence of dissolution or a coarse rhombohedral dolomite cement. E) Cross-polarized light image of ra-
dial fabric, banding, and crystal termination at ooid margin. Porosity is infilled with a minimal amount of dolomite cement and mostly chalcedony cement. F) Cross-polarized light
image showing an example of longer curved fibrous dolomite crystals within the first generation of an ooid cortex in one of the larger ooids. G) Plane-polarized light image showing a
variety of nuclei fabrics including grapestone, microcrystalline dolomite, and clotted fabric nuclei. H) Cross-polarized light image showing one nucleus with evidence of irregular
clotted fabric with intraparticle voids filled by an initial layer of fibrous dolomite cement followed by rhombohedral dolomite cement crystals.

sample, the stromatolite spherulite is composed of small,
equant to oblong crystals separated by open porosity (Fig-
ure 21), producing a blotchy fabric in both the PIC and EBSD
maps (Figure 2H, I).

The pisolite sample displays three distinct cement gen-
erations. The first- and second-generation cements that
nucleate on a pisoid are both length-slow with a-axes par-
allel to the elongation direction (Figure 5C, F, I, L). The ce-
ment crystals transition from smaller bundles near the nu-
cleation surface at the pisoid margin to larger bundles with
more consistent orientations moving outward into the orig-
inal intergranular pore (Figure 5C, F). In contrast to the in-
ner two cement rinds, 70% of crystals in the outer, third
generation dolomite cement are length-fast with the c-axis
parallel to the crystal elongation direction, with a mean c-
axis-to-elongation angle of 12.5° = 7.4° (n = 656,412) (Fig-
ure 51, L, right), though there are two regions within this
outer cement horizon that are length-slow like the first-
and second-generation cements. All three cement genera-
tions have abundant inclusions.

DISCUSSION

The dolomite composing the ooids of the upper Khufai
Formation exhibits exceptional preservation of nanoscale
crystallographic details with detectable ordering reflections
and a Ca/Mg molar ratio of ~1. The distinctive crystal mor-
phologies and systematic crystallographic orientations
contrast with typical modern and ancient ooids, requiring
evaluation of alternative formation mechanisms for the
Khufai ooids. Comparative analysis with spherulitic stro-
matolite dolomite and pisolite dolomite cements reveals
systematic differences in crystallographic behavior across
Ediacaran depositional environments and dolomite fabrics.

Ooid growth dynamics

Ooids form through tangential or radial concentric pre-
cipitation of carbonate around a nucleus in environments
with high or oscillating energy. Key factors influencing
their formation include physical transport and abrasion
(Anderson et al., 2020; Harris et al., 2019; Heller et al.,
1980; Medwedeff & Wilkinson, 1983; Trower et al., 2017,
2018, 2020), fluid chemistry (Sandberg, 1975, 1983; Wilkin-
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Figure 4. Crystal orientation maps of a dolomitic ooid from the upper Khufai oolite.

A) EBSD map of crystal orientations in the X direction (X IPF) from the yellow R1 region in Figure 2B. B) EBSD map of crystal orientations in the X direction (X IPF) of different ooids
from the yellow R2 region in Figure 2B. Crystal c-axes shown in red are only oriented in the X direction in the narrow vertically oriented crystals. C-E) Zoom in of EBSD crystal orien-
tations in the orange box of image A aligned out of plane (Z IPF), vertically (Y IPF), and horizontally (X IPF) of the PIC map area. F) PIC map of the upper left quadrant (orange box)
of the ooid from image A. Pixels are 56 nm. Regions with one color correspond to single crystal orientations, with hue and brightness representing in-plane and out-of-plane c-axis
orientations, respectively. The black region is silica cement. G) Bundles of similarly-oriented crystals highlighted from the PIC map in image F. H) Histograms showing that crystal
orientations within each bundle are co-oriented within 60°. The EBSD Z IPF in image C shows the c-axes of crystals in bundle (3) are predominantly oriented out of the plane.

son et al., 1984; Wilkinson & Given, 1986), and microbial
activity (Diaz et al., 2015; Diaz & Eberli, 2019; Duguid
et al., 2010; Mariotti et al., 2018; Ramey-Lariviere et al.,
2023; Riaz et al., 2024). Most modern ooids have a tangen-
tial aragonite cortex. Radial aragonite ooids occur in hy-
persaline environments (e.g. the Great Salt Lake; Sandberg,
1975), and many Phanerozoic calcite ooids are also radial
(Anderson et al., 2020; Land et al., 1979; Sandberg, 1983;
Wilkinson & Landing, 1978). In both these cases, the ooid

cortices are composed of acicular radial crystals, contrast-
ing with the plumose, curved crystal bundles in the Khufai
ooid cortices. While few examples have been analyzed with
high-resolution techniques, PIC maps of modern tangen-
tial aragonite ooids (Frazier, 2024) and EBSD maps of Cre-
taceous (Dickson, 2023), Triassic (Mono et al., 2025), and
Ediacaran (Supplemental Figure 3) (Bergmann et al., 2025)
radial calcite ooids consistently show acicular crystals with
c-axes parallel to elongation, i.e. a length-fast orientation.
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Figure 5. EBSD crystal orientation analysis of three Ediacaran dolomite samples.

All EBSD maps use inverse pole figure (IPF) coloring relative to their sample’s Y-direction. Histograms use consistent y-axis scaling to enable direct comparison. A) EBSD IPF map of
radial ooid (R1, Figure 2B) showing concentric dolomite crystal arrangement with clear cortical banding. B) EBSD IPF map of spherulitic stromatolite dolomite (SB1_CON, Buah For-
mation) showing radial fabric. Red crystals indicate c-axes parallel to Y-direction (length-fast character), contrasting with the ooid. C) EBSD IPF map of pisolite cements (SB1_ONC,
Birba Formation) showing three distinct dolomite cement generations with different crystallographic orientations. D) C-axis to elongation angle map of the ooid where red indicates
~90° offset and white indicates ~0° offset. An offset of 76° is expected for length-slow rhombohedral calcite crystals (Dickson, 1978). E) C-axis to elongation angle map of spherulitic
sample showing mixed orientations with more light colors. F) C-axis to elongation angle map of cement generations. The first two dolomite cement generations are predominantly
length-slow (red) while the third generation shows both length-slow and length-fast orientations. G) The pole figures (right) show c-axes of dolomite crystals in the ooid clustered
around the Z-axis; inverse pole figures (left) show a-axes aligned sub-parallel to crystal elongation, consistent with length-slow radial crystals. Colors represent texture intensity rel-
ative to random distribution. H) Pole figures show c-axes of the spherulite’s dolomite crystals confined to X-Y plane rather than Z-clustering. I) Pole and inverse pole figures compar-
ing first and second generation dolomite cements (left) with the third generation dolomite cements (right), showing distinct orientation patterns. J-L) Histograms of the angles be-
tween each dolomite crystal’s c-axis and its direction of elongation in the ooid (J), spherulitic cement (K), and dolomite cement (L) samples. The angles in the ooid sample form a
tight distribution with a mean of 71.5° * 15.7° (n=916,647), which is close to the 76° expected for length-slow rhombohedral crystals. The spherulite’s crystals shows a more uniform
distribution of the angle with a mean of 42.3° £ 23.8° (n=1,865,640). Histogram for the first two cement generations (left) has a mean angle of 70.4° £ 17.2°, again indicative of
length-slow crystals (n=2,438,931). In contrast, the 3'4 cement generation has a bimodal distribution. The length-slow population of crystals has an average difference between c-axis
and elongation angle of 68.0 + 12.9° (N = 276343; representing 29.6% of the measurements) and the length-fast population has an average angle of 12.5 + 7.44° (N = 656412; repre-
senting 70.4% of the measurements).

Despite these differences, the Khufai grains display
characteristic ooid morphology with a clearly defined nu-
cleus, subspherical-to-elongate shapes, generational crys-
tal growth, and concentric banding (Figure 3A, D, E; Figure
4A; Supplemental Figures 4-8). The Khufai oolite has abun-
dant evidence of wave agitation in a high-energy, shallow

marine depositional environment including cross-stratifi-
cation and intraclasts (Figure 1B). The diverse nuclei
(equant dolomite crystals, clotted microbial fabrics, grape-
stone-like aggregates, and coarse rhombohedral crystals;
Figure 3D) all developed similar radial fibrous cortices, sug-
gesting environmental rather than substrate control. Some
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ooids show cortical spalling and banding (Supplemental
Figure 4) inconsistent with low-energy spherulitic precip-
itates (such as those of the Cretaceous Barra Vehla For-
mation; Chafetz et al., 2018; Wright & Barnett, 2020), fur-
ther supporting their classification as ooids rather than
spherulites.

The Khufai ooids also record episodic growth. Two dis-
tinct cortical generations are present: first-generation crys-
tals with minimal banding, and shorter second-generation
crystals with regular banding (Figure 3D, F); the latter is
consistent with regular episodes of transport, precipitation,
and abrasion (Trower et al., 2020). Subtle Mn variations
across concentric bands (Figure 3C) suggest precipitation
under fluctuating redox conditions, analogous to other Edi-
acaran and Ordovician fibrous dolomite cements (Hu et
al., 2020, 2022) and more recent calcite ooids (Major et
al., 1988). Additional evidence for episodic growth con-
ditions comes from Khufai Dome, kilometers away from
Mukhaibah Dome, where fine plumose dolomite crystals al-
ternate with bands of micrite, indicating that conditions ca-
pable of producing radial dolomite ooids were widespread
(Supplemental Figure 4).

Mimetic dolomitization

Many dolomites form via fluid-buffered replacement of
calcite or aragonite, involving Mg-for-Ca substitution of
cations within an open-system. This process typically de-
stroys primary fabrics at the intragranular scale and par-
tially to completely at larger scales and creates coarse
rhombohedral dolomite crystals (Supplemental Figure 13)
(Corsetti et al., 2006; Machel, 2004; Manche & Kaczmarek,
2021; Zempolich & Baker, 1993). The micron-scale preser-
vation of the Khufai ooids rules out this common mech-
anism. If the Khufai dolomite formed by replacement, it
must have proceeded mimetically, preserving primary
structures. Mimetic dolomitization is known from Phanero-
zoic and Precambrian examples, and within the Precam-
brian is interpreted as a synsedimentary process contempo-
raneous with deposition and shallow burial (Corsetti et al.,
2006; Hood & Wallace, 2012, 2018; Tucker, 1982, 1983).

However, several lines of evidence argue against even
mimetic, fabric-preserving dolomitization of the Khufai
ooids. First, the degree of crystallographic preservation ex-
ceeds what experimental studies show is possible. Zem-
polich and Baker (1993) demonstrated that replacement
dolomitization of aragonite ooids preserves overall shape
but destroys primary optical characteristics (a pseudo-uni-
axial cross) and creates microcrystalline rhombohedral
dolomite (2-8 pym) with coarse rhombohedral dolomite
rinds at ooid margins. Similarly, Bullen and Sibley (1984)
demonstrated that replacement of skeletal material pro-
duces discrete rhombohedral crystals at surfaces exposed to
pore spaces. In contrast, the Khufai ooids show space-filling
dolomite crystal bundles that terminate precisely at ooid
margins, even where no pore-filling cement exists (Figure
2C, D, E; Figure 4), suggesting controlled growth within
confined cortical space rather than replacement.

Second, the plumose crystal structure of the ooid cor-
tices shows no inward crystal growth or euhedral rhombs

typical of replacement (Figure 2C, D, E; Figure 4). Unlike
replacement dolomites that create discrete rhombohedra
with intervening porosity from the 10-13% molar volume
reduction as Mg2* substitutes for Ca*, the Khufai cortices
display coherent organization with closely aligned crystal
boundaries (Figure 2C, D, E; Figure 4).

Third, stromatolite spherulites within the same succes-
sion provide a contrasting example consistent with mimetic
replacement where spherulite macrostructure is preserved
(Supplemental Figure 9). EBSD shows these spherulites
comprise many small oblong and spherical aggregates of
dolomite crystals with porosity between crystal aggregates
(Figure 21, ]) and irregular orientations that create a blotchy
appearance in EBSD, PIC maps, and petrography (Figure
2H, I; Figure 5B). SEM images of the acid-etched
spherulites reveal the spheres are composed of even smaller
dolomite rhombohedra that coarsen towards the margins,
with more porosity—textures typical of replacement (Figure
2]). There is also a clear porosity difference between the
spherulites and the large (~10-20 um) euhedral dolomite
crystals in the cement surrounding them (Figure 21, J; Fig-
ure 5B).

The absence of such textures in the cortices of the Khufai
ooid makes it improbable that the dolomite crystals are
a replacement of calcite or aragonite. The Ca/Mg ratio of
the primary precipitate was therefore likely near its current
value of ~1. Although a minor amount of Mg may have been
incorporated through later sediment-buffered diagenesis,
the retained microfabrics are evidence that such Mg-addi-
tion must have been minimal. The presence of open poros-
ity, silica cementation, and minimal carbonate cementation
(Figure 3) indicates carbonate-poor diagenetic fluids, sug-
gesting little opportunity for dolomitization during burial.

Primary dolomite precipitation

The early generations of pisolite cements in the Birba
Formation have features consistent with primary dolomite
precipitation. The consistent length-slow, fascicular-optic
crystals in early generations are the same features used
to argue for primary dolomite cements in other Ediacaran
environments including in reef cavities, fractures, and
supratidal voids (Hood & Wallace, 2012; Hu et al., 2020,
2022; Stacey et al., 2023; Tucker, 1983). In the pisolite,
small, irregularly oriented, curved crystals in the first gen-
eration of cement transition to fewer, larger, acicular crys-
tals in the second generation (Figure 2N; Figure 5C, F) as
some crystals outcompete their neighbors. This progres-
sion mirrors experimental and theoretical models of fibrous
cement growth (Bathurst, 1972; Dickson, 1978, 2023; Ro-
driguez-Navarro & Garcia-Ruiz, 2000), with (i) a nucleation
phase at the pisoid surface, (ii) a competitive growth phase
where crystals impinge on one another (first generation),
and (iii) a parallel growth phase with acicular crystals (sec-
ond generation). Acid etching confirms the crystals are
composed of stacked rhombohedra (Figure 20). Given the
consistent length-slow character, the ~72° offset between
the c-axis and elongation direction, stacked rhombohedra,
and the observed transition from competitive to parallel
crystal growth, these cements likely precipitated with a
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dolomite crystal lattice and at least partial ordering. In
contrast, the third generation is dominated by length-fast
parallel dolomite crystals, which we interpret as evidence
of replacement of a very high-Mg calcite (VHMC) phase.
The change to length-fast dolomite, followed by calcite ce-
ment in the pore, indicates fluctuating geochemical con-
ditions typical of pisolite-forming environments (Smith et
al., 2021, and references therein).

Several lines of evidence suggest the Khufai ooids also
formed through primary precipitation of dolomite rather
than replacement of calcite (even VHMC) or aragonite.
EBSD analysis of multiple ooids reveals consistent length-
slow crystallographic character with the c-axis oriented, on
average, ~71.5° from the elongation direction (Figure 5]).
This uniformity exceeds that of the replacement dolomite
in the spherulite (Figure 5], K, L). The mean angle is be-
tween the 76° angle predicted between the c-axis and elon-
gation direction for the {1014} equant rhombohedron or 65°
predicted for {0112} obtuse rhombohedron (Dickson, 1978,
2023). In contrast, length-slow calcites are rare and usu-
ally have low Mg, as described from cave calcites and sep-
tarian concretions (Dickson, 1978; Folk & Assereto, 1976;
Lindholm, 1974). The Khufai ooid crystals also show pref-
erential < 1120 > a-axis alignment parallel to elongation
(Figure 5G). The plumose curvature, unlike the acicular
crystals typical of calcite and aragonite ooids (Bergmann et
al., 2025; Dickson, 2023; Frazier, 2024; Mono et al., 2025),
reflects bundles of crystallites showing slight lattice mis-
alignments (< 60°; Figure 4H). Such curvature and mis-
alignments have been hypothesized to result from crystal
splitting and crystallite templating (Kendall, 1985) or from
asymmetric growth under extreme supersaturation (Gonza-
lez et al., 1992), both consistent with synchronous crystal-
lite growth within a bundle rather than later replacement.

Crystal bundles throughout the cortex of the ooid dis-
play uniform sizes (~2 ym x 15 pm), morphologies, and
orientations, with impinging boundaries (Figure 2C, D, E)
that indicate competitive growth similar to the first gen-
eration of pisolite cements (c.f. Bathurst, 1972; Dickson,
1978, 2023; Rodriguez-Navarro & Garcia-Ruiz, 2000). Such
coherence across thousands of crystals suggests precise
growth conditions that would not survive replacement. To-
day, the ooid’s ordering ratio of 0.5 and Ca/Mg ratio of
1.01 (¥ 0.01, 1 SE, N =37) is similar to ideal dolomite. The
spherulitic stromatolite has a similar ordering ratio (0.51),
while the pisolite sample is a bit more poorly ordered (0.39)
(Supplemental Figures 16-18). The limited presence of
well-formed rhombohedral morphologies in EBSD and
acid-etched SEM images (Figure 2C, D, E) supports rapid
growth or distinct chemical conditions rather than slow
precipitation that can enhance rhombohedral habit and
size, as has been shown in a range of studies exploring the
various controls on crystal size and morphology (Chen et
al., 2023; Gregg et al., 2015; Kim et al., 2023; Malone et al.,
1996; Sibley & Gregg, 1987).

Taken together, the coherent length-slow crystallo-
graphic orientations, consistently small, curved plumose
crystal bundles with similarly oriented crystallites, and Ca/
Mg ratio of ~1, along with the evidence that crystal lattice

modification and volume reduction are not significant, all
support precipitation of a dolomite lattice from the start,
even if it was initially imperfectly ordered. While an amor-
phous Ca-Mg carbonate (ACMC; Rodriguez-Blanco et al.,
2015) cannot be ruled out, the evidence for crystal impinge-
ment and coherent bundles argues for crystalline rather
than amorphous growth. A VHMC precursor is possible but
likewise unlikely: it would likely be Ca-rich (Lu et al., 2023;
Vasconcelos & McKenzie, 1997), would require substantial
lattice reorganization to achieve dolomite ordering, and
length-slow VHMC fabrics have not been documented.
Thus, primary dolomite precipitation is the most parsimo-
nious interpretation.

Modern analogs and environmental conditions

If the Khufai ooids formed through primary precipitation
of dolomite, what environmental conditions would have
made this possible? Today, there is extreme kinetic inhi-
bition of dolomite in agitated, open, shallow-marine en-
vironments where ooids typically form. This is related to
slow nucleation rates, competition with other carbonates,
and Mg?* ions forming strong complexes with water that
inhibit their incorporation into carbonate lattices (Arvidson
& Mackenzie, 1999; Davis et al., 2000; Gregg et al., 2015;
Land, 1998). Today, primary precipitation of dolomite, and
even VHMC and amorphous Ca-Mg carbonate, requires ex-
treme environments or microbial processes that disrupt the
kinetic barriers (Daye et al., 2019; Diloreto et al., 2021). In
hypersaline environments like the Coorong lakes of South
Australia or the sabkhas of Qatar, fine (< 1-20 pm),
spherulitic dolomite or VHMC precipitates in high-salinity,
high-pH, high-aridity settings dominated by sulfate-reduc-
ing bacteria (Diloreto et al., 2021; Rivers et al., 2021; Ryan
et al., 2020; Wacey et al., 2007). Similarly, Lagoa Vermelha,
Brazil, hosts Ca-rich VHMC precipitation under anoxic, hy-
persaline conditions where bacterial activity plays a critical
role; primary carbonate precipitates approach ideal
dolomite stoichiometry and become ordered dolomite in
the sediment pile (van Lith et al., 2002; Vasconcelos et
al., 2005; Vasconcelos & McKenzie, 1997). Experimentally,
Na2*, K*, dissolved Si, and elevated Mg/Ca ratios have been
shown to increase dolomite precipitation rate and Mg in-
corporation, likely by disrupting the Mg%*-water complexes
(Fang et al., 2021; Fang & Xu, 2022; Hashim et al., 2023;
Kaczmarek & Sibley, 2011).

Several lines of geologic evidence suggest that upper
Khufai ooids experienced conditions similar to these mod-
ern environments that foster dolomite precipitation. Hy-
persalinity is indicated by evaporite pseudomorphs in un-
derlying mudstones (Osburn et al., 2014) and is a common
feature in Ca-Mg carbonate producing environments today
(e.g. Ryan et al., 2020; Wacey et al., 2007). Significant mi-
crobial influence is evidenced by large domal stromatolites
and clotted fabrics within some ooid nuclei (Figure 1B; Fig-
ure 3G, H). Silica cementation (Figure 3D) points to el-
evated dissolved silica, which also may have disrupted
Mg2*-water complexes and facilitated dolomite formation
(Fang et al., 2021; Fang & Xu, 2022). Authigenic Mg-clay
minerals, possibly palygorskite, are concentrated on some
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ooid nuclei, suggesting at least transient elevated pH
(Bergmann et al., 2025), another variable in common with
some modern alkaline environments (e.g. Wacey et al.,
2007). Dolomite precipitation may have also been aided
by elevated temperatures during the Shuram excursion
(Bergmann et al., 2025), as is observed in both modern
settings (Ryan et al., 2020) and precipitation experiments
(Arvidson & Mackenzie, 1999; Hashim et al., 2023; Kacz-
marek & Sibley, 2011).

Together, these observations suggest conditions favor-
able for primary precipitation of partially ordered dolomite,
which could have become more ordered with time, proceed-
ing by one of a variety of proposed mechanisms (Kim et al.,
2023; Manche & Kaczmarek, 2021; Pina et al., 2020). Once
nucleated, precipitation could have continued via the rela-
tively faster kinetics of growth on dolomite seed surfaces,
as shown in experiments (Arvidson & Mackenzie, 1999).
With abundant Ediacaran syn-sedimentary dolomite grains
reworked across sedimentary environments, templating
onto a preexisting dolomite lattice may have been even eas-
ier.

However, many of these environmental controls were
likely common in Precambrian nearshore environments
(Hood & Wallace, 2012, 2018; Hu et al., 2020, 2022). Why
then are these ooids so unusual compared to most Precam-
brian dolomite? These ooids formed during the onset of
the Shuram excursion, perhaps the largest perturbation to
Earth’s carbon cycle, with consequences observed in both
marine and terrestrial systems (Bergmann et al., 2025;
Busch et al., 2022). This suggests that otherwise familiar
environmental parameters may have been amplified during
the excursion’s onset, shifting primary dolomite precipita-
tion from cements lining cavities onto grains in the high-
energy seafloor setting of ooid shoals. While amplification
of the Ediacaran conditions that promoted primary
dolomite cements in other environments is the most likely
explanation, some yet undefined, time-specific control may
have been at play.

Implications for the Shuram excursion

The global occurrence of fibrous, radial dolomitic ooids
at the onset of the Shuram excursion represents a previ-
ously unrecognized paleoenvironmental signal. These dis-
tinctive ooids occur in transgressive settings on multiple
paleocontinents: in the upper Khufai oolite of Oman
(Bergmann et al., 2025; Osburn et al., 2014), the Johnnie
oolite of southern California and Nevada (Bergmann et al.,
2011; Corsetti et al., 2006; Hood & Wallace, 2018), and in
NW Canada (Busch, 2022). The crystallographic evidence
from Khufai ooids—showing evidence for primary dolomite
precipitation rather than replacement—suggests these
global ooid occurrences reflect unusual seawater conditions
that promoted primary dolomite formation in shallow,
high-energy environments. While burial alteration has de-
graded nanoscale fabrics in the Canadian and Californian
examples, their preserved macrofabrics are sufficiently sim-
ilar to the Khufai ooids to suggest a common origin through
primary dolomite precipitation. This global pattern sug-
gests that the Shuram excursion began under extraordinary

but consistent shallow-marine conditions across multiple
paleocontinents around 573 Ma.

The interpretation that the Shuram carbon isotope ex-
cursion reflects changes in seawater chemistry rather than
later diagenetic alteration (Bergmann et al., 2025), is
strengthened by the preservation of systematic crystallo-
graphic relationships and absence of typical evidence of re-
placement dolomitization in this oolite. While the nadir
of the Shuram excursion is found in calcitic oolites of the
overlying Shuram Formation, the upper Khufai oolite
record values as low as —7%o (Bergmann et al., 2025; Le
Guerroué et al.,, 2006; Osburn, 2013). The exceptional
preservation of primary crystallographic fabrics suggests
that the isotopic values of these dolomites may reflect their
original isotopic composition much more accurately than
extensively altered carbonates, though later exchange can-
not be excluded even in structurally preserved carbonates
(Adams et al., 2023; Cisneros-Lazaro et al., 2022). Recog-
nizing primary shallow-marine dolomite precipitation dur-
ing this major geochemical perturbation provides new con-
straints on Ediacaran ocean chemistry and demonstrates
the value of nanoscale crystallographic analysis for under-
standing ancient environmental conditions.

CONCLUSION

High-resolution crystallographic techniques—particu-
larly EBSD combined with PIC mapping—can distinguish
between different dolomite formation mechanisms that ap-
pear similar in conventional petrographic analysis. Our
comparative analysis across three Ediacaran dolomite fab-
rics reveals systematic differences in crystallographic be-
havior between ooids, spherulites in a stromatolite, and
pisolite cements, indicating that multiple precipitation
pathways operated within the same stratigraphic succes-
sion. Nanoscale crystallographic analysis of dolomite ooids
from the upper Khufai Formation demonstrates exceptional
preservation of systematic length-slow crystal orientations,
plumose morphologies, uniform crystal sizes, and fibrous
bundles that terminate precisely at ooid margins. These
properties are not readily explained by existing models of
mimetic dolomitization and are distinct from the crystal-
lographic character of calcite and aragonite ooids. Instead,
they suggest primary precipitation of crystals with a
dolomite lattice, likely imperfectly ordered at nucleation,
rather than replacement of calcite or aragonite. Recogniz-
ing the possibility of primary shallow marine dolomite pre-
cipitation in a high-energy setting during a major global
geochemical perturbation suggests rare, but as yet unde-
fined, environmental conditions during an enigmatic inter-
val of Earth history. Outside of the Shuram excursion, this
dolomite fabric seems unique in the described literature,
although similar nanoscale analysis of other dolomite ooids
is warranted. Open-water precipitation of partially ordered
dolomite in high-energy ooid shoals may be as distinctive
as the Shuram excursion itself.
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